留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相位敏感光时域反射系统模式识别方法综述

付群健 于淼 常天英 张瑾 罗政纯 王旭 刘珉含 崔洪亮

付群健, 于淼, 常天英, 张瑾, 罗政纯, 王旭, 刘珉含, 崔洪亮. 相位敏感光时域反射系统模式识别方法综述[J]. 红外与激光工程, 2018, 47(7): 722001-0722001(14). doi: 10.3788/IRLA201847.0722001
引用本文: 付群健, 于淼, 常天英, 张瑾, 罗政纯, 王旭, 刘珉含, 崔洪亮. 相位敏感光时域反射系统模式识别方法综述[J]. 红外与激光工程, 2018, 47(7): 722001-0722001(14). doi: 10.3788/IRLA201847.0722001
Fu Qunjian, Yu Miao, Chang Tianying, Zhang Jin, Luo Zhengchun, Wang Xu, Liu Minhan, Cui Hongliang. Summarization of pattern recognition method for phase sensitive optical time domain reflecting system[J]. Infrared and Laser Engineering, 2018, 47(7): 722001-0722001(14). doi: 10.3788/IRLA201847.0722001
Citation: Fu Qunjian, Yu Miao, Chang Tianying, Zhang Jin, Luo Zhengchun, Wang Xu, Liu Minhan, Cui Hongliang. Summarization of pattern recognition method for phase sensitive optical time domain reflecting system[J]. Infrared and Laser Engineering, 2018, 47(7): 722001-0722001(14). doi: 10.3788/IRLA201847.0722001

相位敏感光时域反射系统模式识别方法综述

doi: 10.3788/IRLA201847.0722001
基金项目: 

海洋公益性行业科研专项(201405026-01)

详细信息
    作者简介:

    付群健(1993-),女,硕士生,主要从事光纤传感技术及应用方面的研究。Email:fuqunjian@126.com

  • 中图分类号: TP219

Summarization of pattern recognition method for phase sensitive optical time domain reflecting system

