[1] McReery R. Raman Spectroscopy for Chemical Analysis[M]. New York:John Wiley Sons, 2000.
[2] Raman C V. A change of wave-length in light scattering[J]. Nature, 1928, 121(3051):619-619.
[3] Fleischmann M, Hendra P J, Mcquillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chem Phys Lett, 1974, 26(2):163-166.
[4] Lv Weiyu, Yuan Ke'e, Wei Xu, et al. A mobile lidar system for aerosol and water vapor detection in troposphere with mobile lida[J]. Infrared and Laser Engineering, 2016, 45(3):0330001. (in Chinese)吕炜煜, 苑克娥, 魏旭, 等. 对流层气溶胶和水汽的车载激光雷达系统的探测[J]. 红外与激光工程, 2016, 45(3):0330001.
[5] Wei H, Xu H X. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy[J]. Nanoscale, 2013, 5(22):10794-10805.
[6] Muller M, Zumbusch A. Coherent anti-stokes Raman scattering microscopy[J]. Chem Phys Chem, 2007, 8(5):2156-2170.
[7] Liang E J, Weippert A, Funk J M, et al. Experimental observation of surface-enhanced coherent anti-Stokes Raman scattering[J]. Chem Phys Lett, 1994, 227(1-2):115-120.
[8] Taro I, Norihiko H, Mamoru H, et al. Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles[J]. J Raman Spectrosc, 2003, 34:651-654.
[9] Christian S, Clemens F K, Jeremy J B, et al. Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces[J]. Nano Lett, 2011, 11(12):5339-5343.
[10] Zhang Y, Zhen Y R, Oara N, et al. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance[J]. Nat Commun, 2014, 5:4424.
[11] He J N, Fan C Z, Ding P, et al. Near-field engineering of Fano resonances in a plasmonic assembly for maximizing CARS enhancements[J]. Sci Rep, 2016, 6:20777.
[12] McLeod A, Weber-Bargioni A, Zhang Z, et al. Nonperturbative visualization of nanoscale plasmonic field distributions via photon localization microscopy[J]. Phys Rev Lett, 2011, 106(3):037402.
[13] Zhang Z, Weber-Bargioni A, Wu S W, et al. Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter[J]. Nano Lett, 2009, 9(12):4505-4509.
[14] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Phys Rev B, 1972, 6(12):4370-4379.
[15] Tolles W M, Nibler J W, McDonald J R, et al. A review of the theory and application of coherent anti-Stokes Raman spectroscopy(CARS)[J]. Appl Spectrosc, 1977, 31(4):253-271.
[16] Begley R F, Harvey A B, Byer R L. Coherent anti-Stokes Raman spectroscopy[J]. Appl Phys Lett, 1974, 25:387-390.
[17] Jonathan A F, Bao K, Wu C H, et al. Fano-like interference in self-assembled plasmonic quadrumer clusters[J]. Nano Lett, 2010, 10:4680-4685.
[18] Liu G D, Zhai X, Wang L L. Actively tunable Fano resonance based on a T-shaped graphene nanodimer[J]. Plasmonics, 2016, 11(2):381-387.
[19] Prodan E, Radloff C, Nordlander P, et al. A hybridization model for the plasmon response of complex nanostructures[J]. Science, 2003, 302(5644):419-422.
[20] Andrea L, Benjamin G, Peter N, et al. Mechanisms of Fano resonances in coupled plasmonic systems[J]. ACS Nano, 2013, 7(5):4527-4536.
[21] Ai L K, Antonio I F D, David W M, et al. High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures[J]. Nano Lett, 2011, 11(S2):1323-1330.
[22] Fan J A, Bao K, Wu C, et al. Fano-like onterference in self-assembled plasmonic quadrumer clusters[J]. Nano Lett, 2010, 10(11):4680-4685.
[23] Zhang Y, Wen F, Zhen Y R, et al. Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing[J]. Natl Acad Sci USA, 2013, 110(23):9215-9219.
[24] Kathryn M M, Jason H H. Localized surface plasmon resonance sensors[J]. Chem Rev, 2011, 111(6):3828-3857.
[25] Hentschel M, Dregely D, Vogelgesang R, et al. Plasmonic oligomers:the role of individual particles in collective behavior[J]. ACS Nano, 2011, 5(3):2042-2050.