留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

条纹投影与相位偏折测量技术研究进展

刘东 严天亮 王道档 杨甬英 黄玮

刘东, 严天亮, 王道档, 杨甬英, 黄玮. 条纹投影与相位偏折测量技术研究进展[J]. 红外与激光工程, 2017, 46(9): 917001-0917001(10). doi: 10.3788/IRLA201746.0917001
引用本文: 刘东, 严天亮, 王道档, 杨甬英, 黄玮. 条纹投影与相位偏折测量技术研究进展[J]. 红外与激光工程, 2017, 46(9): 917001-0917001(10). doi: 10.3788/IRLA201746.0917001
Liu Dong, Yan Tianliang, Wang Daodang, Yang Yongying, Huang Wei. Review of fringe-projection profilometry and phase measuring deflectometry[J]. Infrared and Laser Engineering, 2017, 46(9): 917001-0917001(10). doi: 10.3788/IRLA201746.0917001
Citation: Liu Dong, Yan Tianliang, Wang Daodang, Yang Yongying, Huang Wei. Review of fringe-projection profilometry and phase measuring deflectometry[J]. Infrared and Laser Engineering, 2017, 46(9): 917001-0917001(10). doi: 10.3788/IRLA201746.0917001

条纹投影与相位偏折测量技术研究进展

doi: 10.3788/IRLA201746.0917001
基金项目: 

国家自然科学基金(61475141);应用光学国家重点实验室开放基金;浙江省自然科学基金(LY17E050014)

详细信息
    作者简介:

