留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率高亮度半导体激光器合束进展

王立军 彭航宇 张俊 秦莉 佟存柱

王立军, 彭航宇, 张俊, 秦莉, 佟存柱. 高功率高亮度半导体激光器合束进展[J]. 红外与激光工程, 2017, 46(4): 401001-0401001(10). doi: 10.3788/IRLA201746.0401001
引用本文: 王立军, 彭航宇, 张俊, 秦莉, 佟存柱. 高功率高亮度半导体激光器合束进展[J]. 红外与激光工程, 2017, 46(4): 401001-0401001(10). doi: 10.3788/IRLA201746.0401001
Wang Lijun, Peng Hangyu, Zhang Jun, Qin Li, Tong Cunzhu. Development of beam combining of high power high brightness diode lasers[J]. Infrared and Laser Engineering, 2017, 46(4): 401001-0401001(10). doi: 10.3788/IRLA201746.0401001
Citation: Wang Lijun, Peng Hangyu, Zhang Jun, Qin Li, Tong Cunzhu. Development of beam combining of high power high brightness diode lasers[J]. Infrared and Laser Engineering, 2017, 46(4): 401001-0401001(10). doi: 10.3788/IRLA201746.0401001

高功率高亮度半导体激光器合束进展

doi: 10.3788/IRLA201746.0401001
基金项目: 

国家自然科学基金(61574141,61404137,61535013,L1524007);中国科学院项目(QYZDY-SSW-JSC006);吉林省科技厅项目(20160519019JH,20160203017GX)

详细信息
    作者简介:

    王立军(1946-),男,中国科学院院士,主要从事大功率半导体激光器及应用方面的研究。Email:wanglj@ciomp.ac.cn

  • 中图分类号: TN248

Development of beam combining of high power high brightness diode lasers

  • 摘要: 半导体激光器体积小、效率高,但单元输出功率低、光束质量差限制了其应用。介绍了提升半导体激光器功率及光束质量的最新进展,对各种技术途径和实验结果进行了综述报道,并具体介绍了中国科学院长春光学精密机械与物理研究所近年来在高亮度半导体激光器芯片及合束方面取得的进展。
  • [1] Sverdlov B, Pfeiffer H U, Zibik E, et al. Optimization of fiber coupling in ultra-high power pump modules at =980 nm[C]//SPIE, 2013, 8605:860508.
    [2] Agnieszka Pietrzak, Hans Wenzel, Gtz Erbert, et al. High-power laser diodes emitting light above 1100 nm with a small vertical divergence angle of 13[J]. Optics Letters, 2008, 33(19):2188-2190.
    [3] Feit M D, Fleck J A, Jr. Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams[J]. J Opt Soc Am B, 1988, 5(3):633-640.
    [4] Eliseev P G, Glebov A, Osinski M. Modeling of current crowding accompanying optical filament formation in semiconductor lasers and amplifiers[C]//SPIE, 1997, 2994:580-590.
    [5] Zheng Dai, Rainer Michalzik, Peter Unger, et al. Numerical simulation of broad-area high-power semiconductor laser amplifiers[J]. IEEE Journal of Quantum Electronics, 1997, 33(12):2240-2254.
    [6] Robert J Lang, David Mehuys, Amos Hardy, et al. Spatial evolution of filaments in broad area diode laser amplifiers[J]. Applied Physics Letters, 1993, 62(11):1209-1211.
    [7] Crump P, Winterfeldt M, Decker J, et al. Limitations to brightness in high power laser diodes[C]//2015 IEEE Photonics Conference (IPC), 2015:553-554.
    [8] Crump P, Winterfeldt M, Decker J, et al. Novel approaches to increasing the brightness of broad area lasers[C]//SPIE, 2016, 9767:97671L.
    [9] Alexander Bachmann, Christian Lauer, Michael Furitsch, et al. Recent brightness improvements of 976 nm high power laser bars[C]//SPIE, 2017, 10086:1008602.
    [10] Crump P, Erbert G, Wenzel H, et al. Efficient high-power laser diodes[J]. IEEE J Sel Top Quant Electron, 2013, 19(4):1501211.
    [11] Heiko Kissel, Paul Wolf, Alexander Bachmann, et al. Tailored bars at 976 nm for high-brightness fiber-coupled modules[C]//SPIE, 2017, 10086:100860B.
    [12] Kanskar M, Bao L, Chen Z, et al. Flared oscillator waveguide diodes(FLOW-Diodes) enable high brightness fiber-coupled modules[C]//The 25th International Semiconductor Laser Conference(ISLC), 2016, WE16.
    [13] Kanskar M, Bao L, Chen Z, et al. Continued improvement in reduced-mode(REM) diodes enable 272 W from 105 m 0.15 NA Beam[C]//SPIE, 2017, 10086:1008609.
    [14] Hans-Christoph Eckstein, Uwe Zeitner, Andreas Tnnermann, et al. Numerical simulation and optimization of micro structured high brightness broad area laser diodes[C]//SPIE, 2015, 9382:93821H.
    [15] Martin Winterfeldt, Paul Crump, Steffen Knigge, et al. High beam quality in broad area lasers via suppression of lateral carrier accumulation[J]. IEEE Photonics Technology Letters, 2015, 27(17):1809-1812.
    [16] Feise D, Bl me G, Dittrich H, et al. High-brightness 635 nm tapered diode lasers with optimized index guiding[C]//SPIE, 2010, 7583:75830V.
    [17] S mpf B, Adamiec P, Zorn M, et al. 650 nm tapered lasers with 1 W maxim m output power and nearly diffraction limited beam quality at 500 mW[C]//SPIE, 2008, 6876:68760M.
    [18] S mpf B, Adamiec P, Zorn M, et al. Nearly diffraction-limited tapered lasers at 675 nm with 1-W output power and conversion effi-ciencies above 30%[J]. IEEE Photonics Technol Lett, 2011, 23(4):266-268.
    [19] Erbert G, Fricke J, Hlsewede R, et al. 3 W-high brightness tapered diode lasers at 735 nm based on tensile strained GaAsP-QWs[C]//SPIE, 2003, 4995:29-38.
    [20] Fiebig C, Bl me G, Kaspari C, et al. 12 W high-brightness single-frequency DBR tapered diode laser[J]. Electron Lett, 2008, 44(21):1253-1254.
