留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空分复用光纤的特性及其应用研究

裴丽 王建帅 郑晶晶 宁提纲 解宇恒 何倩 李晶

裴丽, 王建帅, 郑晶晶, 宁提纲, 解宇恒, 何倩, 李晶. 空分复用光纤的特性及其应用研究[J]. 红外与激光工程, 2018, 47(10): 1002001-1002001(12). doi: 10.3788/IRLA201847.1002001
引用本文: 裴丽, 王建帅, 郑晶晶, 宁提纲, 解宇恒, 何倩, 李晶. 空分复用光纤的特性及其应用研究[J]. 红外与激光工程, 2018, 47(10): 1002001-1002001(12). doi: 10.3788/IRLA201847.1002001
Pei Li, Wang Jianshuai, Zheng Jingjing, Ning Tigang, Xie Yuheng, He Qian, Li Jing. Research on specialty and application of space-division-multiplexing fiber[J]. Infrared and Laser Engineering, 2018, 47(10): 1002001-1002001(12). doi: 10.3788/IRLA201847.1002001
Citation: Pei Li, Wang Jianshuai, Zheng Jingjing, Ning Tigang, Xie Yuheng, He Qian, Li Jing. Research on specialty and application of space-division-multiplexing fiber[J]. Infrared and Laser Engineering, 2018, 47(10): 1002001-1002001(12). doi: 10.3788/IRLA201847.1002001

空分复用光纤的特性及其应用研究

doi: 10.3788/IRLA201847.1002001
基金项目: 

国家自然科学基金(61525501,61827817)

详细信息
    作者简介:

