留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光钠导引星技术研究进展

许祖彦 薄勇 彭钦军 张雨东 魏凯 薛随建 冯麓

许祖彦, 薄勇, 彭钦军, 张雨东, 魏凯, 薛随建, 冯麓. 激光钠导引星技术研究进展[J]. 红外与激光工程, 2016, 45(1): 101001-0101001(13). doi: 10.3788/IRLA201645.0101001
引用本文: 许祖彦, 薄勇, 彭钦军, 张雨东, 魏凯, 薛随建, 冯麓. 激光钠导引星技术研究进展[J]. 红外与激光工程, 2016, 45(1): 101001-0101001(13). doi: 10.3788/IRLA201645.0101001
Xu Zuyan, Bo Yong, Peng Qinjun, Zhang Yudong, Wei Kai, Xue Suijian, Feng Lu. Progress on sodium laser guide star[J]. Infrared and Laser Engineering, 2016, 45(1): 101001-0101001(13). doi: 10.3788/IRLA201645.0101001
Citation: Xu Zuyan, Bo Yong, Peng Qinjun, Zhang Yudong, Wei Kai, Xue Suijian, Feng Lu. Progress on sodium laser guide star[J]. Infrared and Laser Engineering, 2016, 45(1): 101001-0101001(13). doi: 10.3788/IRLA201645.0101001

激光钠导引星技术研究进展

doi: 10.3788/IRLA201645.0101001
基金项目: 

国家自然基金委青年人才基金(11303056)

详细信息
    作者简介:

    许祖彦(1940-),男,中国工程院院士,主要从事可调谐激光、全固态激光及非线性光学方面的研究。Email:zyxu@mail.ipc.ac.cn

  • 中图分类号: O437

Progress on sodium laser guide star

  • 摘要: 望远镜是人类探索宇宙奥秘最重要的科学工具之一。大型地基光学望远镜对天观测时,大气扰动使星光波前畸变导致其实际分辨率大幅下降,是长期困扰高精度天文观测的重大科技问题。因此世界各大望远镜均在竞相发展自适应光学技术,以校正大气造成的波前畸变,使望远镜达到近衍射极限分辨率,这标志着地基光学望远镜正在进入自适应光学望远镜时代。激光钠导引星是用激光激发海拨约90 km电离层中的钠原子产生的人造亮星,作为自适应光学校正的信标源,是自适应光学望远镜的核心技术之一。文中介绍了激光钠导引星技术的原理、方法与国内外发展状况,尤其是该实验室采用的固体激光和频技术,实现了钠D2线光谱匹配和钠层激发匹配的微秒脉冲钠导引星激光,并在国内外大望远镜上使用获得成功。
  • [1] Babcock H W. The possibility of compensating astronomical seeing[C]//Publications of the Astronomical Society of the Pacific, 1953, 65: 229-236.
    [2] Hardy J W. Proc. Inst. Elect. Electron. Engrs[C]//Control designs for an adaptive optics system, 1978, 66: 651-697.
    [3] Happer W, MacDonald G J, Max C E, et al. Atmospheric-turbulence compensating by resonant optical backscattering from the sodium layer in the upper atmosphere[J]. J Opt Soc Am A, 1994, 11: 263-276.
    [4] Belenkii M S, Karis S J, Brown J M. Experimental validation of a technique to measure tilt from a laser guide star [J]. Optics Letters, 1999, 24: 637-639.
    [5] Thompson L A, Gardner C S. Experiments on laser guide stars at Mauna Kea Observatory for adaptive imaging in astronomy [J]. Nature (London), 1987, 328: 229-231.
    [6] Jelonek M P, Fugate R Q, Lange W J, et al. Characterization of artificial guide stars generated in the mesospheric sodium layer with a sum-frequency laser [J]. J Opt Soc Am A, 1994, 11 (2): 806-812.
    [7] Max C E, Olivier S S, Friedman H W, et al. Image improvement from a sodium-layer laser guide star adaptive optics system[J]. Science, 1997, 277 (12): 1649-1652.
    [8] Viswa Velur, Edward J K, Richard G D, et al. Implementation of the Chicago sum frequency laser at Palomar laser guide star test [C]//SPIE, Advancements in Adaptive Optics, 2004, 5490: 1033-1040.
    [9] Kuntschner, Harald. Operational concept of the VLT's adaptive optics facility and its instruments [C]//SPIE, 2012, 8448: 07-11.
    [10] Yutaka Hayanoa, Yoshihiko Saitoa, Meguru Itoa, et al. The laser guide star facility for subaru telescope [C]//SPIE, 2006, 6272: 627247-1-627247-7.
    [11] Allen K Hankla, Jarett Bartholomew, Ken Groff, et al. 20 W and 50 W solid-state sodium beacon guidestar laser systems for the Keck I and gemini south telescopes [C]//SPIE, 2006, 6272: 62721G-1-62721G-9.
    [12] Joyce R, Boyer C, Daggert L, et al. The laser guide star facility for the thirty meter telescope[C]//Advances in Adaptive Optics II, SPIE Proc, 2006, 6272: 1H1-1H6.
    [13] Pfrommer Thomas, Hickson Paul, She Chiaoyao. A large-aperture sodium fluorescence lidar with very high resolution for mesopause dynamics and adaptive optics studies[J]. Geophysical Research Letters, 2009, 36: 1-5.
    [14] Jian GeL, Jacobsena B P, Angel' J R P, et al. Simultaneous measurements of sodium column density and laser guide star brightness [C]//SPIE, 1998, 3353: 242-253.
    [15] Ungar P J, Weiss D S, Riis E, et al. Optical molasses and multilevel atoms: Theory[J]. J Opt Soc Am B, 1989, 6(11): 2058-2071.
    [16] Rochester Simon M, Otarola Angel, Boyer Corinne. Modeling of pulsed-laser guide stars for the Thirty Meter Telescope project [J]. Journal of the Optical Society of America B-Optical Physics, 2012, 29(8): 2176-2188.
    [17] Avicola K, Brase J M, Morris J R, et al. Sodium-layer laser-guide-star experimental results[J]. J Opt Soc Am A, 1994, 11: 825-831.