    [21] S mpf B, Hasler X H, Adamiec P, et al. 12.2 W output power from 1060 nm DBR tapered lasers with narrow spectral line width and nearly diffraction limited beam quality[C]//European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference, 2009.
    [22] Redmond S M, Creedon K J, Kansky J E. Active coherent beam combining of diode lasers[J]. Opt Lett, 2011, 36(6):999-1001.
    [23] Missaggia L J, Redmond S M, Bratain M A, et al. Advanced packaging of high-power slab-coupled optical waveguide laser and amplifier arrays for coherent beam combining[C]//Lasers and Electro-Optics, 2010:CThX4.
    [24] Huang R K, Channa B, Missaggia L J, et al. Coherently combined diode laser arrays and stacks[C]//CLEO/QELS, 2009:CWF1.
    [25] Redmond S M, Creedon K J, Kansky J E. Active coherent beam combining of diode lasers[J]. Opt Lett, 2011, 36(6):999-1001.
    [26] Gapontsev V, Moshegov N, Berezin I, et al. Highly-efficient high-power pumps for fiber lasers[C]//SPIE, 2017, 10086:1008604.
    [27] Hemenway M, Urbanek W, Dawson D, et al. Advances in high-brightness fiber-coupled laser modules for pumping multi-kW CW fiber lasers[C]//SPIE, 2017, 10086:1008605.
    [28] Kanskar M, Bao L, Chen Z, et al. Continued improvement in reduced-mode (REM) diodes enable 272 W from 105 m 0.15 NA beam[C]//SPIE, 2017, 10086:1008609.
    [29] Kasai Y, Yamagatab Y, Kaifuchi Y, et al. High-brightness and high-efficiency fiber-coupled module for fiber laser pump with advanced laser diode[C]//SPIE, 2017, 10086:1008606.
    [30] Yu H, Rossi G, Braglia A, et al. Development of a 300 W 105/0.15 fiber pigtailed diode module for additive manufacturing applications[C]//SPIE, 2017, 10086:100860A.
    [31] Xu D, Guo Z J, Zhang T J, et al. 600 W high brightness diode laser pumping source[C]//SPIE, 2017, 10086:1008603.
    [32] Kissel H, Wolf P, Bachmann A, et al. Tailored bars at 976 nm for high-brightness fiber-coupled modules[C]//SPIE, 2017, 10086:100860B.
    [33] Knning T, Khler B, Wolf P, et al. Optical components for tailoring beam properties of multi-kW diode lasers[C]//SPIE, 2017, 10085:100850G.
    [34] Witte U, Traub M, Meo A D, et al. Compact 35 m fiber coupled diode laser module based on dense wavelength division multiplexing of NBA mini-bars[C]//SPIE, 2017, 9733:97330H.
    [35] Unger A, Uthoff R, Stoiber M, et al. Tailored bar concepts for 10 mm-mrad fiber coupled modules scalable to kW-class direct diode lasers[C]//SPIE, 2015, 9348:934809.
    [36] Witte U, Schneider F, Holly C, et al. kW-class direct diode laser for sheet metal cutting based on commercial pump modules[C]//SPIE, 2017, 10086:1008608.
    [37] Heinemann S, Fritsche H, Kruschke B, et al. Compact high brightness diode laser emitting 500 W from a 100 m fiber[C]//SPIE, 2017, 8605:86050Q.
    [38] Fritsche H, Krusche B, Koch R, et al. High brightness, direct diode laser with kW output power[C]//SPIE, 2014, 8965:89650G.
    [39] Hengesbach S, Krauch N, Holly C, et al. High-power dense wavelength division multiplexing of multimode diode laser radiation based on volume Bragg gratings[J]. Opt Lett, 2013, 38(16):3154-3157.
    [40] Daneu V, Sanchez A, Fan T Y, et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity[J]. Opt Lett, 2000, 25(6):405-407.
    [41] Chann B, Huang R K, Missaggia L J, et al. Near-diffraction-limited diode laser arrays by wavelength beam combining[J]. Opt Lett, 2005, 30(16):2104-2106.
    [42] Gopinath J T, Chann B, Fan T Y, et al. 1450-nm high-brightness wavelength-beam combined diode laser array[J]. Opt Express, 2008, 16(13):9405-9410.
    [43] Hecht J. Beam combining cranks up the power[J]. Laser Focus World, 2012, 48(6):41-43.