    裴丽(1970-),女,教授,博士生导师,主要从事光纤通信、特种光纤等方面的研究。Email:lipei@bjtu.edu.cn

  • 中图分类号: TN29

Research on specialty and application of space-division-multiplexing fiber

  • 摘要: 随着5G、物联网以及大数据等业务的发展,光通信网作为数据传输的主干线,扩展其系统容量、提高传输稳定性以及网络智能化势在必行。空分复用技术主要以多芯光纤、少模光纤以及少模-多芯光纤作为实现载体,被认为是提升光通信网络系统容量、构建下一代光通信网络的关键。主要研究了空分复用光纤在光传输、高性能激光器、光纤传感等领域的应用,结合已报道的实验结果,充分说明空分复用光纤的研究是现代光纤通信系统的重要方向,也是未来光通信领域研究和关注的热点。
  • [1] Takenaga Katsuhiro, Tanigawa Shoji, Guan Ning, et al. Reduction of crosstalk by quasi-homogeneous solid multi-core fiber[C]//Optical Fiber Communication Conference, 2010:OWK7.
    [2] Gao Song, Liu Yan, Chen Runqiu, et al. Study on mode multiplexing used in space-division multiplexing[J]. Laser and Infrared, 2014, 44(4):424-428. (in Chinese)
    [3] Chen Wei, Yuan Jian, He Zuowei, et al. The research progress of high-end optical fiber technologies for large capacity communication[J]. Study on Optical Communications, 2017, 44(1):27-29. (in Chinese)
    [4] Chandrasekhar S, Gnauck A H, Liu Xiang, et al. WDM/SDM transmission of 10128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40, 320 kmb/s/Hz[J]. Optics Express, 2012, 20(2):706-711.
    [5] Chen H, Van Uden R, Okonkwo C, et al. Compact spatial multiplexers for mode division multiplexing[J]. Optics Express, 2014, 22(26):31582-31594.
    [6] Takenaga Katsuhiro. Reduction of crosstalk by trench-assisted multi-core fiber[C]//Optical Fiber Communication Conference, 2011:OWJ4.
    [7] Saitoh Kunimasa, Matsuo Shoichiro. Multicore fiber technology[J]. Journal of Lightwave Technology, 2016, 34(1):55-66.
    [8] Zheng Siwen, Lin Zhen, Ren Guobin, et al. Design and analysis of novel multi-core dual-mode large-mode-area optical fiber[J]. Acta Physica Sinica, 2013, 62(4):044224. (in Chinese)郑斯文, 林桢, 任国斌, 等. 一种新型多芯-双模-大模场面积光纤的设计和分析[J]. 物理学报, 2013, 62(4):044224.
    [9] Lin Zhen, Zheng Siwen, Ren Guobin, et al. Characterization and comparison of 7-core and 19-core large-mode-area few-mode fiber[J]. Acta Physica Sinica, 2013, 62(6):064214. (in Chinese)林桢, 郑斯文, 任国斌, 等. 七芯及十九芯大模场少模光纤的特性研究和比对分析[J]. 物理学报, 2013, 62(6):064214.
    [10] Takenaga Katsuhiro, Arakawa Yoko, Sasaki Yusuke, et al. A large effective area multi-core fiber with an optimized cladding thickness[J]. Optics Express, 2011, 19(26):B543-B550.
    [11] Le Noane G, Boscher D, Grosso P, et al. Ultra high density cables using a new concept of bunched multicore monomode fibers:A key for the future FTTH networks[C]//Proceedings of the 43rd International Wire Cable Symposium (IWCS), 1994:203-210.
    [12] Zhu B, Taunay T F, Yan M F, et al. Seven-core multicore fiber transmissions for passive optical network[J]. Optics Express, 2010, 18(11):11117-11122.
    [13] Liu Xiang, Chandrasekhar S, Chen X, et al. 1.12-Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexed transmission with 60-b/s/Hz aggregate spectral efficiency.[J]. Optics Express, 2011, 19(26):B958-B964.
    [14] Zhu B, Taunay T F, Fishteyn M, et al. 112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber[J]. Optics Express, 2011, 19(17):16665-16671.
    [15] Hayashi Tetsuya, Taru Toshiki, Shimakawa Osamu, et al. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber[J]. Optics Express, 2011, 19(17):16576-16592.
