留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大视场高分辨率数字全息成像技术综述

张文辉 曹良才 金国藩

张文辉, 曹良才, 金国藩. 大视场高分辨率数字全息成像技术综述[J]. 红外与激光工程, 2019, 48(6): 603008-0603008(17). doi: 10.3788/IRLA201948.0603008
引用本文: 张文辉, 曹良才, 金国藩. 大视场高分辨率数字全息成像技术综述[J]. 红外与激光工程, 2019, 48(6): 603008-0603008(17). doi: 10.3788/IRLA201948.0603008
Zhang Wenhui, Cao Liangcai, Jin Guofan. Review on high resolution and large field of view digital holography[J]. Infrared and Laser Engineering, 2019, 48(6): 603008-0603008(17). doi: 10.3788/IRLA201948.0603008
Citation: Zhang Wenhui, Cao Liangcai, Jin Guofan. Review on high resolution and large field of view digital holography[J]. Infrared and Laser Engineering, 2019, 48(6): 603008-0603008(17). doi: 10.3788/IRLA201948.0603008

大视场高分辨率数字全息成像技术综述

doi: 10.3788/IRLA201948.0603008
基金项目: 

国家重点研发计划(2018YFF0212302)

详细信息
    作者简介:

    张文辉(1993-),男,博士生,主要从事数字全息方面的研究。Email:zhang-wh16@mails.tsinghua.edu.cn

  • 中图分类号: O438.1

Review on high resolution and large field of view digital holography

  • 摘要: 数字全息作为一种干涉成像方式,能够准确记录物体的相位信息,具有快速、无损、三维成像等优势,被广泛应用于生物成像与材料科学等领域。与其他光学成像方式相同,数字全息也面临分辨率与成像视场互为限制而导致空间带宽积受限的问题。研究人员提出了计算照明、计算调制与计算探测等方法,通过牺牲成像系统的时间、偏振等自由度来扩展其空间带宽积。文中分析了光学系统信息承载能力的理论基础,总结了近年来大视场高分辨率的数字全息成像技术,介绍了倾斜照明、结构光照明、随机调制照明、多位置综合孔径探测和像素超分辨等方法实现分辨率增强,以及基于角度复用的视场扩展的原理及具体实现,对不同方法进行了比较和分析,并对提高分辨率以及扩大视场的途径进行了展望。
  • [1] Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine[J]. Nature Photonics, 2018, 12(10):578-589.
    [2] Cotte Y, Toy F, Jourdain P, et al. Marker-free phase nanoscopy[J]. Nature Photonics, 2013, 7(113):113-117.
    [3] Nguyen T H, Kandel M E, Rubessa M, et al. Gradient light interference microscopy for 3D imaging of unlabeled specimens[J]. Nature Communications, 2017, 8(1):210.
    [4] Bianco V, Paturzo M, Marchesano V, et al. Optofluidic holographic microscopy with custom field of view (FoV) using a linear array detector[J]. Lab on a Chip, 2015, 15(9):2117-2124.
    [5] Yao Baoli, Lei Ming, Xue Bin, et al. Progress and applications of high-resolution and super-resolution optical imaging in space and biology[J]. Acta Photonica Sinica, 2011, 40(11):1607-1618. (in Chinese)
    [6] Maire G, Drsek F, Girard J, et al. Experimental demonstration of quantitative imaging beyond abbe's limit with optical diffraction tomography[J]. Physical Review Letters, 2009, 102(21):213905.
    [7] Alexandrov S A, Hillman T R, Gutzler T, et al. Synthetic aperture Fourier holographic optical microscopy[J]. Physical Review Letters, 2006, 97(16):168102.
    [8] Arhab S, Soriano G, Ruan Y, et al. Nanometric resolution with far-field optical profilometry[J]. Physical Review Letters, 2013, 111(5):053902.
    [9] Calabuig A, Mic V, Garcia J, et al. Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing[J]. Opt Lett, 2011, 36(6):885-887.
    [10] Yuan C, Situ G, Pedrini G, et al. Resolution improvement in digital holography by angular and polarization multiplexing[J]. Appl Opt, 2011, 50(7):B6-B11.
    [11] Mico V, Zalevsky Z, Garca J. Synthetic aperture microscopy using off-axis illumination and polarization coding[J]. Optics Communications, 2007, 276(2):209-217.