    [18] Chester S Cardner, Byron M Welsh, Laird A Thompson. Design and performance analysis of adaptive optical telescopes using laser guide stars [C]//Proceedings of the IEEE, 1990, 78(11): 1721-1743.
    [19] Brent Ellerbroek, Corinne Boyer, Larry Daggert, et al. The TMT Laser Guide Star facility conceptual design report [Z]. TMT LGSF Team, TMT International Observatory, LLC, TMT.AOS.CDD.06.035.REL03, 2006, 25-25.
    [20] Peter L W, David L M, Antonin H B, et al. The W. M. keck observatory laser guide star adaptive optics system: overview[C]//Publications of the Astronomical Society of the Pacific, 2006, 118: 000-000.
    [21] Humphreys R A, Primmerman C A, Bradley L C, et al.Atmospheric-turbulence measurements using asynthetic beacon in the mesospheric sodium layer [J]. Opt Lett, 1991, 16: 1367-1369.
    [22] Foy R, Labeyrie A. Feasibility of adaptive telescope with laser probe [J]. Astron Astrophys, 1985, 152: 129-131.
    [23] Joshua C Bienfang, Craig A Denman, Brent W Grime, et al. 20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers [J]. Opt Lett, 2003, 28(22): 2219-2221.
    [24] Craig A D, Paul D H, Gerald T M, et al. 20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications[J]. Optical Materials, 2004, 26: 507-513.
    [25] Craig A Denmana, Paul D Hillmana, Gerald T Moorea, et al. Realization of a 50-Watt facility-class sodium guidestar pump laser [C]//SPIE, 2005, 5707: 46-49.
    [26] Cline d'Orgeville, Sarah Diggs, Vincent Fesquet, et al. Gemini south multi-conjugate adaptive optics (GeMS) laser guide star facility on-sky performance results[C]//SPIE, 2012, 8447: 84471Q-1-84471Q-21.
    [27] Hideki Takami, Stephen Colleya, Matt Dinkinsa, et al. Status of subaru laser guide star AO system[C]//SPIE, 2006, 6272: 62720C1-C10.
    [28] Yan Feng, Luke R Taylor, Domenico Bonaccini Calia. 25 W Raman -fiber -amplifier -based 589 nm laser for laser guide star[J]. Optics Express, 2009, 17(21): 19021-19026.
    [29] Luke R Taylor, Yan Feng, Domenico Bonaccini Calia. 50 W CW visible laser source at 589nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Optics Express, 2010, 18(8): 8540-8555.
    [30] Christina B Olausson, Akira Shirakawa, Hiroki Maurayama, et al. Power-scalable long-wavelength Yb-doped photonic bandgap fiber sources[C]//SPIE, 2010, 7580: 758013-1-758013-12.
    [31] Pennington D M, Dawson J W, Beach R J, et al. Compact fiber laser for 589 nm laser guide star generation [C]//CLEO Europe, 2005: 532-532.
    [32] Surin A A, Larin S V. 14 W SHG in MgO:sPPLT at 589 nm from high power CW linearly polarized RFL [C]//Laser Optics, International Conference, 2014: 1-1.
    [33] Dupriez P, Farrell C, Ibsen M, et al. 1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system[C]//SPIE, 2006, 6102: 61021G-1-61021G-6.
    [34] Jeys T H. Development of a mesospheric sodium laser beacons for adaptive optics[J]. The Lincoln Laboratory Journal, 1991, 4: 133-133.
    [35] Kibblewhite E J, Shi F. Design and field tests of an 8 W sum-frequency laser for adaptive optics[C]//SPIE, 1998, 3353: 300-319.
    [36] Viswa Velur, Edward J Kibblewhite, Richard G Dekany, et al. Implementation of the Chicago sum frequency laser at Palomar laser guide star test[C]//SPIE, 2004, 5490: 1033-1040.
    [37] Jennifer E Roberts, Antonin H Bouchez, John Angione, et al. Facilitizing the palomar AO Laser Guide Star system [C]//SPIE, 2008, 7015: 70152S-1-10.
