-
中红外激光处于大气窗口波段,同时又是众多原子及分子的吸收峰,因此,在光谱学、医学、通信、遥感、环境监测及红外对抗领域有着广泛而重要的应用前景[1-4]。光参量振荡器(OPO) 可以将成熟的(近红外或可见)激光进行频率下转换,实现中远红外波段激光输出,该技术手段具备结构简单、紧凑的优势,可实现全固化、小型化,稳定性高,可实现高平均功率或高脉冲能量、高光束质量输出,是特点突出、发展迅速且潜力巨大的产生中红外激光方式[5-8]。其中非线性光学晶体为该技术路线的中枢元件。近年来,随着OPO技术的快速发展,获得非线性系数大、透过范围宽、激光损伤阈值高、吸收系数小、物理化学性质稳定的优秀中红外非线性光学晶体材料,已经成为当前非线性晶体材料的重要研究方向[9]。
砷酸氧钛钾KTiOAsO4(KTA)晶体是一种优良的中红外非线性材料,是KTP晶体家族中的一员,透光范围为0.35~5.3 μm,在3~5 μm波段的吸收损耗远低于KTP晶体,具有大的非线性系数(deff=4.47 pm/V),宽的角度和温度匹配带宽,高的损伤阈值(>600 MW/cm2)、物理化学性能稳定等优点;能用Nd: YAG 1 064 nm激光抽运,可以实现非临界相位匹配(NCPM);具有比KTP低的离子电导率,导热系数高,在高功率激光抽运时不会产生热透镜效应,适合高重复频率高能量的中红外输出[10]。
硒镓钡BaGa4Se7(BGSe)晶体是我国自主知识产权的一种新型红外非线性晶体,它是单斜晶系,双轴晶体,透光波段为0.47−18 μm,熔点969 ℃。它的非线性系数是AgGaS2的2~3倍,损伤阈值是AgGaS2的3.7倍,可利用1.06 μm及以上波长激光泵浦,通过OPA、OPO、DFG等激光变频技术可输出3~18 μm中长波红外激光。中国科学院理化技术研究所姚吉勇等人于2010年首次发明新型红外非线性BGSe晶体[11]。2011年,俄罗斯库拜大学在世界上率先生长出BGSe单晶,并对单晶色散特性进行了研究。2018年,美国BAE采用水平温度梯度冷凝技术生长25×15×150 mm3的高品质单晶[12]。
BGSe OPO除可输出3~5 μm波段激光以外,在8~12 μm也有着重要的应用潜力,但由于KTA晶体的透光范围有限(0.35~5.3 μm)且该晶体在输出~3.5 μm激光时的晶体切割角为(
$ 90^{ \circ },0^{ \circ } $ ),没有走离效应,因此,转换效率很高,可输出高光束质量、大能量的激光。为充分对比BGSe OPO和KTA OPO的输出激光性能,文中对这两种晶体在中红外波段的激光输出性能进行对比,并特别以BGSe ($ 56.3^{ \circ },0^{ \circ }, $ I类)和KTA ($ 90^{ \circ },0^{ \circ }, $ II-A类)为例,计算了它们在输出~3.5 μm激光时的有效非线性系数和OPO振荡阈值,并通过实验加以验证。 -
KTA属正双轴晶体,BGSe属于双轴单斜晶体。它们的具体指标如表1所示。
表 1 BGSe与KTA性能对比
Table 1. Comparison between BGSe and KTA
Name BGSe KTA Characteristic Biaxial, monoclinic, point group m[11] Uniaxial, point group mm2[13] Transmittance range 0.47-18µm[14] 0.35-5.3 µm [10] Damage threshold 557 MW/cm2[14](5 ns,1.064 µm,1 Hz) >600 MW/cm2 Nonzero tensor d11=24.3 pm/V, d13=20.4 pm/V [15] d33=16.2 pm/V, d31=2.8 pm/V, d32=4.2 pm/V, d31=2.8 pm/V
d24=3.2 pm/V, d15=2.3 pm/V[13],deff=4.47 pm/V[10] -
选取参考文献[16]所给出的BGSe晶体Sellmeier方程进行计算:
$$ \left\{\begin{aligned} & {{{n}}}_{{{x}}}^{2}=6.724\;31+\frac{0.263\;75}{{{{\lambda}}}^{2}-0.042\;48}+\frac{602.97}{{{{\lambda}}}^{2}-749.87}\\ & {{{n}}}_{{{y}}}^{2}=6.866\;03+\frac{0.268\;16}{{{{\lambda}}}^{2}-0.042\;59}+\frac{682.97}{{{{\lambda}}}^{2}-781.78}\\ & {{{n}}}_{{{z}}}^{2}=7.167\;09+\frac{0.326\;81}{{{{\lambda}}}^{2}-0.069\;73}+\frac{731.86}{{{{\lambda}}}^{2}-790.16}\\ & 0.901\leqslant \lambda \leqslant 10.591\end{aligned}\right. $$ (1) KTA的Sellmeier方程如公式(2)所示[17]:
$$ {{{n}}}_{i}^{2}={{{A}}}_{i}+\frac{{{{B}}}_{i}{{{\lambda}}}^{{p}_{i}}}{{{{\lambda}}}^{{p}_{i}}-{{{C}}}_{i}}+\frac{{{{D}}}_{i}{{{\lambda}}}^{{q}_{i}}}{{{{\lambda}}}^{{q}_{i}}-{{{E}}}_{i}} $$ (2) 公式(2)中系数的具体数值如表2所示。
表 2 KTA晶体的Sellmeier系数
Table 2. Sellmeier coefficients of KTA
Ax 2.149 5 Ay 2.1308 Az 2.193 1 Bx 1.020 3 By 1.056 4 Bz 1.238 2 Cx 0.042 378 Cy 0.042 523 Cz 0.059 171 Dx 0.553 1 Dy 0.692 7 Dz 0.508 8 Ex 72.304 5 Ey 54.850 5 Ez 53.289 8 px 1.995 1 py 2.001 7 pz 1.892 0 qx 1.956 7 qy 1.726 1 qz 2.000 0 将公式(1)、(2)代入公式(3)[18],即可求出不同入射方向