    [12] Picazo-Bueno J, Zalevsky Z, Garca J, et al. Superresolved spatially multiplexed interferometric microscopy[J]. Opt Lett, 2017, 42(5):927-930.
    [13] Mico V, Zalevsky Z, Garca-Martnez P, et al. Synthetic aperture superresolution with multiple off-axis holograms[J]. J Opt Soc Am A, 2006, 23(12):3162-3170.
    [14] Mico V, Zalevsky Z, Garca-Martnez P, et al. Superresolved imaging in digital holography by superposition of tilted wavefronts[J]. Appl Opt, 2006, 45(5):822-828.
    [15] Thurman S T, Bratcher A. Multiplexed synthetic-aperture digital holography[J]. Appl Opt, 2015, 54(3):559-568.
    [16] Price J R, Bingham P R, Thomas J C E. Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain[J]. Appl Opt, 2007, 46(6):827-833.
    [17] Schwarz C J, Kuznetsova Y, Brueck S R J. Imaging interferometric microscopy[J]. Opt Lett, 2003, 28(16):1424-1426.
    [18] Bhl J, Babovsky H, Kiessling A, et al. Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra[J]. Optics Communications, 2010, 283(19):3631-3638.
    [19] Kim M, Choi Y, Fang-Yen C, et al. High-speed synthetic aperture microscopy for live cell imaging[J]. Opt Lett, 2011, 36(2):148-150.
    [20] Mico V, Zalevsky Z, Garcia-Martinez P, et al. Single-step superresolution by interferometric imaging[J]. Opt Express, 2004, 12(12):2589-2596.
    [21] Zhao J, Yan X, Sun W, et al. Resolution improvement of digital holographic images based on angular multiplexing with incoherent beams in orthogonal polarization states[J]. Opt Lett, 2010, 35(20):3519-3521.
    [22] Yuan C, Zhai H, Liu H. Angular multiplexing in pulsed digital holography for aperture synthesis[J]. Opt Lett, 2008, 33(20):2356-2358.
    [23] Mic V, Zalevsky Z. Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging[J]. Journal of Biomedical Optics, 2010, 15(4):046027.
    [24] Granero L, Zalevsky Z, Mic V. Resolution and field of view improvement in digital holography using a VCSEL source array[C]//10th Euro-American Workshop on Information Optics, 2011:1-3.
    [25] Granero L, Mic V, Zalevsky Z, et al. Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information[J]. Appl Opt, 2010, 49(5):845-857.
    [26] Lai X J, Tu H Y, Wu C H, et al. Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy[J]. Appl Opt, 2015, 54(1):A51-A58.
    [27] Zheng J, Gao P, Yao B, et al. Digital holographic microscopy with phase-shift-free structured illumination[J]. Photon Res, 2014, 2(3):87-91.
    [28] Snchez-Ortiga E, Martnez-Corral M, Saavedra G, et al. Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination[J]. Opt Lett, 2014, 39(7):2086-2089.
    [29] Lai X J, Tu H Y, Lin Y C, et al. Coded aperture structured illumination digital holographic microscopy for superresolution imaging[J]. Opt Lett, 2018, 43(5):1143-1146.
    [30] Kashter Y, Vijayakumar A, Miyamoto Y, et al. Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination[J]. Opt Lett, 2016, 41(7):1558-1561.
    [31] Gao P, Pedrini G, Osten W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy[J]. Opt Lett, 2013, 38(8):1328-1330.
    [32] Neumann A, Kuznetsova Y, Brueck S R J. Structured illumination for the extension of imaging interferometric microscopy[J]. Opt Express, 2008, 16(10):6785-6793.