  • 摘要: 基于相位敏感的光时域反射系统(Ф-OTDR)是一种新型的分布式光纤扰动传感系统。随着应用需求的不断细化,单纯对外部侵扰活动的检测及定位已无法满足实际需要,亟待对检测到的信号进行准确的分类识别。在检测到侵扰信号的同时,如何能准确判别入侵事件的类别,减少误报率和漏报率是分布式光纤扰动传感系统研究的关键问题。文中主要针对分布式光纤扰动传感系统的原理进行了简要的介绍,将现有的扰动信号特征提取的方法和分类器设计的方法进行归纳和分类,并对识别结果进行总结和对比以方便研究人员根据应用环境的差异以及待测信号的特征,准确选择适合的信号模式识别方法,促进研究人员对分布式光纤扰动传感系统模式识别方法进行更为深入的研究。
  • [1] Yang Shuying, Zhang Hua. Pattern Recognition and Intelligent Computing-MATLAB Technology Implementation[M]. Beijing:Electronic Industry Press, 2016:127-150. (in Chinese)
    [2] Zhang X, Sun Z, Shan Y, et al. A high performance distributed optical fiber sensor based on -OTDR for dynamic strain measurement[J]. IEEE Photonics Journal, 2017, 9(3):1-12.
    [3] Li Kaiyan, Zhao Xingqun, Sun Xiaohan, et al. A method of regularized composite feature extraction for vibration signal pattern recognition of fiber-optic links[J]. Journal of Physics, 2015, 64(5):243-249. (in Chinese)
    [4] Wang Liang. Michelson interferometric fiber vibration sensing system pattern recognition method[D]. Changchun:Jilin University, 2016. (in Chinese)
    [5] Liao Jun. Research on positioning algorithm and pattern recognition technology of dual M-Z perimeter protection system[D]. Chengdu:Southwest Jiaotong University, 2015. (in Chinese)
    [6] Yang Zhen. Research on signal recognition method of distributed optical fiber security detection system[D]. Dalian:Dalian Maritime University, 2015. (in Chinese)
    [7] Sun Qian. Ф-OTDR optical fiber early warning system pattern recognition method[D]. Tianjin:Tianjin University, 2015. (in Chinese)
    [8] Zhou Liangxin. Research and implementation of Ф-OTDR optical fiber intrusion feature extraction algorithm[D]. Xi'an:North China University of Technology, 2017. (in Chinese)
    [9] Li Qin, Wang Hongbo, Li Lijing, et al. Optical fiber distributed disturbance sensor based on Michelson interferometer[J]. Infrared and Laser Engineering, 2015, 44(1):205-209. (in Chinese)
    [10] Zhao Yi. Research on integrated method of intrusion behavior of light intrusion based on feature fusion[D]. Hefei:Hefei University of Technology, 2017. (in Chinese)
    [11] Jiang Lihui, Liu Jiesheng, Xiong Xinglong, et al. Research on feature extraction and recognition method of optical boundary intrusion signal[J]. Laser and Infrared, 2017, 47(7):906-913. (in Chinese)
    [12] Du T, Wan X, Zhang Z, et al. Analysis of the interference signal of the distributed optical fiber sensing based on DSP[J]. Optics Photonics Journal, 2013, 3(2B):122-125.
    [13] Xu Chengjin. Research on signal processing technology of distributed optical fiber sensing system[D]. Hangzhou:Zhejiang University, 2017. (in Chinese)
    [14] Wang Zhaoyong, Pan Zhengqing, Ye Qing, et al. Fast pattern recognition for spectrum analysis of fiber fence intrusion alarm[J]. Chinese Journal of Lasers, 2015, 42(4):159-164. (in Chinese)
    [15] Zhang Yan, Lou Shuqin, Liang Sheng, et al. Research on pattern recognition of Ф-OTDR distributed optical fiber perturbation sensor system based on multi-feature parameters[J]. Chinese Journal of Lasers, 2015, 42(11):1105005. (in Chinese)
    [16] Tejedor J, Martins H F, Piote D, et al. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system[J]. Journal of Lightwave Technology, 2016, 34(19):4445-4453.