    [16] Igarashi Koji, Takeshima Koki, Tsuritani Takehiro, et al. 110.9-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA[J]. Optics Express, 2013, 21(15):18053-18060.
    [17] Kobayashi T, Takara H, Sano A, et al. 2344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation[C]//39th European Conference and Exhibition on Optical Communications (ECOC 2013), 2013:PD3E4.
    [18] Sano Akihide, Takara Hidehiko, Kobayashi Takayuki, et al. 409-Tb/s+409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving[J]. Optics Express, 2013, 21(14):16777-16783.
    [19] Turukhin A, Sinkin O V, Batshon H G, et al. 105.1 Tb/s power-efficient transmission over 14350 km using a 12-core fiber[C]//Optical Fiber Communications Conference and Exhibition, 2016:Th4C.1.
    [20] Mizuno T, Shibahara K, Ono H, et al. 32-core dense SDM unidirectional transmission of PDM-16QAM signals over 1600 km using crosstalk-managed single-mode heterogeneous multicore transmission line[C]//Optical Fiber Communications Conference Postdeadline Papers, 2016:Th5C.3.
    [21] Chen Heming, Zhuang Yuyang. Research progess on key technologies in mode division multiplexing system[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 2018, 38(1):37-44. (in Chinese)陈鹤鸣, 庄煜阳. 模分复用系统关键技术研究进展[J]. 南京邮电大学学报(自然科学版), 2018, 38(1):37-44.
    [22] Sakaguchi J, Awaji Y, Imamura K, et al. 19-core fiber transmission of 19100172-Gb/s SDM-WDM-PDM-QPSK signals at 305 Tb/s[C]//National Fiber Optic Engineers Conference, 2011:PDPC2.
    [23] Ryf Roland, Randel Sebastian, Gnauck Alan H, et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 66 MIMO processing[J]. Journal of Lightwave Technology, 2012, 30(4):521-531.
    [24] Ryf Roland, Fontaine Nicolas K, Mestre Miquel A, et al. 1212 MIMO transmission over 130-km few-mode fiber[J]. Frontier in Optics, 2012:FW6C.4.
    [25] Sleiffer Vincent A, Leoni Paolo, Jung Yongmin, et al. Ultra-high capacity transmission with few-mode silica and hollow-core photonic bandgap fibers[C]//Optical Fiber Communications Conference and Exhibition, 2014:Tu2J.3.
    [26] Ren Fang, Yu Jinyi, Li Juhao, et al. Experimental demonstration of 3-mode MDM-PON transmission over 7.4-km low-mode-crosstalk FMF[C]//Optical Fiber Communications Conference and Exhibition, 2016:W2A.58.
    [27] Matsuo Shoichiro, Takenaga Katsuhiro, Sasaki Yusuke, et al. High-spatial-multiplicity multicore fibers for future dense space-division-multiplexing systems[J]. Journal of Lightwave Technology, 2016, 34(6):1464-1475.
    [28] Pepeljugoski P, Doany F, Kuchta D M, et al. Connector performance analysis for D-shaped multi-core multi mode fiber[C]//Optical Fiber Communications Conference and Exhibition, 2014:Th4J.4.
    [29] Nakazawa M. Ultrahigh spectral efficiency systems-pushing the limits of multi-level modulation, multi-core fiber, and multi-mode control[C]//Optical Fibre Technology, OptoElectronics and Communication Conference and Australian Conference on, 2014:597-599.
    [30] Igarashi Koji, Igarashi Koji, Igarashi Koji. Ultra-high capacity transmission based on ultra-dense SDM/WDM techniques[C]//Asia Communications and Photonics Conference, 2016:AF1D.3.
    [31] Chi Nan, Zhang Junwen, Shao Yufeng. Theoretical and simulation analysis of a novel multiple-input multiple-output scheme over multimode fiber links with dual restricted launch techniques[J]. Optical Engineering, 2012, 51(6):5002.