$({{\theta}},\phi)$ 的${{{n}}}_{{{\rm{e}}}_{1}}({{\theta}},\phi)$ 和${{{n}}}_{{{\rm{e}}}_{2}}\left({{\theta}},\phi\right)$ :$$ \left\{\begin{aligned} &{{{n}}}_{{{{e}}}_{1}}(\theta ,\phi )=\sqrt{2}{[{{d}}+{{A}}-{({{{b}}}^{2}-2{{b}}{{B}}+{{{A}}}^{2})}^{1/2}]}^{-\frac{1}{2}}\\ &{{{n}}}_{{{{e}}}_{2}}\left({{\theta}},\phi\right)=\sqrt{2}{[{{d}}+{{A}}+{({{{b}}}^{2}-2{{b}}{{B}}+{{{A}}}^{2})}^{1/2}]}^{-\frac{1}{2}}\\ & A={{{k}}}_{{{z}}}^{2} \cdot c-{{{k}}}_{{{x}}}^{2} \cdot a,B={{{k}}}_{{{z}}}^{2} \cdot c+{{{k}}}_{{{x}}}^{2} \cdot a\\ &a=\frac{1}{{{{n}}}_{{{x}}}^{2}}-\frac{1}{{{{n}}}_{{{y}}}^{2}},b=\frac{1}{{{{n}}}_{{{x}}}^{2}}-\frac{1}{{{{n}}}_{{{z}}}^{2}},c=\frac{1}{{{{n}}}_{{{y}}}^{2}}-\frac{1}{{{{n}}}_{{{z}}}^{2}},d=\frac{1}{{{{n}}}_{{{x}}}^{2}}+\frac{1}{{{{n}}}_{{{z}}}^{2}}\\ &{{{k}}}_{{{x}}}={{\sin\theta \cos}}\theta ,{{{k}}}_{{{y}}}={{\sin\theta \sin}}\theta ,{{{k}}}_{{{z}}}={{\cos\theta}} \end{aligned}\right. $$ (3) 再代入公式(4),即可得出各相位匹配条件下的相位匹配曲线。
$$ \left\{\!\!\!\begin{array}{c}{\rm{type-I}}\\ \dfrac{{{{n}}}_{{{{e}}}_{2}}^{{{{\omega }}}_{3}}}{{{{\lambda}}}_{3}}=\dfrac{{{{n}}}_{{{{e}}}_{1}}^{{{{\omega }}}_{1}}}{{{{\lambda}}}_{1}}+\dfrac{{{{n}}}_{{{{e}}}_{1}}^{{{{\omega }}}_{2}}}{{{{\lambda}}}_{2}}\\ \dfrac{1}{{{{\lambda}}}_{3}}=\dfrac{1}{{{{\lambda}}}_{1}}+\dfrac{1}{{{{\lambda}}}_{2}}\end{array}\right.\left\{\!\!\!\begin{array}{c}{{{\rm type-II}-A}}\\ \dfrac{1}{{{{\lambda}}}_{3}}=\dfrac{1}{{{{\lambda}}}_{1}}+\dfrac{1}{{{{\lambda}}}_{2}}\\ \dfrac{{{{n}}}_{{{{e}}}_{2}}^{{{{\omega }}}_{3}}}{{{{\lambda}}}_{3}}=\dfrac{{{{n}}}_{{{{e}}}_{2}}^{{{{\omega }}}_{1}}}{{{{\lambda}}}_{1}}+\dfrac{{{{n}}}_{{{{e}}}_{1}}^{{{{\omega }}}_{2}}}{{{{\lambda}}}_{2}}\end{array}\right.\left\{\!\!\!\begin{array}{c}{{{\rm type-II}-B}}\\ \dfrac{1}{{{{\lambda}}}_{3}}=\dfrac{1}{{{{\lambda}}}_{1}}+\dfrac{1}{{{{\lambda}}}_{2}}\\ \dfrac{{{{n}}}_{{{{e}}}_{2}}^{{{{\omega }}}_{3}}}{{{{\lambda}}}_{3}}=\dfrac{{{{n}}}_{{{{e}}}_{1}}^{{{{\omega }}}_{1}}}{{{{\lambda}}}_{1}}+\dfrac{{{{n}}}_{{{{e}}}_{2}}^{{{{\omega }}}_{2}}}{{{{\lambda}}}_{2}}\end{array}\right. $$ (4) 由于双轴晶体的相位匹配曲线与
$({{\theta}},\phi)$ 均有关,为简便起见,仅讨论$ \theta=0^{ \circ } $ 的情况,BGSe和KTA的相位匹配曲线$ (\theta=0^{ \circ }) $ 如图1所示。如图1所示,BGSe(
${\rm{\theta}}=56.3^{ \circ },\;\phi=0^{ \circ }$ )可在I类相位匹配条件下产生~3.5 μm的闲频光,KTA($ {\rm{\theta}}=90^{ \circ } $ ,$\phi=0^{ \circ }$ )可在II-A类相位匹配条件下产生~3.5μm的闲频光。图 1 BGSe与KTA的相位匹配曲线(
$\theta=0^{ \circ } $ )Figure 1. Phase matching curve of BGSe and KTA(
$\theta=0^{ \circ } $ )为了便于实验对比,选取切割角度为(56.3°,0°)的BGSe和切割角度为(90°,0°)的KTA晶体在同一光路中进行对比实验。为了计算两种晶体的OPO振荡阈值,要先计算出BGSe(56.3°,0°)和KTA(90°,0°)的有效非线性系数。
-
BGSe晶体
$({\rm{\theta}}=56.3^{ \circ },\;\phi =0^{ \circ })$ 在I类相位匹配条件下的有效非线性系数为:$$\begin{split} {{{d}}}_{\rm{eff}}=\; &\left[{{{b}}}_{1}\left({{{\omega }}}_{3}\right),{{{b}}}_{2}\left({{{\omega }}}_{3}\right),{{{b}}}_{3}\left({{{\omega }}}_{3}\right)\right]\times \\ & \left(\begin{array}{c}{{{d}}}_{11}\\ {{{d}}}_{21}\\ {{{d}}}_{31}\end{array}\begin{array}{c}{{{d}}}_{12}\\ {{{d}}}_{22}\\ {{{d}}}_{32}\end{array}\begin{array}{c}{{{d}}}_{13}\\ {{{d}}}_{23}\\ {{{d}}}_{33}\end{array}\begin{array}{c}{{{d}}}_{14}\\ {{{d}}}_{24}\\ {{{d}}}_{34}\end{array}\begin{array}{c}{{{d}}}_{15}\\ {{{d}}}_{25}\\ {{{d}}}_{35}\end{array}\begin{array}{c}{{{d}}}_{16}\\ {{{d}}}_{26}\\ {{{d}}}_{36}\end{array}\right)\times \\ & \left(\begin{array}{c}{{{a}}}_{1}\left({{{\omega }}}_{1}\right){{{a}}}_{1}\left({{{\omega }}}_{2}\right)\\ {{{a}}}_{2}{\left({{{\omega }}}_{1}\right){{a}}}_{2}\left({{{\omega }}}_{2}\right)\\ {{{a}}}_{3}{\left({{{\omega }}}_{1}\right){{a}}}_{3}\left({{{\omega }}}_{2}\right)\\ {{{a}}}_{2}\left({{{\omega }}}_{1}\right){{{a}}}_{3}\left({{{\omega }}}_{2}\right)+{{{a}}}_{3}\left({{{\omega }}}_{1}\right){{{a}}}_{2}\left({{{\omega }}}_{2}\right)\\ {{{a}}}_{1}{\left({{{\omega }}}_{1}\right){{a}}}_{3}\left({{{\omega }}}_{2}\right)+{{{a}}}_{3}\left({{{\omega }}}_{1}\right){{{a}}}_{1}\left({{{\omega }}}_{2}\right)\\ {{{a}}}_{1}\left({{{\omega }}}_{1}\right){{{a}}}_{2}\left({{{\omega }}}_{2}\right)+{{{a}}}_{2}\left({{{\omega }}}_{1}\right){{{a}}}_{1}\left({{{\omega }}}_{2}\right)\end{array}\right) \end{split} $$ (5) 其中,
$ {{{a}}}_{{{i}}}\left({{{\omega }}}_{{{j}}}\right) $ 和$ {{{b}}}_{{{i}}}\left({{{\omega }}}_{{{j}}}\right) $ 由公式(1)、(6)、(7)得出。$$\begin{split} & \left(\begin{array}{c}{b}_{1}\\ {b}_{2}\\ {b}_{3}\end{array}\right)=\left(\begin{array}{c}{b\_d}_{1}/{{{n}}}_{{{x}}}^{2}\\ {b\_d}_{2}/{{{n}}}_{{{y}}}^{2}\\ {b\_d}_{3}/{{{n}}}_{{{z}}}^{2}\end{array}\right)\dfrac{1}{\sqrt{{\left(\dfrac{{bd}_{1}}{{{{n}}}_{{{x}}}^{2}}\right)}^{2}+{\left(\dfrac{{bd}_{2}}{{{{n}}}_{{{y}}}^{2}}\right)}^{2}+{\left(\dfrac{{bd}_{3}}{{{{n}}}_{{{z}}}^{2}}\right)}^{2}}} , \\ & \left( {\begin{array}{*{20}{c}} {b\_{d_1}}\\ {b\_{d_2}}\\ {b\_{d_3}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} { - {{\cos\theta \cos}}\theta {{\sin\delta }} - {{\sin}}\theta {{\cos\delta }}}\\ { - {{\cos\theta \sin}}\theta {{\sin\delta }} + {{\cos}}\theta {{\cos\delta }}}\\ {{{\sin\theta \sin\delta }}} \end{array}} \right) \end{split} $$ (6) $$\begin{split} & \left(\begin{array}{c}{{{a}}}_{1}\\ {{{a}}}_{2}\\ {{{a}}}_{3}\end{array}\right)=\left(\begin{array}{c}{{{a}}\_{{d}}}_{1}/{{{n}}}_{{{x}}}^{2}\\ {{{a}}\_{{d}}}_{2}/{{{n}}}_{{{y}}}^{2}\\ {{{a}}\_{{d}}}_{3}/{{{n}}}_{{{z}}}^{2}\end{array}\right)\dfrac{1}{\sqrt{{\left(\dfrac{{{{a}}{{d}}}_{1}}{{{{n}}}_{{{x}}}^{2}}\right)}^{2}+{\left(\dfrac{{{{a}}{{d}}}_{2}}{{{{n}}}_{{{y}}}^{2}}\right)}^{2}+{\left(\dfrac{{{{a}}{{d}}}_{3}}{{{{n}}}_{{{z}}}^{2}}\right)}^{2}}} , \\ & \left( {\begin{array}{*{20}{c}} {{{a}}\_{{{d}}_1}}\\ {{{a}}\_{{{d}}_2}}\\ {{{a}}\_{{{d}}_3}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{\rm{cos\theta cos}}\theta {\rm{cos\delta }} - {\rm{sin}}\theta {\rm{sin\delta }}}\\ {{\rm{cos\theta sin}}\theta {\rm{cos\delta }} + {\rm{cos}}\theta {\rm{sin\delta }}}\\ {{\rm{ - sin\theta cos\delta }}} \end{array}} \right) \end{split} $$ (7) 目前,BGSe晶体的
$ {{{d}}}_{{\rm{i}}{\rm{j}}} $ 矩阵尚没有定论,但参考文献[11, 15, 19]通过不同的方法给出了BGSe晶体的$ {d}_{\rm ij} $ 值。参考文献[20]对比分析了现有文献中BGSe晶体的$ {d}_{\rm ij} $ 值,并给出了公式(8),笔者以此来估算BGSe晶体的有效非线性系数。$$ {{{d}}}_{{\rm{i}}{\rm{j}}}=\left(\begin{array}{c}0\\ 5.2\\ 1.2\end{array}\begin{array}{c}0\\ 24.3\\ -3.7\end{array}\begin{array}{c}0\\ -20.4\\ -2.2\end{array}\begin{array}{c}0\\ -3.7\\ -20.4\end{array}\begin{array}{c}1.2\\ 0\\ 0\end{array}\begin{array}{c}5.2\\ 0\\ 0\end{array}\right) $$ (8) 将公式(1)、(6)、(7)、(8)