    [33] Chowdhury S, Izatt J. Structured illumination diffraction phase microscopy for broadband, subdiffraction resolution, quantitative phase imaging[J]. Opt Lett, 2014, 39(4):1015-1018.
    [34] Lee K, Kim K, Kim G, et al. Time-multiplexed structured illumination using a DMD for optical diffraction tomography[J]. Opt Lett, 2017, 42(5):999-1002.
    [35] Chowdhury S, Eldridge W J, Wax A, et al. Refractive index tomography with structured illumination[J]. Optica, 2017, 4(5):537-545.
    [36] Wilde J P, Goodman J W, Eldar Y C, et al. Coherent superresolution imaging via grating-based illumination[J]. Appl Opt, 2017, 56(1):A79-A88.
    [37] Park Y, Choi W, Yaqoob Z, et al. Speckle-field digital holographic microscopy[J]. Opt Express, 2009, 17(15):12285-12292.
    [38] Zheng J, Pedrini G, Gao P, et al. Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination[J]. Journal of Optics, 2015, 17(8):085301.
    [39] Liu C, Liu Z, Bo F, et al. Super-resolution digital holographic imaging method[J]. Applied Physics Letters, 2002, 81(17):3143-3145.
    [40] Paturzo M, Merola F, Grilli S, et al. Super-resolution in digital holography by a two-dimensional dynamic phase grating[J]. Opt Express, 2008, 16(21):17107-17118.
    [41] Lin Q, Wang D, Wang Y, et al. Super-resolution imaging in digital holography by using dynamic grating with a spatial light modulator[J]. Optics and Lasers in Engineering, 2015, 66:279-284.
    [42] Zhang W, Cao L, Jin G, et al. Full field-of-view digital lens-free holography for weak-scattering objects based on grating modulation[J]. Appl Opt, 2018, 57(1):A164-A171.
    [43] Lin Q. Resolution improvement mechanism and experiment study on digital holographic microscopic imaging[D]:Beijing:Beijing University of Techology, 2017. (in Chinese)
    [44] Zalevsky Z, Gur E, Garcia J, et al. Superresolved and field-of-view extended digital holography with particle encoding[J]. Opt Lett, 2012, 37(13):2766-2768.
    [45] Greenbaum A, Luo W, Khademhosseinieh B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy[J]. Scientific Reports, 2013, 3:1717.
    [46] Bishara W, Su T-W, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution[J]. Opt Express, 2010, 18(11):11181-11191.
    [47] Bishara W, Sikora U, Mudanyali O, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array[J]. Lab on a Chip, 2011, 11(7):1276-1279.
    [48] Claus D, Fritzsche M, Iliescu D, et al. High-resolution digital holography utilized by the subpixel sampling method[J]. Appl Opt, 2011, 50(24):4711-4719.
    [49] Wu K, Wu X, Zhao L. Experimental research on super-resolution digital holography[J]. Optical Technique, 2018, 44(1):101-105. (in Chinese)
    [50] Li Y, Lilley F, Burton D, et al. Evaluation and benchmarking of a pixel-shifting camera for superresolution lensless digital holography[J]. Appl Opt, 2010, 49(9):1643-1650.
    [51] Mic V, Granero L, Zalevsky Z, et al. Superresolved phase-shifting Gabor holography by CCD shift[J]. Journal of Optics A:Pure and Applied Optics, 2009, 11(12):125408.
    [52] Zhang Y, Lu X, Luo Y, et al. Synthetic aperture holography by movement of object[C]//SPIE, 2005, 5636:8.