    [32] Tsuchida Y, Maeda K, Sugizaki R. Multicore EDFA for space division multiplexing[C]//Photonics Conference, 2014:269-270.
    [33] Kanno Atsushi, Sakaguchi Jun, Watanabe Masayuki, et al. Space division multiplexed transmission of 109-Tb/s data signals using homogeneous seven-core fiber[J]. Journal of Lightwave Technology, 2012, 30(4):658-665.
    [34] Takara H, Ono H, Abe Y, et al. 1000-km 7-core fiber transmission of 1096-Gb/s PDM-16QAM using Raman amplification with 6.5 W per fiber[J]. Optics Express, 2012, 20(9):10100-10105.
    [35] Sakaguchi J, Klaus W, Mendinueta J D, et al. Realizing a 36-core, 3-mode fiber with 108 spatial channels[C]//Optical Fiber Communications Conference and Exhibition, 2015:Th5C.2.
    [36] Soma D, Igarashi K, Wakayama Y, et al. 2.05 Peta-bit/s super-Nyquist-WDM SDM transmission using 9.8-km 6-mode 19-core fiber in full C band[C]//European Conference on Optical Communication (ECOC), 2015:7341686.
    [37] Qi Yanhui, Sun Jiang, Kang Zexin, et al. Low-threshold wavelength-switchable fiber laser based on few-mode fiber Bragg grating[J]. Optical Fiber Technology, 2016, 29:70-73.
    [38] Qi Yanhui, Kang Zexin, Sun Jiang, et al. Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure[J]. Optics Laser Technology, 2016, 81:26-32.
    [39] Zheng Jingjing, Pei Li, Ning Tigang, et al. Matching optimization for SFS-structured interferometers with step-index fibers[J]. Optics Express, 2018, 26(7):9182-9193.
    [40] Cheo P K, Liu A, King G G. A high-brightness laser beam from a phase-locked multicore Yb-doped fiber laser array[J]. IEEE Photonics Technology Letters, 2001, 13(5):439-441.
    [41] Michaille L, Bennett C R, Taylor D M, et al. Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area[J]. Optics Letters, 2005, 30(13):1668-1670.
    [42] Michaille L, Bennett C R, Taylor D M, et al. Multicore photonic crystal fiber lasers for high power/energy applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2):328-336.
    [43] Prudenzano F, Mescia L, Di Tommaso A, et al. Design and refinement of rare earth doped multicore fiber lasers[J]. Optical Materials, 2013, 35(11):1941-1946.
    [44] Rigaud P, Kermene V, Simos C, et al. Dual-wavelength synchronous ultrashort pulses from a mode-locked Yb-doped multicore fiber laser with spatially dispersed gain[J]. Optics Express, 2015, 23(19):25308-25315.
    [45] Ji Junhua, Raghuraman Sidharthan, Huang Xiaosheng, et al. 115 W large-mode-area multi-core fiber laser with all solid structure[C]//Conference on Lasers and Electro-Optics, 2018:STu3K.5.
    [46] Huo Yanming, Cheo Peter K, King George G. Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier[J]. Optics Express, 2004, 12(25):6230-6239.
    [47] Fang Xiaohui, Hu Minglie, Liu Bowen, et al. Hundreds of megawatts peak power multi-core photonic crystal fiber laser amplifier[J]. Chinese Joural of Lasers, 2010, 37(9):2366-2370. (in Chinese)方晓惠, 胡明列, 刘博文, 等. 百兆瓦峰值功率的多芯光子晶体光纤飞秒激光放大系统[J]. 中国激光, 2010, 37(9):2366-2370.
    [48] Jain Saurabh, Castro Carlos, Jung Yongmin, et al. 32-core erbium/ytterbium-doped multicore fiber amplifier for next generation space-division multiplexed transmission system[J]. Optics Express, 2017, 25(26):32887-32896.