$({\rm{\theta}}=56.3^{ \circ },\;\phi=0^{ \circ })$ 代入公式(5),求得$ {d}_{\rm eff}=-11.908\;1\;{\rm{p}}{\rm{m}}/{\rm{V}} $ (输出3.64 μm)。KTA晶体
$({{\theta}}=90^{ \circ },\;\phi=0^{ \circ })$ 在II-A类相位匹配条件下,$$\begin{split} {{{d}}}_{\rm eff}=\; &\left[{{{b}}}_{1}\left({{{\omega }}}_{3}\right),{{{b}}}_{2}\left({{{\omega }}}_{3}\right),{{{b}}}_{3}\left({{{\omega }}}_{3}\right)\right]\times \\ & \left(\begin{array}{c}{{{d}}}_{11}\\ {{{d}}}_{21}\\ {{{d}}}_{31}\end{array}\begin{array}{c}{{{d}}}_{12}\\ {{{d}}}_{22}\\ {{{d}}}_{32}\end{array}\begin{array}{c}{{{d}}}_{13}\\ {{{d}}}_{23}\\ {{{d}}}_{33}\end{array}\begin{array}{c}{{{d}}}_{14}\\ {{{d}}}_{24}\\ {{{d}}}_{34}\end{array}\begin{array}{c}{{{d}}}_{15}\\ {{{d}}}_{25}\\ {{{d}}}_{35}\end{array}\begin{array}{c}{{{d}}}_{16}\\ {{{d}}}_{26}\\ {{{d}}}_{36}\end{array}\right)\times \\ & \left(\begin{array}{c}{{{b}}}_{1}\left({{{\omega }}}_{1}\right){{{a}}}_{1}\left({{{\omega }}}_{2}\right)\\ {{{b}}}_{2}\left({{{\omega }}}_{1}\right){{{a}}}_{2}\left({{{\omega }}}_{2}\right)\\ {{{b}}}_{3}\left({{{\omega }}}_{1}\right){{{a}}}_{3}\left({{{\omega }}}_{2}\right)\\ {{{b}}}_{2}\left({{{\omega }}}_{1}\right){{{a}}}_{3}\left({{{\omega }}}_{2}\right)+{{{b}}}_{3}\left({{{\omega }}}_{1}\right){{{a}}}_{2}\left({{{\omega }}}_{2}\right)\\ {{{b}}}_{3}\left({{{\omega }}}_{1}\right){{{a}}}_{1}\left({{{\omega }}}_{2}\right)+{{{b}}}_{1}\left({{{\omega }}}_{1}\right){{{a}}}_{3}\left({{{\omega }}}_{2}\right)\\ {{{b}}}_{1}\left({{{\omega }}}_{1}\right){{{a}}}_{2}\left({{{\omega }}}_{2}\right)+{{{b}}}_{2}\left({{{\omega }}}_{1}\right){{{a}}}_{1}\left({{{\omega }}}_{2}\right)\end{array}\right) \end{split} $$ (9) 其中
$$ {{{d}}_{{{ij}}}} = \left( {\begin{array}{*{20}{c}} 0&0&0\\ 0&0&0\\ {2.8}&{4.2}&{16.2} \end{array}{\rm{}}\begin{array}{*{20}{c}} 0&{2.3}&0\\ {3.2}&0&0\\ 0&0&0 \end{array}} \right) $$ (10) 将公式(1)、(6)、(7)、(10)
$({\rm{\theta}}=90^{ \circ },\;\phi=0^{ \circ })$ 代入公式(9),求得$ {{{d}}}_{{\rm{e}}{\rm{f}}{\rm{f}}}=-3.2\;{\rm{p}}{\rm{m}}/{\rm{V}} $ (输出3.43 μm)。 -
OPO的振荡阈值功率为[21]:
$${{{J}}_{{\rm{th}}}} = \frac{{2.25{{\tau }}}}{{{{\kappa }}{{{g}}_{{s}}}{{L}}_{{\rm{eff}}}^2}}{\left[ {\frac{{{L}}}{{2{{c\tau }}}}{\rm{ln}}33 + 2{{\alpha l}} + \ln \frac{1}{{\sqrt {{R}} }} + {\rm{ln}}2} \right]^2}$$ (11) 式中:
$ {\rm{\kappa }} $ 为增益系数,可表示为:$ {\rm{\kappa }}=\dfrac{2{{{\omega }}}_{{\rm{s}}}{{\rm{\omega }}}_{{\rm{i}}}{{{d}}}_{{\rm{e}}{\rm{f}}{\rm{f}}}^{2}}{{{{n}}}_{{\rm{s}}}{{{n}}}_{{\rm{i}}}{{{n}}}_{{\rm{p}}}{{{\varepsilon}}}_{0}{{{c}}}^{3}} $ ;$ {{{g}}}_{{\rm{s}}} $ 为模式耦合系数,可表示为:$ {{{g}}}_{{\rm{s}}}=\dfrac{{{{w}}}_{{\rm{p}}}^{2}}{{{{w}}}_{{\rm{p}}}^{2}+{{{w}}}_{{\rm{s}}}^{2}} $ ;$ {{{L}}}_{{\rm{e}}{\rm{f}}{\rm{f}}} $ 为参量有效增益长度,约等于晶体长度l;$ {{{w}}}_{{\rm{p}}} $ 为泵浦光腰斑半径;$ {{{w}}}_{{\rm{s}}} $ 为信号光腰斑半径,它们满足${\left(\dfrac{{\text{π}}}{2{{L}}{\rm{\lambda}}}\right)}^{2}{{{w}}}_{{\rm{s}}}^{6}+ {{{w}}}_{{\rm{s}}}^{2}-$ $\dfrac{{{{w}}}_{{\rm{p}}}^{2}}{2}=0 $ 。