RLG INS/GNSS极区组合导航方法

Integrated navigation method of RLG INS/GNSS polar region

  • 摘要: 针对航空飞行器跨极区飞行,导航坐标系转换导致滤波器结构变化,进而影响导航精度的问题,提出了基于协方差变换的环形激光陀螺惯导/全球导航卫星系统算法(Ring Laser Gyroscope Inertial Navigation System/Global Navigation Satellite System,RLG INS/GNSS)。通过建立地理坐标系、格网坐标系下系统误差状态及其协方差的转换关系,设计了具有全纬度适用性的组合导航滤波器,并通过跑车实验以及半实物仿真实验对算法的有效性进行了验证。实验结果表明,协方差变换算法可以有效解决导航坐标系转换导致的滤波不稳定问题,相较于无协方差变换,系统状态误差减小一个数量级。

     

    Abstract: When the aircraft is flying across the polar region, the transformation of navigation coordinate system will lead to the change of filter structure, which will affect the navigation accuracy. To solve this problem, a Ring Laser Gyroscope Inertial Navigation System/Global Navigation Satellite System (RLG INS/GNSS) polar region integrated navigation algorithm based on covariance transformation was proposed. The transformation relationship of the system error state and the covariance between the geographic coordinate system and the grid coordinate system was established. Then the integrated navigation filter with full latitude applicability was designed, and the effectiveness of the algorithm was verified by sports car experiment and semi-physical simulation experiment. The experiment results show that the covariance transformation algorithm can effectively solve the filtering instability caused by the transformation of the navigation coordinate system. Compared with the non-covariance transformation, the system state error decreases by one order of magnitude.

     

/

返回文章
返回