    [53] Jiang H, Zhao J, Di J, et al. Numerically correcting the joint misplacement of the sub-holograms in spatial synthetic aperture digital Fresnel holography[J]. Opt Express, 2009, 17(21):18836-18842.
    [54] Massig J H. Digital off-axis holography with a synthetic aperture[J]. Opt Lett, 2002, 27(24):2179-2181.
    [55] Gymesi F, Fzessy Z, Borbly V, et al. Half-magnitude extensions of resolution and field of view in digital holography by scanning and magnification[J]. Appl Opt, 2009, 48(31):6026-6034.
    [56] Huang H, Rong L, Wang D, et al. Synthetic aperture in terahertz in-line digital holography for resolution enhancement[J]. Appl Opt, 2016, 55(3):A43-A48.
    [57] Lohmann A W, Dorsch R G, Mendlovic D, et al. Space-bandwidth product of optical signals and systems[J]. J Opt Soc Am A, 1996, 13(3):470-473.
    [58] Fellgett Peter B, Linfoot E H, Redman Roderick O. On the assessment of optical images[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1955, 247(931):369-407.
    [59] Lukosz W. Optical systems with resolving powers exceeding the classical limit[J]. J Opt Soc Am, 1966, 56(11):1463-1471.
    [60] Goodman J W. Introduction to Fourier Optics[M]. 3rd ed. New York:Roberts and Company Publishers, 2005.
    [61] Cox I J, Sheppard C J R. Information capacity and resolution in an optical system[J]. J Opt Soc Am A, 1986, 3(8):1152-1158.
    [62] Bastiaans M J. Wigner distribution function and its application to first-order optics[J]. J Opt Soc Am, 1979, 69(12):1710-1716.
    [63] Yamaguchi I, Zhang T. Phase-shifting digital holography[J]. Opt Lett, 1997, 22(16):1268-1270.
    [64] Fienup J R. Phase retrieval algorithms:a comparison[J]. Appl Opt, 1982, 21(15):2758-2769.
    [65] Zhang W, Cao L, Brady D J, et al. Twin-image-free holography:a compressive sensing approach[J]. Physical Review Letters, 2018, 121(9):093902.
    [66] Zhang H, Cao L, Zhang H, et al. Efficient block-wise algorithm for compressive holography[J]. Opt Express, 2017, 25(21):24991-25003.
    [67] Girshovitz P, Shaked N T. Doubling the field of view in off-axis low-coherence interferometric imaging[J]. Light:Science Amp; Applications, 2014, 3:e151.
    [68] Rubin M, Dardikman G, Mirsky S K, et al. Six-pack off-axis holography[J]. Opt Lett, 2017, 42(22):4611-4614.
    [69] Mic V, Zheng J, Garcia J, et al. Resolution enhancement in quantitative phase microscopy[J]. Adv Opt Photon, 2019, 11(1):135-214.
    [70] Li H, Zhong L, Ma Z, et al. Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography[J]. Optics Communications, 2011, 284(9):2268-2272.
    [71] Tippie A E, Kumar A, Fienup J R. High-resolution synthetic-aperture digital holography with digital phase and pupil correction[J]. Opt Express, 2011, 19(13):12027-12038.
    [72] Lim S, Choi K, Hahn J, et al. Image-based registration for synthetic aperture holography[J]. Opt Express, 2011, 19(12):11716-11731.
    [73] Song S, Wan Y, Han Y, et al. Structure-illuminated self-interference digital holography for optical sectioning[J]. Chinese Journal of Lasers, 2015, 46(5):1-12. (in Chinese)
    [74] Gustafsson M G L. Nonlinear structured-illumination microscopy:Wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37):13081-13086.
