卢华东, 李佳伟, 靳丕铦, 苏静, 彭堃墀. 利用非线性损耗提升全固态单频激光器输出功率研究进展(特邀)[J]. 红外与激光工程, 2024, 53(1): 20230592. DOI: 10.3788/IRLA20230592
引用本文: 卢华东, 李佳伟, 靳丕铦, 苏静, 彭堃墀. 利用非线性损耗提升全固态单频激光器输出功率研究进展(特邀)[J]. 红外与激光工程, 2024, 53(1): 20230592. DOI: 10.3788/IRLA20230592
Lu Huadong, Li Jiawei, Jin Pixian, Su Jing, Peng Kunchi. Research progress on enhancing the output power of all-solid-state single-frequency continuous-wave lasers by using intracavity nonlinear loss mode-selecting technology (invited)[J]. Infrared and Laser Engineering, 2024, 53(1): 20230592. DOI: 10.3788/IRLA20230592
Citation: Lu Huadong, Li Jiawei, Jin Pixian, Su Jing, Peng Kunchi. Research progress on enhancing the output power of all-solid-state single-frequency continuous-wave lasers by using intracavity nonlinear loss mode-selecting technology (invited)[J]. Infrared and Laser Engineering, 2024, 53(1): 20230592. DOI: 10.3788/IRLA20230592

利用非线性损耗提升全固态单频激光器输出功率研究进展(特邀)

Research progress on enhancing the output power of all-solid-state single-frequency continuous-wave lasers by using intracavity nonlinear loss mode-selecting technology (invited)

  • 摘要: 全固态单频连续波激光器因其噪声低、线宽窄、光束质量好、功率稳定性高等优点已经被广泛应用于产生非经典光场、冷原子物理研究、引力波探测等诸多领域。随着科学技术的不断发展,传统的全固态激光器的输出功率已经不能满足前沿领域的需求,因此亟需在保持全固态激光器整体性能的同时进一步提升激光器的输出功率。为此首先需要更高的泵浦功率,而这将使激光器内部增益提高,在腔内损耗不变的情况下,原非振荡模式也将满足起振条件,从而使激光器在跳模或多模状态下运转。此外,激光晶体的热效应和损伤阈值也限制了输出功率的提高。本文介绍了一种利用非线性损耗大幅度提升全固态单频连续波激光器的输出功率的技术和方法。通过在谐振腔中引入非线性损耗,使主模经受的非线性损耗是次模的一半。在模式竞争的作用下,谐振腔内的模式被更进一步的选择,从而允许全固态单频激光器在更高的增益下保持单纵模运转。通过在谐振腔内插入多块增益晶体可以有效缓解由于激光增益晶体热效应的限制,从而实现更高功率的单频激光输出。目前高功率全固态连续波激光器的输出功率已经达到了一百瓦的量级,且还在进一步提高。通过在谐振腔内引入非线性损耗,全固态单频连续波激光器的整体性能在得以保障和提高的同时,其应用范围也得到了进一步的推广。

     

    Abstract:
      Significance:  All-solid-state single-frequency continuous-wave (CW) laser have found extensive applications in diverse domains such as the generation of non-classical light fields, cold atom physics, detection of gravitational waves, and so on, which primarily attributed to their merits of low noise, narrow bandwidth, excellent beam quality, and high power stability. In line with the advancement in science and technology, the output power of the traditional all-solid-state laser (ASSL) cannot satisfy the application requirements of many frontier research fields, so it is necessary to further scale the ASSL power and simultaneously maintain other excellent performance. For the purpose of improving the output power of the ASSL, its pump power has to be primarily elevated. However, with the increasement of the pump power, the laser gain is enhanced, and the non-oscillating laser modes of the ASSL start to oscillate, which results in the mode-hopping or the multi-mode oscillating operation of the ASSL. Moreover, the severe thermal effect of the laser gain medium and its relatively lower damage threshold also further restrict the improvement of the ASSL power. In this paper, an effective method of improving the all-solid-state single-frequency CW laser power via deliberately introducing a nonlinear loss into the resonator was presented. When the nonlinear loss was introduced, the nonlinear loss of the lasing mode was half of that of non-lasing mode, and the non-lasing mode was effectively inhibited, under the mode competition of the laser. As a consequence, the stable single-longitudinal mode operation of the laser can be guaranteed at higher laser gain. In addition, the design of multi-laser-crystal resonator can be adapted to efficiently mitigate the negative impact of the thermal effects of the laser crystal. By combining the nonlinear loss technique and the multi-laser-crystal resonator scheme, the output power of the all-solid-state single-frequency CW laser had been scaled up to 100-watt level and continuously increased.
      Progress:   First, the fundamental principle of mode selection implemented by intra-cavity nonlinear loss is presented. When the nonlinear loss is introduced into the resonator, the nonlinear loss of the lasing mode is half of that of the non-lasing mode, and the non-lasing modes are suppressed effectively under the mechanics of mode competition. Based on the principle above, the physical condition of stable SLM operation for ASSL is proposed. The condition depends on the intra-cavity linear and nonlinear losses, which is experimentally validated by changing the transmission of the output coupler. In the experiment, when the output coupler transmission is 19%, and the temperature of the type-I phase matched nonlinear crystal LBO is 149 ℃, the maximal output power of 33.7 W for the stable single-frequency 1064 nm laser is realized. On this basis, the intra-cavity round-trip loss of an ASSL is measured precisely by simply changing the temperature of the nonlinear LBO crystal to manipulate the nonlinear loss within the SLM region of the laser. According to the measured results and the oscillating condition of the ASSL, the output coupler transmission of the designed laser as well as its pump power is further optimized and the maximal output power of 50.3 W for the single-frequency 1064 nm laser is obtained.  To further increase the output power of the single-frequency laser, the pump power of the laser has to be raised. However, the sever thermal effect of the laser gain medium and its lower damage threshold restrict the continuously increasing of the single-frequency laser power. For the purpose of breaking aforementioned restriction and attaining higher power single-frequency laser, a laser resonator with two identical laser crystals was designed, where the precise mode-reproduction of the two crystals was implemented by a pair of lenses with identical focal length of 100 mm. When the total pump power was 240 W, a single frequency 1064 nm laser with maximal output power of 101 W was realized. In this laser, the focal lengths of the two lenses were fixed, so the laser only would be operated at a given incident pump power, and simultaneously the optical length between the imaging lenses had to be precisely adjusted. To this end, a self-mode-matching laser with four laser crystals in a single resonator was further designed. The total four laser crystals were used for both laser gain media and mode-matching elements. Under an appropriate combination of pump powers on four crystals, a stable CW single-frequency 1064 nm laser with 140 W power was obtained.
      Conclusions and Prospects:   Introducing nonlinear losses within the resonator is a robust way to realize SLM laser output, which has been experimentally proved. With multiple gaining crystals inserted in one cavity, the heat load on each crystal is effectively shared, so more total power is tolerable. With suitable mode matching and mode reproducing in the resonant, a high-power single-frequency CW ASSL has been designed and built which can deliver 140 W single-frequency CW laser, this is to our knowledge the highest SLM ASSL power. The progress in high-power single-frequency ASSL has significantly broadened its potential applications and made substantial contributions to the advancement of related disciplines.

     

/

返回文章
返回