    [49] Prevost F, Lombard L, Primot J, et al. Coherent beam combining of a narrow-linewidth long-pulse Er3+-doped multicore fiber amplifier[J]. Optics Express, 2017, 25(9):9528-9534.
    [50] Klenke A, Mller M, Stark H, et al. Coherently combined 16-channel multicore fiber laser system[J]. Optics Letters, 2018, 43(7):1519-1522.
    [51] Zhao Zhiyong, Soto Marcelo A, Tang Ming, et al. Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers[C]//Advanced Photonics, 2016:SeM4D.4.
    [52] Zhao Z, Soto M A, Tang M, et al. Distributed shape sensing using Brillouin scattering in multi-core fibers[J]. Opt Express, 2016, 24(22):25211-25223.
    [53] Westbrook Paul S, Kremp Tristan, Feder Kenneth S, et al. Continuous multicore optical fiber grating arrays for distributed sensing applications[J]. Journal of Lightwave Technology, 2017, 35(6):1248-1252.
    [54] Schlzgen Axel, Van Newkirk Amy, Antonio-Lopez Jose Enrique, et al. Fiber optic sensors based on strongly coupled multicore fiber[C]//Advanced Photonics, 2017:SeW1E.1.
    [55] Van Newkirk Amy, Sanjabi Eznaveh Zeinab, Antonio-Lopez Enrique, et al. High temperature sensor based on supermode interference in multicore fiber[C]//CLEO, 2014:SM2N.7.
    [56] Zhang Hailiang, Wu Zhifang, Shum Perry Ping, et al. Highly sensitive strain sensor based on helical structure in multicore fiber[C]//Conference on Lasers and Electro-Optics, 2016:SM2P.3.
    [57] Van Newkirk Amy, Antonio-Lopez Enrique, Salceda-Delgado Guillermo, et al. Optimization of multicore fiber for high-temperature sensing[J]. Optics Letters, 2014, 39(16):4812-4815.
    [58] Villatoro Joel, Antoniolopez Enrique, Zubia Joseba, et al. Interferometer based on strongly coupled multi-core optical fiber for accurate vibration sensing[J]. Optics Express, 2017, 25(21):25734.
    [59] Li Chao, Ning Tigang, Zhang Chan, et al. All-fiber multipath Mach-Zehnder interferometer based on a four-core fiber for sensing applications[J]. Sensors and Actuators A:Physical, 2016, 248:148-154.
    [60] Li Chao, Ning Tigang, Li Jing, et al. Simultaneous measurement of refractive index, strain, and temperature based on a four-core fiber combined with a fiber Bragg grating.[J]. Optics Laser Technology, 2017, 90:179-184.
    [61] Kumar Arun, Goel Nitin K, Varshney R K. Studies on a few-mode fiber-optic strain sensor based on LP01-LP02 mode interference[J]. Journal of Lightwave Technology, 2001, 19(3):358.
    [62] Li An, Wang Yifei, Hu Qian, et al. Few-mode fiber based optical sensors[J]. Optics Express, 2015, 23(2):1139-1150.
    [63] Li An, Wang Yifei, Fang Jian, et al. Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination.[J]. Optics Letters, 2015, 40(7):1488-1491.
    [64] Weng Yi, Ip Ezra, Pan Zhongqi, et al. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers[J]. Optics Express, 2015, 23(7):9024-9039.
    [65] Yang Hangzhou, Ali M M, Islam M R, et al. Cladless few mode fiber grating sensor for simultaneous refractive index and temperature measurement[J]. Sensors and Actuators A:Physical, 2015, 228:62-68.
    [66] Sun B, Fang F, Zhang Z, et al. High-sensitivity and low-temperature magnetic field sensor based on tapered two-mode fiber interference[J]. Optics Letters, 2018, 43(6):1311-1314.