    [17] Wang Siyuan, Lou Shuqin, Liang Sheng, et al. M-Z interferometer type fiber distributed disturbance perturbation system pattern recognition method[J]. Infrared and Laser Engineering, 2014, 43(8):2613-2618. (in Chinese)
    [18] Tang Chao, Hu Ting. Research on vibration signal pattern recognition of optical fiber sensing system[J]. Optical Communication Technology, 2014, 38(11):57-59. (in Chinese)
    [19] Zou Dongbo, Liu Hai. Research on distributed fiber optic vibration sensing signal recognition[J]. Laser Technology, 2016, 40(1):86-89. (in Chinese)
    [20] Bi Fukun, Zhou Liangxin, Li Xuelian. Recognition algorithm of optical fiber vibration signal based on pitch feature analysis[J]. Journal of Northern University of Technology, 2017, 29(2):39-44. (in Chinese)
    [21] Qu H, Zheng T, Pang L, et al. A new detection and recognition method for optical fiber pre-warning system[J]. Optik-International Journal for Light and Electron Optics, 2017, 137:209-219.
    [22] Zhang Yan. Research on pattern recognition of -OTDR distributed optical fiber disturbance sensing system[D]. Beijing:Beijing Jiaotong University, 2016. (in Chinese)
    [23] Zheng Tong. Theoretical basis research on detection and recognition method for OTDR optical fiber intrusion[D]. Xi'an:North China University of Technology, 2017. (in Chinese)
    [24] Xie Xin, Wu Huijuan, Rao Yunjiang, et al. Optical fiber fence intrusion detection system based on fiber Bragg grating vibration sensor and its pattern recognition[J]. Journal of Photonics, 2014, 43(5):0506005. (in Chinese)
    [25] Sun Q, Feng H, Yan X, et al. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction[J]. Sensors, 2015, 15(7):15179-15197.
    [26] Zhang Junnan, Lou Shuqin, Liang Sheng. Model recognition of -OTDR distributed fiber perturbation sensing system based on SVM algorithm[J]. Infrared and Laser Engineering, 2017, 46(4):0422003. (in Chinese)
    [27] Takagi R, Horisaki R, Tanida J. Object recognition through a multi-mode fiber[J]. Optical Review, 2017, 24(2):117-120.
    [28] Tejedor J, Maciasguarasa J, Martins H F, et al. A novel fiber optic based surveillance system for prevention of pipeline integrity threats[J]. Sensors, 2017, 7(12):311-355.
    [29] Wang Peng, Yan Shuqin, Liang Sheng, et al. Threshold algorithm for selective average -OTDR distributed optical fiber perturbation sensing system[J]. Infrared and Laser Engineering, 2016, 45(3):0517001.
    [30] Qu Hongquan, Xia Yu, Bi Fukun. Research on optical fiber intrusion signal recognition based on improved SVM algorithm[J]. Journal of North China University of Technology, 2017, 29(2):33-38. (in Chinese)
    [31] Zhang Y, Liu W Z, Fu X H, et al. An extraction and recognition method of the distributed optical fiber vibration signal based on EMD-AWPP and HOSA-SVM algorithm[J]. Spectroscopy Spectral Analysis, 2016, 36(2):511-577.
    [32] Xu H Y, Zhang Z, Zhang X W. Signal recognition basing on optical fiber vibration sensor[J]. Applied Mechanics Materials, 2013, 347-350(2):334-337. (in Chinese)
    [33] Liu Tao, Zhang Wenping, Chen Huifang, et al. Application of Kalman filter in denoising of distributed Raman fiber temperature sensing system[J]. Infrared and Laser Engineering, 2014, 43(5):1643-1647. (in Chinese)