    刘东(1982-),男,副教授,博士生导师,博士,主要从事光电检测与遥感技术方面的研究。Email:liudongopt@zju.edu.cn

  • 中图分类号: TN247

Review of fringe-projection profilometry and phase measuring deflectometry

  • 摘要: 条纹投影和相位偏折测量术可用于精确地测量待测物面形,在全场光学三维轮廓测量领域具有较好的发展前景。首先,介绍了条纹投影和相位偏折测量技术的基本原理,重点是这两种技术中的相位提取技术、摄像机定标技术等关键技术。其次,对条纹投影和相位偏折测量术这两种测量方法的异同点做了对比。最后,介绍了条纹投影和相位偏折测量技术在提升测量精度和速度方面的发展。为了提升测量精度,主要有校正条纹Gamma效应、提升相位提取精度、摄像机标定精度和相位-高度/梯度标定精度等途径;为了提升测量速度,主要有提升相位提取速度、相位解包裹速度等方法。
  • [1] Su P, Oh C J, Parks R E, et al. Swing arm optical CMM for aspherics[C]//SPIE Optical Engineering+ Applications. International Society for Optics and Photonics, 2009, 7246:72460J.
    [2] Liu Bingcai, Li Bing, Tian Ailing. Compensation and identification of non-common path error in lateral shearing interferometry[J]. Infrared and Laser Engineering, 2015, 44(8):2406-2410. (in Chinese)
    [3] Wang Xiaokun. Measurement of large off-axis convex asphere by systemic stitching testing method[J]. Chinese Optics, 2016, 9(1):130-136. (in Chinese)
    [4] Ma Zhanlong, Peng Lirong, Wang Gaowen. High-precision CGH substrate figuring by ion beam[J]. Chinese Optics, 2016, 9(2):270-276. (in Chinese)
    [5] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing[J]. Journal of Refractive Surgery, 2001, 17(5):S573-S577.
    [6] Su X Y, Zhou W S, Von Bally G, et al. Automated phase-measuring profilometry using defocused projection of a Ronchi grating[J]. Optics Communications, 1992, 94(6):561-573.
    [7] Jptner W, Bothe T. Sub-nanometer resolution for the inspection of reflective surfaces using white light[C]//SPIE Nano Science+ Engineering. International Society for Optics and Photonics, 2009, 7405:740502.
    [8] Faber C, Olesch E, Krobot R, et al. Deflectometry challenges interferometry:the competition gets tougher[C]//SPIE Optical Engineering+ Applications. International Society for Optics and Photonics, 2012, 8493:84930R.
    [9] Knauer M C, Kaminski J, Hausler G. Phase measuring deflectometry:a new approach to measure specular free-form surfaces[C]//Photonics Europe. International Society for Optics and Photonics, 2004:366-376.
    [10] Speck A, Zelzer B, Kannengieer M, et al. Inspection of freeform intraocular lens topography by phase measuring deflectometric methods[J]. Applied Optics, 2013, 52(18):4279-4286.
    [11] Tang Y, Su X Y, Liu Y. Three dimensional shape measurement of aspheric mirror based on fringe reflection[J]. Acta Optica Sinica, 2009, 29(4):965-969.
    [12] Abdel-Aziz Y, Karara H M. Direct linear transformation into object space coordinates in close-range photogrammetry[C]//Close-range Photogrammetry, 1971:1-18.
    [13] Zhang Y Z, Ou Z Y. A new linear approach for camera calibration[J]. Journal of Image and Graphics, 2010, 6(8):14-18.
    [14] Faig W. Calibration of close-range photogrammetric systems:Mathematical formulation[J]. Photogrammetric Engineering and Remote Sensing, 1975, 41(12):1479-1486.
    [15] Tsai R Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE Journal of Robotics and Automation, 1987, 3(4):323-344.
    [16] Weng J, Cohen P, Herniou M. Camera calibration with distortion models and accuracy evaluation[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1992, 14(10):965-980.