    [67] Lu Chenxu, Su Juan, Dong Xiaopeng, et al. Simultaneous measurement of strain and temperature with a few-mode fibre-based sensor[J]. Journal of Lightwave Technology, 2018, 36(13):2796-2802.
  • [1] 秦根朝, 孟凡勇, 李红, 庄炜, 董明利.  光纤光栅链路反射谱强度自适应解调 . 红外与激光工程, 2022, 51(5): 20200440-1-20200440-8. doi: 10.3788/IRLA20200440
    [2] 郑晨, 冯文林, 何思杰, 李邦兴.  用于测量折射率的光纤迈克尔逊干涉型传感器 . 红外与激光工程, 2022, 51(5): 20210327-1-20210327-5. doi: 10.3788/IRLA20210327
    [3] 解宇恒, 裴丽, 何倩, 常彦彪, 郭智君, 王建帅, 郑晶晶, 宁提纲, 李晶.  多芯光纤折射率与内应力分布重构技术(特邀) . 红外与激光工程, 2022, 51(1): 20210758-1-20210758-6. doi: 10.3788/IRLA20210758
    [4] 沈华, 朱日宏, 卞殷旭.  光纤光栅在高功率连续光纤激光器中的发展及展望 . 红外与激光工程, 2022, 51(2): 20210908-1-20210908-14. doi: 10.3788/IRLA20210908
    [5] 肖菊, 段鹏飞.  面向楼宇结构健康的光纤传感网络监测系统研究 . 红外与激光工程, 2021, 50(8): 20210263-1-20210263-7. doi: 10.3788/IRLA20210263
    [6] 吕佳豪, 董明利, 何彦霖, 孙广开, 周康鹏.  引入曲率与角度校正的柔性机构三维形状多芯光纤重构方法 . 红外与激光工程, 2021, 50(5): 20200453-1-20200453-7. doi: 10.3788/IRLA20200453
    [7] 祝航威, 何彦霖, 孙广开, 宋言明, 祝连庆.  螺旋型光纤传感软体操作臂状态测量及特性分析 . 红外与激光工程, 2020, 49(11): 20200276-1-20200276-9. doi: 10.3788/IRLA20200276
    [8] 朱可, 裴丽, 赵琦, 解宇恒, 常彦彪.  采用双Sagnac环滤波器的可切换多波长光纤激光器 . 红外与激光工程, 2020, 49(11): 20200047-1-20200047-7. doi: 10.3788/IRLA20200047
    [9] 刘敏, 冯文林, 黄国家, 冯德玖.  二氧化钛包覆无芯光纤的硫化氢气体传感器性能研究 . 红外与激光工程, 2019, 48(8): 818003-0818003(5). doi: 10.3788/IRLA201948.0818003
    [10] 何祖源, 刘银萍, 马麟, 杨晨, 童维军.  小芯径多模光纤拉曼分布式温度传感器 . 红外与激光工程, 2019, 48(4): 422002-0422002(7). doi: 10.3788/IRLA201948.0422002
    [11] 李志辰, 刘琨, 江俊峰, 马鹏飞, 李鹏程, 刘铁根.  光纤周界安防系统的高准确度事件识别方法 . 红外与激光工程, 2018, 47(9): 922002-0922002(6). doi: 10.3788/IRLA201847.0922002
    [12] 秦齐, 刘艳, 刘欢欢, 时川, 谭中伟.  图像处理在光纤光斑微位移传感中的应用 . 红外与激光工程, 2018, 47(10): 1022004-1022004(7). doi: 10.3788/IRLA201847.1022004
    [13] 赵润晗, 孟欣禹, 赵云鹤, 司晓龙, 刘云启.  消除模间干涉现象的光纤光栅模式转换器 . 红外与激光工程, 2018, 47(12): 1222001-1222001(7). doi: 10.3788/IRLA201847.1222001
    [14] 葛诗雨, 沈华, 朱日宏, 汤亚洲, 矫岢蓉, 舒剑.  高精度测量高功率光纤激光器低反光纤光栅反射率的方法 . 红外与激光工程, 2018, 47(11): 1117005-1117005(7). doi: 10.3788/IRLA201847.1117005
    [15] 赵林, 王纪强, 李振.  光纤负压波管道泄漏监测系统 . 红外与激光工程, 2017, 46(7): 722002-0722002(6). doi: 10.3788/IRLA201746.0722002
    [16] 米仁杰, 万助军, 汪涵.  MEMS可调谐平顶窄带光学滤波器 . 红外与激光工程, 2016, 45(7): 720001-0720001(5). doi: 10.3788/IRLA201645.0720001
    [17] 马建立, 姜诗琦, 于淼, 刘海娜, 王军龙, 王学锋.  基于波长锁定泵浦单振荡级千瓦光纤激光器 . 红外与激光工程, 2016, 45(11): 1105002-1105002(5). doi: 10.3788/IRLA201645.1105002
    [18] 李强, 王智, 黄泽铗, 郭凯丽, 刘岚岚.  基于SCBSS信号处理技术的SMS多参量光纤传感系统 . 红外与激光工程, 2014, 43(10): 3383-3387.
    [19] 李强, 黄泽铗, 徐雅芹, 张凌云, 史骥, 王智.  基于单模-多模-单模光纤模间干涉的传感系统 . 红外与激光工程, 2014, 43(5): 1630-1636.
    [20] 徐鹏飞, 张建辉, 孟祥然, 马可贞, 赵宇, 张文栋, 薛晨阳, 闫树斌.  光纤腔动态谐振响应特性 . 红外与激光工程, 2013, 42(3): 599-604.
  • 加载中
计量
  • 文章访问数:  361
  • HTML全文浏览量:  35
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-12
  • 修回日期:  2018-09-18
  • 刊出日期:  2018-10-25

空分复用光纤的特性及其应用研究

doi: 10.3788/IRLA201847.1002001
    作者简介:

    裴丽(1970-),女,教授,博士生导师,主要从事光纤通信、特种光纤等方面的研究。Email:lipei@bjtu.edu.cn

基金项目:

国家自然科学基金(61525501,61827817)

  • 中图分类号: TN29

摘要: 随着5G、物联网以及大数据等业务的发展,光通信网作为数据传输的主干线,扩展其系统容量、提高传输稳定性以及网络智能化势在必行。空分复用技术主要以多芯光纤、少模光纤以及少模-多芯光纤作为实现载体,被认为是提升光通信网络系统容量、构建下一代光通信网络的关键。主要研究了空分复用光纤在光传输、高性能激光器、光纤传感等领域的应用,结合已报道的实验结果,充分说明空分复用光纤的研究是现代光纤通信系统的重要方向,也是未来光通信领域研究和关注的热点。

English Abstract

参考文献 (67)

目录

    /

    返回文章
    返回