    [38] Xie S, Bo Yong, Xu J, et al. A 7.5 W quasi-continuous-wave sodium D2 laser generated from single-pass sum-frequency generation in LBO crystal[J]. Appl Phys B, 2011, 102: 781-787.
    [39] Xu Zuyan, Xie Shiyong, Bo Yong, et al. Investigation of 30 W-class second-generation sodium beacon laser[J]. Acta Optica Sinica, 2011, 31(9): 094208-1-094208-4. (in Chinese) 许祖彦, 谢仕永, 薄勇, 等。30 W级第二代钠信标激光器研究[J]. 光学学报, 2011, 31(9): 094208-1-094208-4.
    [40] Kai Wei, Yong Bo, Xianghui Xue, et al. Photon returns test of the pulsed sodium guide star laser on the 1.8 meter telescope[C]//SPIE, 2013, 8447: 84471R-1-84471R-7.
    [41] Angel Otarola. On-sky tests of the TIPC prototype laser results from tests held at the Lijiang observatory[Z]. TIPC Technical Review, TMT. AOS. PRE. 13.028. DRF01, 2013.
    [42] Otarola Angel, Hickson Paul, Bo Yong, et al. On-sky tests of a high-power pulsed-laser system for sodium laser guide star adaptive optics[J]. Journal of Astronomical Instrumentation, 2015: 22.
    [43] Lu Yanhua, Xie Gang, Pang Yu, et al. 340 mJ all solid state sodium beacon laser[J]. Chinese Journal of Lasers, 2012, 39(7): 0708004-7. (in Chinese) 鲁燕华, 谢刚, 庞毓, 等。340 mJ全固态钠信标激光器[J]. 中国激光, 2012, 39(7): 0708004-7.
    [44] Yan Hualu, Xie Gang, Zhang Lei, et al. High energy all solid state sodium beacon laser with line width of 0.6 GHz [J]. Appl Phys B, 2015, 118: 253-259.
    [45] Wang Feng, Chen Tianjiang, Luo Zhongxiang, et al. Experimental study on backscattering characteristics of sodium beacon based on a long pulse laser[J]. Acta Physica Sinica, 2014, 63(1): 014208-1-014208-6. (in Chinese) 王锋, 陈天江, 雒仲祥, 等。基于长脉冲光源的钠信标回光特性实验研究 [J]. 物理学报, 2014, 63(1): 014208-1-014208-6.
    [46] Liu Jie, Wang Jianli, Lv Tianyu, et al. All-solid-state 589 nm laser and the brightness of excited sodium guide star[J]. Optics and Precision Engineering, 2014, 22(12): 3199-3204. (in Chinese) 刘杰, 王建立, 吕天宇, 等. 全固态589nm激光器及其钠导星激发亮度[J]. 光学 精密工程, 2014, 22(12): 3199-3204.
    [47] Lei Zhang, Huawei Jiang, Shuzhen Cui, et al. Over 50 W 589 nm single frequency laser by frequency doubling of single Raman fiber amplifier [C]//CLEO, 2014: 1-2.
    [48] Yuan Y, Zhang L, Liu Y, et al. Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal[J]. China-Technological Sciences, 2013, 56(1): 125-128.
    [49] Tan Wei, Fu Xiaofang, Li Zhixin, et al. The wavelength tunable 589 nm laser output based on singly resonant sum-frequency generation and the measurement of saturate fluorescence spectrum of sodium atom[J]. Acta Physica Sinica, 2013, 62(9): 094211-1-094211-6. (in Chinese) 谭巍, 付小芳, 李志新, 等. 基于单波长外腔共振和频技术产生波长可调谐589 nm 激光及钠原子饱和荧光谱的测量[J]. 物理学报, 2013, 62(9): 094211-1-094211-6.
    [50] Gao Z L, Liu S D, Liu J J, et al. Self-frequency-doubled BaTeMo2O9 Raman laser emitting at 589 nm[J]. Optics Express, 2013, 21(6): 7821-7827.
    [51] Wang Yuning. Advances in all-solid-state yellow lasers at 589 nm[D]. Changchun: Changchun University of Science and Technology, 2012. (in Chinese) 王禹凝. 高功率全固态589nm黄光激光器的研究[D]. 长春: 长春理工大学, 2012.
    [52] Zhu Haiyong, Zhang Ge, Zhang Yaoju, et al. LD end-pumped c-cut Nd:YVO4 laser at 589 nm generated by sef-Raman conversion and frequency doubling[J]. Acta Physica Sinica, 2011, 60(9): 373-377. (in Chinese) 朱海永, 张戈, 张耀举, 等. LD端面抽运c切Nd:YVO4自拉曼倍频589 nm黄光激光研究[J]. 物理学报, 2011, 60(9): 373-377.
