Analytical method of temperature effects on space infrared optical system performance
-
摘要: 建立并提出了空间红外光学系统热控温度对光学系统性能的影响分析模型及方法。首先在有限元分析基础上,利用Zernike多项式表征热力学环境引起的光学表面形变,并考虑到温度对材料折射率的影响,完善了光学系统传递函数(MTF)分析模型,利用该模型可得出MTF在热力学和惯性载荷作用下的变化规律;然后从热辐射传输机理出发,建立了融入光学系统自身辐射的背景辐射计算模型,利用该模型可实现光学表面自身热辐射在像面产生辐照度的分析计算,从而提出了红外光学系统性能分析方法。最后针对实际空间红外光学系统,开展了系统性能随热控温度变化的分析实验。结果表明:当将系统热控温度设置为10 ℃时,可实现背景辐射下降48.6%的同时,光学系统MTF降低30%的应用需求。模型与方法可用于红外光学系统背景辐射水平和成像质量变化规律的研究,并应用于最佳热控温度的优化选择,为空间红外光学系统热控设计提供理论指导。
-
关键词:
- 空间红外光学系统 /
- 系统性能分析方法 /
- Zernike多项式 /
- MTF /
- 背景辐射计算模型
Abstract: An analysis model about the effects of the temperature on the imaging and detection performance of the space infrared optical system was established. Firstly, on the basis of the finite element analysis, the optical surface deformation was characterized by Zernike polynomials. Considering the effect of temperature on materials' refractivity, the analytical method of MTF was improved, and then the changing rule of system MTF with the variation of thermodynamics and inertial load was presented. Secondly, the calculation model of camera background radiation was established by integrating the spontaneous radiation of the system, based on the heat transfer mechanics. This model can be used to calculate the irradiance generated by the spontaneous thermal radiation in image plane. Then the performance analysis method of infrared optical system was proposed. Finally, experiments were conducted using a real space infrared optical system. Experimental results indicate that when the system thermal control temperature is set at 10 ℃, the background radiation can be decreased by 48.6%, as MTF can be decreased by 30% as well. The proposed method can be used to study the background radiation of space infrared optical system and the changing rule of the system's imaging quality, and then optimize the system's working temperature, which provides theoretical guidance for thermal control design. -
[1] [2] Yin Limei, Liu Yingqi, Li Hongwen, et al. Cold optics technology to achieve high-accuracy infrared detection[J]. Infrared Technology, 2013, 35(9): 535-540. (in Chinese) 殷丽梅, 刘莹奇, 李洪文, 等. 实现高精度红外探测的冷光学技术[J]. 红外技术, 2013, 35(9): 535-540. [3] Bely P Y, Lupie O L, Hershey J L. The line-of-sight jitter of the Hubble Space Telesope[C]//Proceedings of SPIE, 1993, 1945: 51-61. [4] [5] Blaurock C, McGinnis M, KIM K, et al. Structural-thermal-optical performance(STOP)sensitivity analysis for the James Webb Space Telescope[C]//Proceedings of SPIE, 2005, 5867: 5867V. [6] [7] [8] Cho M, Corredor A, Vogiatzis K, et al. Thermal analysis of the TMT telescope structure[C]//Proceedings of SPIE, 2010, 7738: 77380C. [9] [10] Gong Dun. The thermal effect on image quality of the remote sensor optical system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2010. (in Chinese) 巩盾. 温度对遥感器光学系统成像质量的影响[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2010. [11] Chen Chi, Dong Tingting, Pan Haijun, Study on the spectrophotometer optical system with high resolution[J]. Optics Optoelectronic Technology, 2015, 13(3): 64-70. (in Chinese) 陈驰, 董亭亭, 潘海俊. 光制热效应的光机热集成分析方法[J]. 光学与光电技术, 2015, 13(3): 64-70. [12] [13] [14] Chen Changzheng. Optimization of pointing mirror for space camera and analysis of its effect on image quality degradation[J]. Infrared, 2014, 35(12): 23-34. (in Chinese) 陈长征. 空间相机用摆镜的轻量化优化设计及其对像质的影响分析[J]. 红外, 2014, 35(12): 23-34. [15] [16] Li Qikai. Zernike polynomials fitting in cryogenic optical thermal integration analysis[J]. Spacecraft Recovery Remote Sensing, 2010, 31(8): 45-50. (in Chinese) 李其锴. Zernike多项式拟合用于低温光学镜头热集成分析[J]. 航天返回与遥感, 2010, 31(8): 45-50. [17] [18] Rradley J Frey, Douglas B Levition, Timothy J Madison. Temperature-depdent refractive index of silicon and germanium[C]//Proceedings of SPIE, 2005, 5904: 5904O-1-5904O-12. [19] Juergens Richard C, Coronato Patrick A. Improved method for transfer of FEA results to optical codes[C]//Proceedings of SPIE, 2003, 5174: 105-115. -

计量
- 文章访问数: 326
- HTML全文浏览量: 27
- PDF下载量: 216
- 被引次数: 0