    [17] Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11):1330-1334.
    [18] Liu Y, Li T F. Research of the improvement of Zhang's camera calibration method[J]. Optical Technique, 2014, 40(6):565-570.
    [19] Yue X F, Qi H. Calibration of binocular stereo-vision system based on Zhang Zhengyou plane template method[J]. Mechanical Engineer, 2014(2):1-3.
    [20] Faugeras O D, Maybank S. Motion from point matches:multiplicity of solutions[J]. International Journal of Computer Vision, 1990, 4(3):225-246.
    [21] Su X Y, Zhou W S, Von Bally G, et al. Automated phase-measuring profilometry using defocused projection of a Ronchi grating[J]. Optics Communications, 1992, 94(6):561-573.
    [22] Gai S Y, Da F P. A new phase alignment method for digital project or in phase measuring profilometry[J]. Acta Autom-atiac Sinica, 2008, 34(11):1363-1368.
    [23] Cui Yanjun, Zhang Wenfeng, Li Jianxin. A method of gamma correction in fringe projection measurement[J]. Acta Optia Sinica, 2015, 35(1):0112002. (in Chinese)
    [24] Hoang T, Pan B, Nguyen D, et al. Generic Gamma correction for accuracy enhancement in fringe-projection profilometry[J]. Optics Letters, 2010, 35(12):1992-1994.
    [25] Liu J, Wang F, Wang G W. Application of standard intensity insensitive five-step phase-shifting algorithm in projected fringe deflectometry[J]. Chinese Journal of Lasers, 2013, 40(11):211-217.
    [26] Okada K, Sato A, Tsujiuchi J. Simultaneous calculation of phase distribution and scanning phase shift in phase shifting interferometry[J]. Optics Communications, 1991, 84(3-4):118-124.
    [27] Wang Z, Han B. Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms[J]. Optics Letters, 2004, 29(14):1671-1673.
    [28] Zhu Xinjun, Deng Yaohui, Tang Chen. Variational mode decomposition for phase retrieval in fringe projection 3D shape measurement[J]. Optics and Precision Engineering, 2016, 24(9):2318-2324. (in Chinese)
    [29] Li B, Karpinsky N, Zhang S. Novel calibration method for structured-light system with an out-of-focus projector[J]. Applied Optics, 2014, 53(16):3415-3426.
    [30] Su P, Wang Y, Burge J H, et al. Non-null full field X-ray mirror metrology using SCOTS:a reflection deflectometry approach[J]. Optics Express, 2012, 20(11):12393-12406.
    [31] Yue H M, Su X Y, Li Z R. Improved fast fourier transform profilometry based on composite grating[J]. Acta Optica Sinica, 2005, 25(6):767-771.
    [32] Zhang Z, Towers C E, Towers D P. Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency selection[J]. Optics Express, 2006, 14(14):6444-6455.
    [33] Zou H H, Zhao H, Zhou X. Triple-frequency color-encoded fringe projection profilometry based on empirical mode decomposition[J]. Acta Optica Sinica, 2011(8):165-173.
    [34] Shi Z, Zhao H, Zhang L. Phase-unwrapping method based on dual-frequency colorful fringe projection[J]. Acta Optica Sinica, 2007, 27(3):461-465.
    [35] Zhang S, Li X, Yau S T. Multilevel quality-guided phase unwrapping algorithm for real-time three-dimensional shape reconstruction[J]. Applied Optics, 2007, 46(1):50-57.
    [36] Li Bo, Ma Suodong. Path-independent phase unwrapping method using zonal reconstruction technique[J]. Infrared and Laser Engineering, 2016, 45(2):0229006. (in Chinese)