将其代入公式(11),可得:$$ \begin{split} {{{J}}_{{\rm{th}}}} =\; & \frac{{2.25{{{n}}_{{s}}}{{{n}}_{{i}}}{{{n}}_{{p}}}{{{\varepsilon }}_0}{{{c}}^3}\left( {{{w}}_{{p}}^2 + {{w}}_{{s}}^2} \right)}}{{2{{{\omega }}_{{s}}}{{{\omega }}_{{i}}}{{d}}_{{\rm{eff}}}^2{{w}}_{{p}}^2{{L}}_{{\rm{eff}}}^2}}{{\tau [}}\frac{{{L}}}{{2{{c\tau }}}}{\rm{ln}}33+\\ & 2{{\alpha l}} + \ln \frac{1}{{\sqrt {{R}} }} + {\rm{ln}}2]^2=\\ & \frac{{2.25{{{\lambda }}_{{s}}}{{{\lambda }}_{{i}}}{{{n}}_{{s}}}{{{n}}_{{i}}}{{{n}}_{{p}}}{{{\varepsilon }}_0}{{c}}}}{{2{{\left( {2{{{\text{π}}}}} \right)}^2}{{d}}_{{\rm{eff}}}^2{{L}}_{{\rm{eff}}}^2}} \cdot \frac{{\left( {{{w}}_{{p}}^2 + {{w}}_{{s}}^2} \right)}}{{{{w}}_{{p}}^2}} \cdot\\ & {{\tau }}[\frac{{{L}}}{{2{{c\tau }}}}{\rm{ln}}33 + 2{{\alpha l}} + \frac{1}{{\sqrt {{R}} }} + {\rm{ln}}2{]^2} \end{split} $$ (12) 各参数值如表3所示。
表 3 KTA-OPO与BGSe-OPO的具体参数
Table 3. Parameters of KTA-OPO and BGSe-OPO
Parameter Meaning KTA BGSe $ {{\tau }} $/ns Pulse width 10 10 $ {{{\lambda}}}_{{\rm{s}}} $/μm Wavelength of signal light 1.54 1.50 $ {{{\lambda}}}_{{\rm{i}}} $/μm Wavelength of idler light 3.43 3.64 $ {{{n}}}_{{\rm{s}}} $ Refractive index of signal light 1.806 2 2.485 4 $ {{{n}}}_{{\rm{i}}} $ Refractive index of idler light 1.773 0 2.461 1 $ {{{n}}}_{{\rm{p}}} $ Refractive index of pump light 1.816 7 2.512 8 $ {{{\varepsilon}}}_{0} $/F·m-1 Permittivity of vacuum $ 8.85\times {10}^{-12} $ $ 8.85\times {10}^{-12} $ c/m·s-1 Velocity of light $ 3\times {10}^{8} $ $ 3\times {10}^{8} $ $ {d}_{\rm{eff}} $/m·V-1 Effective nonlinear coefficient $ {\approx 3.2\times 10}^{-12} $ $ {\approx 11.9\times 10}^{-12} $ $ {L}_{\rm{eff}} $/mm Parametric effective gain length 20 15 $ {{L}} $/mm Optical length of OPO cavity 46 52.5 $ {{l}} $/mm Length of crystal 20 15 将表2中的数值代入公式(12),则有:
$$\begin{split} &{{{J}}_{{\rm{th}}}}{\rm{BGSe}} = 1.992\;8 \times {10^{11}} \cdot \frac{{\left( {{{w}}_{\rm{p}}^2 + {{w}}_{\rm{s}}^2} \right)}}{{{{w}}_{\rm{p}}^2}} \cdot \\ &{\left[ {\frac{{\rm{L}}}{{2{{c\tau }}}}{\rm{ln}}33 + 2{{\alpha l}} + \ln \frac{1}{{\sqrt {{R}} }} + {\rm{ln}}2} \right]^2}\left( {{\rm{W}}/{{\rm{m}}^2}} \right) \end{split} $$ (13) $$\begin{split} {{{J}}_{{\rm{th}}}}{\rm{KTA}} =\;& 5.676\;4{\rm{}} \times {10^{11}} \cdot \frac{{\left( {{{w}}_{\rm{p}}^2 + {{w}}_{\rm{s}}^2} \right)}}{{{{w}}_{\rm{p}}^2}} \cdot \left[\frac{{\rm{L}}}{{2{\rm{c\tau }}}}{\rm{ln}}33 +\right. \\ &\left. 2{{\alpha l}} + \ln \frac{1}{{\sqrt {{R}} }} + {\rm{ln}}2\right]^2\left( {{\rm{W}}/{{\rm{m}}^2}} \right) \end{split} $$ (14) 由公式(13)、(14)可得:
$$ \frac{{{{{I}}_{{\rm{th}}}}\left( {{\rm{BGSe}}} \right)}}{{{{{I}}_{{\rm{th}}}}\left( {{\rm{KTA}}} \right)}} = 0.351\;1 $$ (15) 因此,当光斑半径、吸收系数、反射率等相同的情况下,BGSe的OPO阈值为KTA阈值的35.11%。
-
由于中红外OPO腔镜的镀膜技术耗时较长、难度较大,暂时选取其他OPO腔镜中的镜片进行替代性实验。实验中OPO输入镜参数为:1.064 μm透过率为75%,1.3~1.5 μm高反,3.4~3.8 μm的透过率约为60%;OPO输出镜参数为:1.064 μm高透,1.4~2.1 μm高反,3.4~4.2 μm高透。实验装置示意图如图2所示。
如图2所示,泵浦源为SL800 Series Pulsed Nd:YAG激光器,Energy meter为MoLectron- J3-09探头和EPM2000数据终端。BGSe的切割角为(
$ {\rm{\theta}}=56.3^{ \circ } $ ,$\phi =0^{ \circ }$ ),尺寸为6 mm×6 mm×15 mm。KTA的切割角为(${\rm{\theta}}=90^{ \circ },\;\phi =0^{ \circ }$ ),尺寸为10 mm×10 mm×20 mm。T为一个望远镜系统,用于将光束压窄,D为一个孔径光阑。M1和M2为OPO腔镜,F为滤光片,用于将残留的1 064 nm泵浦光滤除,滤光片对1 064 nm激光的透过率约为2.54%,G为锗片,再次将1 064 nm的泵浦光滤除,确保没有泵浦光进入能量计。(由于锗片的损伤阈值较低,不能直接放置于OPO输出镜后方)。 -