    [44] Zimer H, Haas M, Ried S, et al. Thin film filter wavelength-locked laser cavity for spectral beam combining of diode laser arrays[C]//2014 IEEE Photonics Conference, 2014:230-231.
    [45] Zimer H, Haas M, Nagel S, et al. Spectrally stabilized and combined diode lasers[C]//2015 IEEE High Power Diode Lasers and Systems Conference(HPD), 2015:31-32.
    [46] Strohmaier S G, Erbert G, Meissner-Schenk A H, et al. kW-class diode laser bars[C]//SPIE, 2017, 10086:100860C.
    [47] Rong Jiamin, Xing Enbo, Wang Lijie, et al. Control of lateral divergence in high-power, broad-area photonic crystal lasers[J]. Applied Physics Express, 2016, 9:072104.
    [48] Wang Tao, Tong Cunzhu, Wang Lijie, et al. Injection-insensitive lateral divergence in broad-area diode lasers achieved by spatial current modulation[J]. Applied Physics Express, 2016, 9:112102.
  • [1] 侯玉斌, 卢向文, 张倩, 王璞.  应用于下一代引力波探测器的超低噪声2 μm高功率单频光纤激光器(特邀) . 红外与激光工程, 2022, 51(6): 20220400-1-20220400-7. doi: 10.3788/IRLA20220400
    [2] 淡金川, 谭少阳, 王邦国, 肖垚, 邓国亮, 王俊.  波导结构对905 nm隧道结级联半导体激光器的光束质量和功率的影响 . 红外与激光工程, 2022, 51(5): 20210979-1-20210979-7. doi: 10.3788/IRLA20210979
    [3] 杨涛, 李武森, 陈文建.  新型小功率半导体激光器驱动及温控电路设计 . 红外与激光工程, 2022, 51(2): 20210764-1-20210764-8. doi: 10.3788/IRLA20210764
    [4] 白振旭, 杨学宗, 陈晖, 金舵, 丁洁, 齐瑶瑶, 李森森, 闫秀生, 王雨雷, 吕志伟.  高功率金刚石激光技术研究进展(特邀) . 红外与激光工程, 2020, 49(12): 20201076-1-20201076-13. doi: 10.3788/IRLA20201076
    [5] 薛梦凡, 彭冬亮, 荣英佼, 申屠晗, 骆吉安, 陈志坤, 刘智惟.  采用实时功率反馈的半导体激光器幅度调制方法 . 红外与激光工程, 2019, 48(9): 905002-0905002(7). doi: 10.3788/IRLA201948.0905002
    [6] 孙舒娟, 谭昊, 孟慧成, 郭林辉, 高松信, 武德勇, 许放.  高亮度半导体激光器无输出耦合镜光栅外腔光谱合束 . 红外与激光工程, 2019, 48(3): 306006-0306006(8). doi: 10.3788/IRLA201948.0306006
    [7] 程雪, 王建立, 刘昌华.  高能光纤激光器光束合成技术 . 红外与激光工程, 2018, 47(1): 103011-0103011(11). doi: 10.3788/IRLA201847.0103011
    [8] 张龙, 陈建生, 高静, 檀慧明, 武晓东.  大功率半导体激光器驱动电源及温控系统设计 . 红外与激光工程, 2018, 47(10): 1005003-1005003(7). doi: 10.3788/IRLA201847.1005003
    [9] 曹宇轩, 舒世立, 孙方圆, 赵宇飞, 佟存柱, 王立军.  中红外半导体激光器合束技术研究进展(特邀) . 红外与激光工程, 2018, 47(10): 1003002-1003002(8). doi: 10.3788/IRLA201847.1003002
    [10] 刘翠翠, 王翠鸾, 王鑫, 倪羽茜, 吴霞, 刘素平, 马骁宇.  半导体激光器双波长光纤耦合模块的ZEMAX设计 . 红外与激光工程, 2018, 47(1): 105002-0105002(6). doi: 10.3788/IRLA201847.0105002
    [11] 王英顺, 任永学, 安振峰.  高亮度半导体激光器的研制 . 红外与激光工程, 2016, 45(S2): 15-18. doi: 10.3788/IRLA201645.S206004
    [12] 夏金宝, 刘兆军, 张飒飒, 邱港.  快速半导体激光器温度控制系统设计 . 红外与激光工程, 2015, 44(7): 1991-1995.
    [13] 李峙, 尧舜, 高祥宇, 潘飞, 贾冠男, 王智勇.  半导体激光器堆栈快轴光束质量计算的研究 . 红外与激光工程, 2015, 44(1): 85-90.
    [14] 胡晓冬, 徐元飞, 姚建华, 于成松.  大功率半导体直接输出激光加工系统开发 . 红外与激光工程, 2015, 44(7): 1996-2001.
    [15] 陈河, 陈胜平, 侯静, 姜宗福.  1.06μm注入锁定增益开关半导体激光器特性分析与功率放大研究 . 红外与激光工程, 2015, 44(10): 2900-2905.
    [16] 李江澜, 石云波, 赵鹏飞, 高文宏, 陈海洋, 杜彬彬.  TEC 的高精度半导体激光器温控设计 . 红外与激光工程, 2014, 43(6): 1745-1749.
    [17] 林平, 刘百玉, 缑永胜, 白永林, 王博, 白晓红, 秦君军, 朱炳利, 杨文正, 朱少岚, 高存孝, 欧阳娴.  基于半导体激光器的脉冲整形技术 . 红外与激光工程, 2014, 43(1): 103-107.
    [18] 徐正文, 曲轶, 王钰智, 高婷, 王鑫.  高功率980nm非对称宽波导半导体激光器设计 . 红外与激光工程, 2014, 43(4): 1094-1098.
    [19] 韩顺利, 仵欣, 林强.  半导体激光器稳频技术 . 红外与激光工程, 2013, 42(5): 1189-1193.
    [20] 胡黎明, 朱洪波, 王立军.  高亮度半导体激光器泵浦光纤耦合模块 . 红外与激光工程, 2013, 42(2): 361-365.
  • 加载中
计量
  • 文章访问数:  543
  • HTML全文浏览量:  40
  • PDF下载量:  740
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-21
  • 修回日期:  2017-04-09
  • 刊出日期:  2017-04-25

高功率高亮度半导体激光器合束进展

doi: 10.3788/IRLA201746.0401001
    作者简介:

    王立军(1946-),男,中国科学院院士,主要从事大功率半导体激光器及应用方面的研究。Email:wanglj@ciomp.ac.cn

基金项目:

国家自然科学基金(61574141,61404137,61535013,L1524007);中国科学院项目(QYZDY-SSW-JSC006);吉林省科技厅项目(20160519019JH,20160203017GX)

  • 中图分类号: TN248

摘要: 半导体激光器体积小、效率高,但单元输出功率低、光束质量差限制了其应用。介绍了提升半导体激光器功率及光束质量的最新进展,对各种技术途径和实验结果进行了综述报道,并具体介绍了中国科学院长春光学精密机械与物理研究所近年来在高亮度半导体激光器芯片及合束方面取得的进展。

English Abstract

参考文献 (48)

目录

    /

    返回文章
    返回