    [37] Zhong K, Li Z, Shi Y, et al. Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping[J]. Optics and Lasers in Engineering, 2013, 51(11):1213-1222.
  • [1] 鲁晓锋, 柏晓飞, 李思训, 王轩, 黑新宏.  基于改进加权增强局部对比度测量的红外小目标检测方法 . 红外与激光工程, 2022, 51(8): 20210914-1-20210914-9. doi: 10.3788/IRLA20210914
    [2] 范芯蕊, 刁晓飞, 吴剑威, 康岩辉.  高精度轴对称非球面反射镜轮廓测量方法(特邀) . 红外与激光工程, 2022, 51(9): 20220500-1-20220500-8. doi: 10.3788/IRLA20220500
    [3] 沙启蒙, 王卫杰, 刘通, 刘政良, 邱松, 任元.  涡旋光平衡探测系统转速测量精度与信噪比分析(特邀) . 红外与激光工程, 2021, 50(9): 20210616-1-20210616-9. doi: 10.3788/IRLA20210616
    [4] 殷永凯, 张宗华, 刘晓利, 彭翔.  条纹投影轮廓术系统模型与标定综述 . 红外与激光工程, 2020, 49(3): 0303008-0303008-18. doi: 10.3788/IRLA202049.0303008
    [5] 张钊, 韩博文, 于浩天, 张毅, 郑东亮, 韩静.  多阶段深度学习单帧条纹投影三维测量方法 . 红外与激光工程, 2020, 49(6): 20200023-1-20200023-8. doi: 10.3788/IRLA20200023
    [6] 王玉伟, 陈向成, 王亚军.  改进的双频几何约束条纹投影三维测量方法 . 红外与激光工程, 2020, 49(6): 20200049-1-20200049-7. doi: 10.3788/IRLA20200049
    [7] 杨久琪, 董涛, 陈丁, 倪晋平, 开百胜.  基于主动光幕阵列静爆试验破片速度测量方法 . 红外与激光工程, 2020, 49(1): 0113003-0113003(7). doi: 10.3788/IRLA202049.0113003
    [8] 安其昌, 张景旭, 杨飞, 赵宏超.  GSSMP转动精度的测量与标定 . 红外与激光工程, 2018, 47(9): 917004-0917004(7). doi: 10.3788/IRLA201847.0917004
    [9] 薛彬, 赵拓, 吴翰钟, 张凯, 王志洋, 游画.  飞秒光频梳基于鉴相信号处理实现速度测量 . 红外与激光工程, 2018, 47(2): 206002-0206002(8). doi: 10.3788/IRLA201847.0206002
    [10] 王伟之, 王妍, 于艳波, 邸晶晶, 宗云花, 高卫军.  亚角秒级星相机的精度测定 . 红外与激光工程, 2018, 47(9): 917002-0917002(7). doi: 10.3788/IRLA201847.0917002
    [11] 刘楚, 钟凯, 史杰, 靳硕, 葛萌, 李吉宁, 徐德刚, 姚建铨.  迈克尔逊干涉法精确测量太赫兹频谱及目标速度 . 红外与激光工程, 2018, 47(11): 1117006-1117006(7). doi: 10.3788/IRLA201847.1117006
    [12] 吴立志, 陈少杰, 叶迎华, 沈瑞琪, 刘卫.  用于瞬态高速飞片速度测量的光子多普勒测速系统 . 红外与激光工程, 2016, 45(12): 1217001-1217001(5). doi: 10.3788/IRLA201645.1217001
    [13] 胡月宏, 宗飞, 吴敏, 封双连, 李志朝.  等晕角测量结果对比分析 . 红外与激光工程, 2016, 45(S2): 26-29. doi: 10.3788/IRLA201645.S217001
    [14] 沈姗姗, 陈钱, 何伟基, 周萍, 顾国华.  单光子测距系统性能优化研究和实现 . 红外与激光工程, 2016, 45(2): 217001-0217001(6). doi: 10.3788/IRLA201645.0217001
    [15] 李建中, 王德田, 刘俊, 雷江波, 田建华, 刘寿先.  多点光子多普勒测速仪及其在爆轰物理领域的应用 . 红外与激光工程, 2016, 45(4): 422001-0422001(6). doi: 10.3788/IRLA201645.0422001
    [16] 安其昌, 张景旭, 杨飞.  基于加速度信号的TMT三镜镜面jitter测量 . 红外与激光工程, 2015, 44(10): 2970-2974.
    [17] 范锦彪, 李玺, 徐鹏, 祖静.  g 值加速度校准激励脉冲的横向激光干涉测量方法 . 红外与激光工程, 2015, 44(2): 497-502.
    [18] 刘常杰, 刘洪伟, 郭寅, 刘邈, 张宾, 叶声华.  基于扫描激光雷达的列车速度测量系统 . 红外与激光工程, 2015, 44(1): 285-290.
    [19] 孙高飞, 张国玉, 刘石, 王琪, 高玉军, 王凌云, 王浩君.  高精度背景可控星图模拟器设计 . 红外与激光工程, 2015, 44(7): 2195-2199.
    [20] 魏合理, 戴聪明.  辐射特性测量大气传输修正研究:大气传输修正系统 . 红外与激光工程, 2014, 43(4): 1019-1024.
  • 加载中
计量
  • 文章访问数:  530
  • HTML全文浏览量:  134
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-10
  • 修回日期:  2017-02-20
  • 刊出日期:  2017-09-25

条纹投影与相位偏折测量技术研究进展

doi: 10.3788/IRLA201746.0917001
    作者简介:

    刘东(1982-),男,副教授,博士生导师,博士,主要从事光电检测与遥感技术方面的研究。Email:liudongopt@zju.edu.cn

基金项目:

国家自然科学基金(61475141);应用光学国家重点实验室开放基金;浙江省自然科学基金(LY17E050014)

  • 中图分类号: TN247

摘要: 条纹投影和相位偏折测量术可用于精确地测量待测物面形,在全场光学三维轮廓测量领域具有较好的发展前景。首先,介绍了条纹投影和相位偏折测量技术的基本原理,重点是这两种技术中的相位提取技术、摄像机定标技术等关键技术。其次,对条纹投影和相位偏折测量术这两种测量方法的异同点做了对比。最后,介绍了条纹投影和相位偏折测量技术在提升测量精度和速度方面的发展。为了提升测量精度,主要有校正条纹Gamma效应、提升相位提取精度、摄像机标定精度和相位-高度/梯度标定精度等途径;为了提升测量速度,主要有提升相位提取速度、相位解包裹速度等方法。

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回