    [53] Li Lisha, Hou Yao, Chen Xiuyan, et al. Diode-side-pumped 589nm yellow laser with double acousto-optic Q-switche[J]. Laser Technology, 2009, 33(3): 273-275. (in Chinese) 李莉莎, 侯瑶, 陈秀艳, 等. 二极管侧面抽运双声光调Q 589 nm黄光激光器[J]. 激光技术, 2009, 33(3): 273-275.
    [54] Liang Xingbo, Yuan ligang, Jiang Dongsheng, et al. 10.5 W quasi continuous wave yellow laser at 589 nm[J]. Laser Infrared, 2008, 38(9): 876-878. (in Chinese) 梁兴波, 苑利钢, 姜东升, 等. 10.5 W准连续波589 nm黄光激光器[J]. 激光与红外, 2008, 38(9): 876-878.
    [55] Pique Jean-Paul, Ioana C Moldovan, Vincent Fesquet, et al. Polychromatic Laser Guide Star using a single laser at 330 nm [C]//SPIE, 2006, 6272: 62723D-1-62723D-10.
    [56] Brent Ellerbroek, Corinne Boyer, Larry Daggert, et al. The TMT Laser Guide Star facility conceptual design report[Z]. TMT LGSF Team, TMT International Observatory, LLC, TMT.AOS.CDD.06.035.REL03, 2006: 26-26.
  • [1] 王韵澎, 燕静, 郝翔.  自适应光学在超分辨显微成像技术中的应用(内封面文章·特邀) . 红外与激光工程, 2024, 53(5): 20240011-1-20240011-15. doi: 10.3788/IRLA20240011
    [2] 詹海潮, 王乐, 彭秦, 王文鼐, 赵生妹.  涡旋光束的自适应光学波前校正技术研究进展(特邀) . 红外与激光工程, 2021, 50(9): 20210428-1-20210428-10. doi: 10.3788/IRLA20210428
    [3] 方舟, 徐项项, 李鑫, 刘金龙, 杨慧珍, 龚成龙.  自适应增益的SPGD算法 . 红外与激光工程, 2020, 49(10): 20200274-1-20200274-7. doi: 10.3788/IRLA20200274
    [4] 范文强, 王志臣, 陈宝刚, 陈涛, 安其昌.  自适应光学相干层析在视网膜高分辨成像中的应用 . 红外与激光工程, 2020, 49(10): 20200333-1-20200333-13. doi: 10.3788/IRLA20200333
    [5] 贾启旺, 李新阳, 罗曦.  自适应光学系统运行失稳检测方法 . 红外与激光工程, 2020, 49(10): 20200299-1-20200299-10. doi: 10.3788/IRLA20200299
    [6] 邓可然, 魏凯, 晋凯, 董若曦, 李敏, 张雨东.  1.8米望远镜钠信标自适应光学系统的高对比度成像性能研究 . 红外与激光工程, 2020, 49(8): 20200058-1-20200058-9. doi: 10.3788/IRLA20200058
    [7] 黄建, 魏凯, 晋凯, 王功长, 李敏, 张雨东.  钠信标光斑大小及回光数研究 . 红外与激光工程, 2019, 48(1): 106004-0106004(10). doi: 10.3788/IRLA201948.0106004
    [8] 牛威, 郭世平, 史江林, 邹建华, 张荣之.  自适应光学成像事后处理LoG域匹配图像质量评价 . 红外与激光工程, 2018, 47(11): 1111005-1111005(9). doi: 10.3788/IRLA201847.1111005
    [9] 罗瑞耀, 王红岩, 宁禹, 丁枫, 万国新, 许晓军.  基于阵列激光导星的自适应光学波前探测数值仿真 . 红外与激光工程, 2018, 47(11): 1111003-1111003(9). doi: 10.3788/IRLA201847.1111003
    [10] 晋凯, 魏凯, 李敏, 程锋, 薄勇, 左军卫, 姚吉, 卞奇, 冯麓, 薛向辉, 程学武, 钱仙妹, Angel Otarola, 张雨东.  钠信标测光理论与实验研究 . 红外与激光工程, 2018, 47(1): 106005-0106005(9). doi: 10.3788/IRLA201847.0106005
    [11] 高春清, 张世坤, 付时尧, 胡新奇.  涡旋光束的自适应光学波前校正技术 . 红外与激光工程, 2017, 46(2): 201001-0201001(6). doi: 10.3788/IRLA201746.0201001
    [12] 罗奇, 李新阳.  自适应光学系统光轴抖动抑制控制器设计 . 红外与激光工程, 2016, 45(4): 432003-0432003(6). doi: 10.3788/IRLA201645.0432003
    [13] 曹召良, 穆全全, 徐焕宇, 张佩光, 姚丽双, 宣丽.  开环液晶自适应光学系统:研究进展和结果 . 红外与激光工程, 2016, 45(4): 402002-0402002(8). doi: 10.3788/IRLA201645.0402002
    [14] 张耀平, 樊峻棋, 龙国云.  变形镜在激光辐照下热畸变有限元模拟 . 红外与激光工程, 2016, 45(11): 1136002-1136002(5). doi: 10.3788/IRLA201645.1136002
    [15] 杨萍, 宋宏, 楼利旋, 刘腾君, 张嘉恒, 王杭州, 詹舒越, 黄慧, 穆全全, 杨文静.  盐水和沙子上方传输激光束波前畸变校正的对比研究 . 红外与激光工程, 2016, 45(4): 432001-0432001(7). doi: 10.3788/IRLA201645.0432001
    [16] 毛珩, Tao Louis, 陈良怡.  自适应光学技术在深层动态荧光显微成像中的应用和发展 . 红外与激光工程, 2016, 45(6): 602001-0602001(7). doi: 10.3788/IRLA201645.0602001
    [17] 刘超, 曹召良, 穆全全, 胡立发, 宣丽.  瑞利导星发射系统设计 . 红外与激光工程, 2016, 45(8): 818002-0818002(6). doi: 10.3788/IRLA201645.0818002
    [18] 冯晓星, 张鹏飞, 乔春红, 张京会, 范承玉, 王英俭.  高能固体脉冲激光热晕效应相位补偿的数值分析 . 红外与激光工程, 2015, 44(5): 1408-1413.
    [19] 杨慧珍, 刘荣, 刘强.  基于变形镜本征模的模型式无波前探测自适应光学系统 . 红外与激光工程, 2015, 44(12): 3639-3644.
    [20] 韩立强, 王志斌.  自适应光学校正下空间光通信的光纤耦合效率及斯特列尔比 . 红外与激光工程, 2013, 42(1): 125-129.
  • 加载中
计量
  • 文章访问数:  767
  • HTML全文浏览量:  157
  • PDF下载量:  579
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-05
  • 修回日期:  2015-06-15
  • 刊出日期:  2016-01-25