    [34] Zuo Dongsen. Research on identification and location method of vibration signal of optical fiber periphery[D]. Hefei:Hefei University of Technology, 2015. (in Chinese)
    [35] Huang Xiangdong, Zhang Haojie, Liu Kun, et al. Study on high-level intrusion event recognition of optical fiber perimeter security system based on comprehensive feature[J]. Journal of Physics, 2017, 12(66):124206. (in Chinese)
    [36] Fedorov A K, Anufriev M N, Zhirnov A A, et al. Gaussian mixture model for event recognition in optical time-domain reflectometry based sensing systems[J]. Review of Scientific Instruments, 2016, 87(3):036107.
  • [1] 吴志洋, 王双, 刘铁根, 靳党鹏.  基于深度学习视觉和激光辅助的盾构管片自动拼装定位方法 . 红外与激光工程, 2022, 51(4): 20210183-1-20210183-9. doi: 10.3788/IRLA20210183
    [2] 李鹏, 张洋洋.  采用辅助靶标的移动机器人立体视觉定位 . 红外与激光工程, 2019, 48(S1): 104-113. doi: 10.3788/IRLA201948.S117006
    [3] 王毅, 何明元, 葛晶晶, 项杰.  基于正交匹配追踪的云检测算法研究 . 红外与激光工程, 2019, 48(12): 1203003-1203003(6). doi: 10.3788/IRLA201948.1203003
    [4] 熊晶莹, 戴明, 赵春蕾.  红外激光车载云台去抖动设计 . 红外与激光工程, 2018, 47(1): 126002-0126002(7). doi: 10.3788/IRLA201847.0126002
    [5] 仝选悦, 吴冉, 杨新锋, 滕书华, 庄祉昀.  红外与激光融合目标识别方法 . 红外与激光工程, 2018, 47(5): 526003-0526003(8). doi: 10.3788/IRLA201847.0526003
    [6] 蔡克荣, 仇理宽, 高瑞林.  脉冲激光引信的信号特征提取方法及应用(特邀) . 红外与激光工程, 2018, 47(3): 303004-0303004(5). doi: 10.3788/IRLA201847.0303004
    [7] 李志辰, 刘琨, 江俊峰, 马鹏飞, 李鹏程, 刘铁根.  光纤周界安防系统的高准确度事件识别方法 . 红外与激光工程, 2018, 47(9): 922002-0922002(6). doi: 10.3788/IRLA201847.0922002
    [8] 孙俊灵, 马鹏阁, 孙光民, 羊毅.  低信噪比下机载多脉冲激光雷达姿态不敏感性特征提取研究 . 红外与激光工程, 2017, 46(3): 330002-0330002(9). doi: 10.3788/IRLA201746.0330002
    [9] 张俊楠, 娄淑琴, 梁生.  基于SVM算法的φ-OTDR分布式光纤扰动传感系统模式识别研究 . 红外与激光工程, 2017, 46(4): 422003-0422003(7). doi: 10.3788/IRLA201746.0422003
    [10] 方敏, 王君, 王红艳, 李天涯.  应用监督近邻重构分析的高光谱遥感数据特征提取 . 红外与激光工程, 2016, 45(10): 1028003-1028003(8). doi: 10.3788/IRLA201645.1028003
    [11] 杨蔚, 顾国华, 陈钱, 曾海芳, 徐富元, 王长江.  红外偏振图像的目标检测方法 . 红外与激光工程, 2014, 43(8): 2746-2751.
    [12] 付小宁, 王洁.  基于三点虚拟圆的被动测距 . 红外与激光工程, 2014, 43(9): 3042-3045.
    [13] 杨晟, 李学军, 朱诗兵, 刘涛.  抗仿射形变异构金字塔复合描述点特征匹配算法 . 红外与激光工程, 2014, 43(7): 2387-2392.
    [14] 杨晟, 李学军, 谢剑薇, 王珏.  脊点集稳健裁剪和惩罚约束的高精度靶标点提取 . 红外与激光工程, 2014, 43(6): 1994-1999.
    [15] 陈宇, 霍富荣, 刘洪志, 郑丽芹.  基于改进MACH算法的畸变目标识别 . 红外与激光工程, 2014, 43(12): 4186-4191.
    [16] 刘洪志, 陈宇, 霍富荣, 郑丽芹.  改良型MACH滤波器算法的形变目标识别 . 红外与激光工程, 2014, 43(11): 3788-3793.
    [17] 闫勇刚, 欧阳健飞, 马祥, 翟羽佳.  基于2-DGabor滤波器的光学定穴体表特征提取方法 . 红外与激光工程, 2014, 43(5): 1685-1689.
    [18] 王思远, 娄淑琴, 梁生, 陈京惠.  M-Z干涉仪型光纤分布式扰动传感系统模式识别方法 . 红外与激光工程, 2014, 43(8): 2613-2618.
    [19] 丁玲, 唐娉, 李宏益.  基于ISOMAP的高光谱遥感数据的降维与分类 . 红外与激光工程, 2013, 42(10): 2707-2711.
    [20] 蔡辉, 李娜, 赵慧洁.  基于本征模函数的高光谱数据特征提取方法 . 红外与激光工程, 2013, 42(12): 3475-3480.
  • 加载中
计量
  • 文章访问数:  286
  • HTML全文浏览量:  42
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-05
  • 修回日期:  2018-03-03
  • 刊出日期:  2018-07-25

相位敏感光时域反射系统模式识别方法综述

doi: 10.3788/IRLA201847.0722001
    作者简介:

    付群健(1993-),女,硕士生,主要从事光纤传感技术及应用方面的研究。Email:fuqunjian@126.com

基金项目:

海洋公益性行业科研专项(201405026-01)

  • 中图分类号: TP219

摘要: 基于相位敏感的光时域反射系统(Ф-OTDR)是一种新型的分布式光纤扰动传感系统。随着应用需求的不断细化,单纯对外部侵扰活动的检测及定位已无法满足实际需要,亟待对检测到的信号进行准确的分类识别。在检测到侵扰信号的同时,如何能准确判别入侵事件的类别,减少误报率和漏报率是分布式光纤扰动传感系统研究的关键问题。文中主要针对分布式光纤扰动传感系统的原理进行了简要的介绍,将现有的扰动信号特征提取的方法和分类器设计的方法进行归纳和分类,并对识别结果进行总结和对比以方便研究人员根据应用环境的差异以及待测信号的特征,准确选择适合的信号模式识别方法,促进研究人员对分布式光纤扰动传感系统模式识别方法进行更为深入的研究。

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回