[1] El-Darymli K, Gill E W, McGuire P, et al. Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review [J]. IEEE Access, 2016, 4(1): 6014-6058. doi:  10.1109/ACCESS.2016.2611492
[2] Anagnostopoulos G C. SVM-based target recognition from synthetic aperture radar images using target region outline descriptors [J]. Nonlinear Analysis, 2009, 71(2): 2934-2939. doi:  10.1016/j.na.2009.07.030
[3] Xie Qing, Zhang Hong. Multi-level SAR image enhancement based on regularization with application to target recognition [J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(9): 157-162. (in Chinese)
[4] Papson S, Narayanan R M. Classification via the shadow region in SAR imagery [J]. IEEE Transactions on Aerospace and Electronic System, 2012, 40(8): 969-980.
[5] Li Hui. SAR target recognition based on Gaussian mixture modeling of peak features [J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(8): 103-108. (in Chinese)
[6] Ding Baiyuan, Wen Gongjian, Yu Liansheng, et al. Matching of attributed scattering center and its application to synthetic aperture radar automatic target recognition [J]. Journal of Radar, 2017, 6(2): 157-166. (in Chinese)
[7] Ding B Y, Wen G J, Zhong J R, et al. A robust similarity measure for attributed scattering center sets with application to SAR ATR [J]. Neurocomputing, 2017, 219: 130-143. doi:  10.1016/j.neucom.2016.09.007
[8] Zhang Rui, Hong Jun, Ming Feng. Full polarimetry SAR ATR algorithm based on polarimetry similarity [J]. Foreign Electronic Measurement Technology, 2010, 29(5): 24-27. (in Chinese) doi:  10.3969/j.issn.1002-8978.2010.05.005
[9] Mishra A K, Motaung T. Application of linear and nonlinear PCA to SAR ATR[C]///25th International Conference Radio-elektronika, 2015: 1-6.
[10] Li Wenhong, Wang Jianguo. SAR images target recognition based on bilateral two-dimensional principal component analysis and probabilistic neural network ensemble [J]. Journal of CAEIT, 2014, 9(4): 401-407. (in Chinese) doi:  10.3969/j.issn.1673-5692.2014.04.015
[11] Cui Z Y, Cao Z J, Yang J Y, et al. Target recognition in synthetic aperture radar via non-negative matrix factorization [J]. IET Radar, Sonar and Navigation, 2015, 9(9): 1376-1385. doi:  10.1049/iet-rsn.2014.0407
[12] Dong G G, Kuang G Y, Wang N, et al. SAR target recognition via joint sparse representation of monogenic signal [J]. IEEE Journal of Selected Topics Applied Earth Observation and Remote Sensing, 2015, 8(7): 3316-3328. doi:  10.1109/JSTARS.2015.2436694
[13] Liu Xiaowen, Lei Juncheng, Wu Yanpeng. Synthetic aperture radara target recognition based on bidimensional empirical mode decomposition [J]. Laser and Optoelectronics Progress, 2020, 57(5): 041004. (in Chinese)
[14] Hao Yan, Ai Yanping, Zhang Xiaofei. Synthetic aperture radar target recognition based on KNN [J]. Fire Control & Command Control, 2018, 43(9): 113-115+120. (in Chinese)
[15] Liu Changqing, Chen Bo, Pan Zhouhao, et al. Research on target recognition technique via simulation SAR and SVM classifier [J]. Journal of CAEIT, 2016, 11(3): 257-262. (in Chinese) doi:  10.3969/j.issn.1673-5692.2016.03.008
[16] Liu H C, Li S T. Decision fusion of sparse representation and support vector machine for SAR image target recognition [J]. Neurocomputing, 2013, 113: 97-104. doi:  10.1016/j.neucom.2013.01.033
[17] Thiagaraianm J, Ramamurthy K, Knee P P, et al. Sparse representations for automatic target classification in SAR images[C]//4th Communications, Control and Signal Processing, 2010: 1–4.
[18] Han Ping, Wang Huan. Research on the synthetic aperture radar target recognition based on KPCA and sparse representation [J]. Journal of Signal Processing, 2013, 29(13): 1696-1701. (in Chinese)
[19] Zhang Xinzheng, Huang Peikang. SAR ATR based on Bayesian compressive sensing [J]. Systems Engineering and Electronics, 2013, 35(1): 40-44. (in Chinese) doi:  10.3969/j.issn.1001-506X.2013.01.07
[20] Chen S Z, Wang H P, Xu F, et al. Target classification using the deep convolutional networks for SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806-4817. doi:  10.1109/TGRS.2016.2551720
[21] Zhang Panpan, Luo Haibo, Ju Moran, et al. An improved capsule and its application in target recognition of SAR images [J]. Infrared and Laser Engineering, 2020, 49(5): 20201010. (in Chinese) doi:  10.3788/irla.26_invited-zhangpanpan
[22] Xu Ying, Gu Yu, Peng Dongliang, et al. SAR ATR based on disentangled representation learning generative adversarial networks and support vector machine [J]. Optics and Precision Engineering, 2020, 28(3): 727-735. (in Chinese) doi:  10.3788/OPE.20202803.0727
[23] Ding B Y, Wen G J, Ye F, et al. Feature extraction based on 2D compressive sensing for SAR automatic target recognition[C]//EUCAP, 2017: 1219-1223.
[24] Zhang H C, Nasrabadi N M, Zhang Y, et al. Multi-view automatic target recognition using joint sparse representation [J]. IEEE Transactions on Aerospace and Electronic Systtems., 2012, 48(3): 2481-2497. doi:  10.1109/TAES.2012.6237604
[25] Zhang Hong, Zuo Xinlan, Huang Yao. Feature selection based on the correlation of sparse coefficient vectors with application to SAR target recognition [J]. Laser and Optoelectronics Progress, 2020, 57(14): 141029. doi:  141029
[26] Zhou Guangyu, Liu Bangquan, Zhang Dan. Target recognition in SAR images based on variational mode decomposition [J]. Remote Sensing for Land and Resources, 2020, 32(2): 33-39. (in Chinese)