激光钠导引星技术研究进展

doi: 10.3788/IRLA201645.0101001
    作者简介:

    许祖彦(1940-),男,中国工程院院士,主要从事可调谐激光、全固态激光及非线性光学方面的研究。Email:zyxu@mail.ipc.ac.cn

基金项目:

国家自然基金委青年人才基金(11303056)

  • 中图分类号: O437

摘要: 望远镜是人类探索宇宙奥秘最重要的科学工具之一。大型地基光学望远镜对天观测时,大气扰动使星光波前畸变导致其实际分辨率大幅下降,是长期困扰高精度天文观测的重大科技问题。因此世界各大望远镜均在竞相发展自适应光学技术,以校正大气造成的波前畸变,使望远镜达到近衍射极限分辨率,这标志着地基光学望远镜正在进入自适应光学望远镜时代。激光钠导引星是用激光激发海拨约90 km电离层中的钠原子产生的人造亮星,作为自适应光学校正的信标源,是自适应光学望远镜的核心技术之一。文中介绍了激光钠导引星技术的原理、方法与国内外发展状况,尤其是该实验室采用的固体激光和频技术,实现了钠D2线光谱匹配和钠层激发匹配的微秒脉冲钠导引星激光,并在国内外大望远镜上使用获得成功。

English Abstract

参考文献 (56)

目录

    /

    返回文章
    返回