第一次实验时使用KTA进行实验,当泵浦能量达到41.51 mJ时,能量计首次出现读数,当泵浦能量为41.51~51.56 mJ时,KTA-OPO输出~3.5 μm的激光能量为13.38 ~19.87 μJ。第二次实验时完全使用相同的实验平台和装置,将晶体换为BGSe,当泵浦能量达到36.97 mJ时,能量计首次出现读数信号,当泵浦能量为36.97~51.56 mJ时,BGSe-OPO输出~3.5 μm的激光能量为13.45 ~22.02 μJ。实验结果如图3所示。
图 3 BGSe-OPO和KTA-OPO闲频光能量与泵浦光能量的关系
Figure 3. Idle light energy of BGSe-OPO and KTA-OPO at different pump light energies
如图3所示,“○”、“﹡”为实测数据,直线上其他值为拟合数据。由拟合的数据可以推算出BGSe的OPO振荡阈值为14.9 mJ,KTA的OPO振荡阈值为20.6 mJ,且在泵浦能量相同的情况下,BGSe的输出的参量光能量要大于KTA所输出的参量光能量。但是该实验中BGSe的振荡阈值约为KTA的0.72倍,与2.3节的理论计算值35.11%差距较大,原因可能是由于该实验中的BGSe晶体质量不如KTA晶体、BGSe没有镀增透膜而KTA镀了增透膜等原因所造成的,但实验明确验证了BGSe的振荡阈值小于KTA,且在同等泵浦能量的情况下,BGSe输出的中红外能量约为KTA输出能量的1.11~1.22倍。
-
文中通过理论和实验的方法对比了KTA和BGSe产生中红外激光的参量振荡过程。理论计算表明,1.06 μm激光泵浦KTA-OPO或BGSe -OPO均可产生3~5 μm波段激光,且BGSe (
$ 56.3^{ \circ },0^{ \circ } $ )和KTA($ 90^{ \circ },0^{ \circ } $ )均可输出~3.5 μm的闲频光。KTA(90°, 0°, II-A类)的有效非线性系数为$ -3.2\;{\rm{p}}{\rm{m}}/{\rm{V}} $ ,目前BGSe晶体的dij还没有定论,但根据参考文献[20]所给出的dij值进行了估算,预计BGSe(56.3°, 0°, I类)的有效非线性系数为$ -11.9081\;{\rm{p}}{\rm{m}}/{\rm{V}} $ ,BGSe的deff约为KTA的3.7倍。另外,当光斑半径、吸收系数、反射率等相同的情况下,BGSe的OPO阈值小于KTA的OPO阈值,因此,在同等泵浦能量的情况下,BGSe输出的中红外激光能量将大于KTA输出的激光。在实验中,尽管BGSe晶体质量不如KTA晶体、BGSe没有镀增透膜而KTA镀了增透膜、BGSe的长度为15 mm,而KTA的长度为20 mm,但是BGSe的OPO振荡阈值仍然小于KTA的OPO振荡阈值,且在同等泵浦能量的情况下,BGSe-OPO输出的中红外能量高于KTA-OPO输出的能量。因此,随着BGSe晶体加工工艺的提升和晶体生长质量的不断优化,BGSe将是一种具有广阔应用前景的中红外非线性晶体。
Comparison of mid-infrared laser generated by optical parametric oscillation of BaGa4Se7 and KTiAsO4
-
摘要: BaGa4Se7(硒镓钡,简称BGSe)与KTiOAsO4(砷酸氧钛钾,简称KTA)均可在1.06 μm激光泵浦下产生中红外激光。首先仿真计算出两种非线性晶体的相位匹配曲线,结果显示:切割角为(56.3°, 0°)的BGSe晶体在I类相位匹配条件下和切割角为(90°, 0°)的KTA在II-A类相位匹配条件下均可产生~3.5 μm的闲频光。然后理论计算出BGSe (56.3°, 0°, I类)的有效非线性系数为−11.9 pm/V,KTA(90°, 0°,II-A类)的有效非线性系数为−3.2 pm/V;在其他条件相同的情况下,15 mm长BGSe (56.3°, 0°, I类) 的OPO振荡阈值是20 mm长KTA (90°, 0°, II-A类) OPO振荡阈值的35.11%。最后通过实验验证BGSe (56.3°, 0°, I类, 15 mm) 的振荡阈值小于KTA(90°, 0°, II-A类, 20 mm),输出的中红外激光能量大于KTA。因此,BGSe是一种极具应用前景的中红外非线性晶体。Abstract: Both BaGa4Se7 (BGSe) and KTiAsO4 (KTA) can generate mid-infrared lasers pumped by 1.06 μm laser. Firstly, the phase matching curves of two kinds of non-linear crystals were simulated and calculated. The results show that BGSe with cutting angles of (56.3°, 0°) and KTA with cutting angle of (90°, 0°) can generate idle frequency light of ~3.5 micron under phase matching conditions of type I and type II-A, respectively. Then through theoretical calculation, the effective non-linear coefficients of BGSe (56.3°, 0°, type-I) is −11.9 pm/V, and that of KTA (90°, 0°, type II-A) is −3.2 pm/V. The OPO oscillation threshold of 15 mm long BGSe (56.3°, 0°, type-I) is 35.11% of that of 20 mm long KTA (90°, 0°, type II-A). Then, the experimental results show that the oscillation threshold of BGSe-OPO (56.3°, 0°, type-I, 15 mm) is smaller than that of KTA-OPO (90°, 0°, type-II-A, 20 mm). The output energy of BGSe (56.3°, 0°, type-I) is larger than that of KTA (90°, 0°, type II-A). Therefore, BGSe is a promising mid-infrared non-linear crystal.
-
Key words:
- BaGa4Se7 /
- KTiOAsO4 /
- optical parametric oscillation /
- mid-infrared laser
-
表 1 BGSe与KTA性能对比
Table 1. Comparison between BGSe and KTA
Name BGSe KTA Characteristic Biaxial, monoclinic, point group m[11] Uniaxial, point group mm2[13] Transmittance range 0.47-18µm[14] 0.35-5.3 µm [10] Damage threshold 557 MW/cm2[14](5 ns,1.064 µm,1 Hz) >600 MW/cm2 Nonzero tensor d11=24.3 pm/V, d13=20.4 pm/V [15] d33=16.2 pm/V, d31=2.8 pm/V, d32=4.2 pm/V, d31=2.8 pm/V
d24=3.2 pm/V, d15=2.3 pm/V[13],deff=4.47 pm/V[10]表 2 KTA晶体的Sellmeier系数
Table 2. Sellmeier coefficients of KTA
Ax 2.149 5 Ay 2.1308 Az 2.193 1 Bx 1.020 3 By 1.056 4 Bz 1.238 2 Cx 0.042 378 Cy 0.042 523 Cz 0.059 171 Dx 0.553 1 Dy 0.692 7 Dz 0.508 8 Ex 72.304 5 Ey 54.850 5 Ez 53.289 8 px 1.995 1 py 2.001 7 pz 1.892 0 qx 1.956 7 qy 1.726 1 qz 2.000 0 表 3 KTA-OPO与BGSe-OPO的具体参数
Table 3. Parameters of KTA-OPO and BGSe-OPO
Parameter Meaning KTA BGSe $ {{\tau }} $ /nsPulse width 10 10 $ {{{\lambda}}}_{{\rm{s}}} $ /μmWavelength of signal light 1.54 1.50 $ {{{\lambda}}}_{{\rm{i}}} $ /μmWavelength of idler light 3.43 3.64 $ {{{n}}}_{{\rm{s}}} $ Refractive index of signal light 1.806 2 2.485 4 $ {{{n}}}_{{\rm{i}}} $ Refractive index of idler light 1.773 0 2.461 1 $ {{{n}}}_{{\rm{p}}} $ Refractive index of pump light 1.816 7 2.512 8 $ {{{\varepsilon}}}_{0} $ /F·m-1Permittivity of vacuum $ 8.85\times {10}^{-12} $ $ 8.85\times {10}^{-12} $ c/m·s-1 Velocity of light $ 3\times {10}^{8} $ $ 3\times {10}^{8} $ $ {d}_{\rm{eff}} $ /m·V-1Effective nonlinear coefficient $ {\approx 3.2\times 10}^{-12} $ $ {\approx 11.9\times 10}^{-12} $ $ {L}_{\rm{eff}} $ /mmParametric effective gain length 20 15 $ {{L}} $ /mmOptical length of OPO cavity 46 52.5 $ {{l}} $ /mmLength of crystal 20 15 -
[1] 孔辉, 卞进田, 孙晓泉. 中红外激光技术研究进展[J]. 电子工程学院学报, 2018, 37(4): 7−11. Kong Hui, Bian Jintian, Sun Xiaoquan. Progress of mid-infrared laser technology [J]. Journal of Electronic Engineering Institute, 2018, 37(4): 7−11. (in Chinese) [2] 孔心怡, 柯常军, 吴天昊. 室温脉冲Fe2+:ZnSe中红外激光特性研究[J]. 红外与激光工程, 2018, 47(10): 1005001. doi: 10.3788/IRLA201847.1005001 Kong Xinyi, Ke Changjun, Wu Tianhao. Research on the characteristic of pulsed Fe2+: ZnSe mid-infrared laser at room temperature [J]. Infrared and Laser Engineering, 2018, 47(10): 1005001. (in Chinese) doi: 10.3788/IRLA201847.1005001 [3] 王云鹏, 王飞, 赵东旭. Cr2+: ZnSe全固态中红外激光器[J]. 中国光学, 2016, 9(5): 563−568. doi: 10.3788/co.20160905.0563 Wang Yunpeng, Wang Fei, Zhao Dongxu. All solid state Mid-IR laser of Cr2+:ZnSe [J]. Chinese Optics, 2016, 9(5): 563−568. (in Chinese) doi: 10.3788/co.20160905.0563 [4] 叶玮琳, 周波, 余红志. 中红外大气甲烷乙烷双组分气体的同步移动监测[J]. 光学 精密工程, 2018, 26(8): 1938−1944. doi: 10.3788/OPE.20182608.1938 Ye Weilin, Zhou Bo, Yu Hongzhi. In-motion monitoring of atmospheric methane and ethane using a mid-infrared dual-gas simultaneous detection sensor [J]. Optics and Precision Engineering, 2018, 26(8): 1938−1944. (in Chinese) doi: 10.3788/OPE.20182608.1938 [5] 李充, 谢冀江, 潘其坤. 中红外光学参量振荡器技术进展[J]. 中国光学, 2016, 9(6): 615−624. Li Chong, Xie Jinjiang, Pan Qikun. Progress of mid-infrared optical parametric oscillator [J]. Chinese Optics, 2016, 9(6): 615−624. (in Chinese) [6] 尉鹏飞, 张永昶, 张静. 三镜直腔结构MgO∶PPLN高效连续光参量振荡器[J]. 光学 精密工程, 2019, 27(1): 45−50. doi: 10.3788/OPE.20192701.0045 Wei Pengfei, Zhang Yongchang, Zhang Jing. Efficient continuous- wave MgO∶PPLN optical parametric oscillator with three-mirror linear cavity [J]. Optics and Precision Engineering, 2019, 27(1): 45−50. (in Chinese) doi: 10.3788/OPE.20192701.0045 [7] 余光其, 王鹏, 宋伟. 光纤激光泵浦的多波长中红外光参量振荡器[J]. 红外与激光工程, 2018, 47(4): 0404003. doi: 10.3788/IRLA201847.0404003 Yu Guangqi, Wang Peng, Song Wei. Fiber laser pumped multi-wavelength mid-infrared optical parametric oscillator [J]. Infrared and Laser Engineering, 2018, 47(4): 0404003. (in Chinese) doi: 10.3788/IRLA201847.0404003 [8] 张永昶, 朱海永, 张静. 紧凑型MgO:PPLN宽波段可调谐连续光参量振荡器[J]. 红外与激光工程, 2018, 47(11): 1105008. doi: 10.3788/IRLA201847.1105008 Zhang Yongchang, Zhu Haiyong, Zhang Jing. Compact widely tunable continuous-wave MgO:PPLN optical parametric oscillator [J]. Infrared and Laser Engineering, 2018, 47(11): 1105008. (in Chinese) doi: 10.3788/IRLA201847.1105008 [9] 贾宁, 王善朋, 陶绪堂. 中远红外非线性光学晶体研究进展[J]. 物理学报, 2018, 67(24): 244203. doi: 10.7498/aps.67.20181591 Jia Ning, Wang Shanpeng, Tao Xutang. Research progress of mid-and far-infrared nonlinear optical crystals [J]. Acta Physica Sinica, 2018, 67(24): 244203. (in Chinese) doi: 10.7498/aps.67.20181591 [10] 薛学刚, 张芳, 王鸿雁. 高质量砷酸氧钛钾KTiOAsO4晶体的生长与表征[J]. 科技经济导刊, 2018, 26(16): 4−5. Xue Xuegang, Zhang Fang, Wang Hongyan. Growth and Characterization of High Quality KTitanium Oxyarsenate Potassium KTiAsO4 Crystal [J]. Technology and Economic Guide, 2018, 26(16): 4−5. (in Chinese) [11] Yao Jiyong, Mei Dajiang, Bai Lei, et al. BaGa4Se7: A new congruent-melting IR nonlinear optical material [J]. Inorganic Chemistry, 2010, 49(20): 9212−9216. doi: 10.1021/ic1006742 [12] 王振友, 吴海信. 8~12 μm长波红外非线性晶体研究进展[J]. 人工晶体学报, 2019(1): 34−53. doi: 10.3969/j.issn.1000-985X.2019.01.007 Wang Zhenyou, Wu Haixin. Research progress of nonlinear crystals for 8-12 μm long-wave IR generation [J]. Journal of Synthetic Crystals, 2019(1): 34−53. (in Chinese) doi: 10.3969/j.issn.1000-985X.2019.01.007 [13] 卞进田. 中红外固体激光技术研究[D]. 合肥: 电子工程学院, 2007. Bian Jintian. Research on mid-infrared solid laser technology[D]. Hefei: Electronic Engineering Institute, 2007.(in Chinese) [14] Yao Jiyong, Yin Wenlong, Feng Kai, et al. Growth and characterization of BaGa4Se7 crystal [J]. Journal of Crystal Growth, 2012, 346(1): 1−4. doi: 10.1016/j.jcrysgro.2012.02.035 [15] Zhang Xin, Yao Jiyong, Yin Wenlong, et al. Determination of the nonlinear optical coefficients of the BaGa4Se7 crystal [J]. Optics Express, 2015, 23(1): 552−558. doi: 10.1364/OE.23.000552 [16] Kato K, Miyata K, Petrov V. Phase-matching properties of BaGa4Se7 for SHG and SFG in the 0.901–10.5910 μm range [J]. Applied Optics, 2017, 56(11): 2978−2981. doi: 10.1364/AO.56.002978 [17] Fève J P, Boulanger B, Pacaud O. Refined sellmeier equations from phase-matching measurements over the complete transparency range of KTiOAsO4, RbTiOAsO4 and CsTiOAsO4[C]//Advanced Solid State Lasers, 2000. [18] Zhang Weiquan. General ray-tracing formulas for crystal [J]. Applied Optics, 1992, 31(34): 7328−7331. doi: 10.1364/AO.31.007328 [19] Boursier E, Segonds P, Debray J. Angle noncritical phase-matched second-harmonic generation in the monoclinic crystal BaGa4Se7 [J]. Optics Letters, 2015, 40(20): 4591−4594. doi: 10.1364/OL.40.004591 [20] Kong Hui, Bian Jintian, Sun Xiaoquan. Calculation of phase-matching angles and effective nonlinear coefficients of BaGa4Se7 crystals [J]. Optik, 2019, 193: 163004. doi: 10.1016/j.ijleo.2019.163004 [21] Brosnan S J, Byer R L. Optical parametric oscillator threshold and linewidth studies [J]. IEEE Journal of Quantum Electronics, 1979, 15(6): 415−431. doi: 10.1109/JQE.1979.1070027 -