    [75] Wicker K, Heintzmann R. Resolving a misconception about structured illumination[J]. Nature Photonics, 2014, 8(5):342.
    [76] Jiang Z, Veetil S P, Cheng J, et al. High-resolution digital holography with the aid of coherent diffraction imaging[J]. Opt Express, 2015, 23(16):20916-20925.
    [77] Zhao Y, Cao X, Chen B, et al. Digital holography subpixel displacement aperture synthesis[J]. Infrared and Laser Engineering, 2018, 47(6):0626002. (in Chinese)
    [78] Zheng G, Lee S A, Yang S, et al. Sub-pixel resolving optofluidic microscope for on-chip cell imaging[J]. Lab on a Chip, 2010, 10(22):3125-3129.
    [79] Wu Y, Zhang Y, Luo W, et al. Demosaiced pixel super-resolution for multiplexed holographic color imaging[J]. Scientific Reports, 2016, 6:28601.
    [80] Luo W, Zhang Y, Feizi A, et al. Pixel super-resolution using wavelength scanning[J]. Light:Science Applications, 2016, 5:e16060.
    [81] Paturzo M, Ferraro P. Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography[J]. Opt Lett, 2009, 34(23):3650-3652.
    [82] Lu Y, Liu Y, Li P, et al. Multiplexed off-axis holography using a transmission diffraction grating[J]. Opt Lett, 2016, 41(3):512-515.
  • [1] 潘聪, 叶宇, 顾伯忠, 帅雨林.  2.5 m大视场高分辨率望远镜消光筒温度控制 . 红外与激光工程, 2023, 52(9): 20230024-1-20230024-8. doi: 10.3788/IRLA20230024
    [2] 胡春光, 李恩赐, 翟聪, 高晓晴, 陈雨露, 郭梦迪.  大视场微球透镜超分辨显微成像技术的研究进展 . 红外与激光工程, 2022, 51(6): 20210438-1-20210438-14. doi: 10.3788/IRLA20210438
    [3] 刘煦, 李云铎, 叶联华, 黄张成, 黄松垒, 方家熊.  单光子探测InGaAs雪崩焦平面像素级高分辨率低误码时间数字转换电路 . 红外与激光工程, 2021, 50(11): 20210009-1-20210009-9. doi: 10.3788/IRLA20210009
    [4] 金其文, 关键, 吴学成.  数字全息在线监测300 MW机组煤粉细度试验研究 . 红外与激光工程, 2021, 50(9): 20200456-1-20200456-9. doi: 10.3788/IRLA20200456
    [5] 魏明, 王超, 李英超, 付强, 刘壮, 史浩东, 李冠霖, 姜会林.  望远超分辨成像中的视场光阑影响及补偿机理 . 红外与激光工程, 2020, 49(2): 0214004-0214004. doi: 10.3788/IRLA202049.0214004
    [6] 单秋莎, 苏秀琴, 段晶, 周亮, 刘凯, 闫佩佩, 姜凯.  外视场拼接的单镜头大视场中波红外成像系统的实现 . 红外与激光工程, 2020, 49(3): 0314002-0314002-6. doi: 10.3788/IRLA202049.0314002
    [7] 刘玉红, 程其娈, 谭佐军, 陈建军.  采用相干技术的高分辨光谱检测系统设计 . 红外与激光工程, 2019, 48(4): 417005-0417005(6). doi: 10.3788/IRLA201948.0417005
    [8] 蔡文涛, 李晶, 江海波, 孙秀辉, 杨若夫, 尹韶云.  基于非均匀采样的高分辨曲面投影计算全息方法 . 红外与激光工程, 2019, 48(5): 524004-0524004(6). doi: 10.3788/IRLA201948.0524004
    [9] 孔明, 郝玲, 刘维, 王道档, 许新科, 李芹.  数字全息中基于优化Harris角点的相位拼接算法 . 红外与激光工程, 2019, 48(11): 1126002-1126002(7). doi: 10.3788/IRLA201948.1126002
    [10] 闫浩, 隆军, 刘驰越, 潘淑媛, 左超, 蔡萍.  数字全息技术及散斑干涉技术在形变测量领域的发展及应用 . 红外与激光工程, 2019, 48(6): 603010-0603010(13). doi: 10.3788/IRLA201948.0603010
    [11] 曾雅楠, 卢钧胜, 常新宇, 刘源, 胡晓东, 卫勇, 王艳艳.  数字像面全息显微技术的降噪方法 . 红外与激光工程, 2019, 48(5): 524003-0524003(7). doi: 10.3788/IRLA201948.0524003
    [12] 赵亚迪, 曹晓华, 陈波, 孙天齐.  数字全息亚像素位移综合孔径方法 . 红外与激光工程, 2018, 47(6): 626002-0626002(5). doi: 10.3788/IRLA201847.0626002
    [13] 徐宁, 付跃刚, 浦东.  单透镜高分辨成像系统的研究和设计 . 红外与激光工程, 2017, 46(11): 1118001-1118001(7). doi: 10.3788/IRLA201746.1118001
    [14] 袁影, 王晓蕊, 吴雄雄, 穆江浩, 张艳.  多孔径压缩编码超分辨率大视场成像方法 . 红外与激光工程, 2017, 46(8): 824001-0824001(7). doi: 10.3788/IRLA201746.0824001
    [15] 赵惠, 魏静萱, 庞志海, 刘美莹.  波前编码超分辨成像技术 . 红外与激光工程, 2016, 45(4): 422003-0422003(10). doi: 10.3788/IRLA201645.0422003
    [16] 崔珊珊, 李琦.  基于小波变换的太赫兹数字全息再现像去噪研究 . 红外与激光工程, 2015, 44(6): 1836-1840.
    [17] 周皓, 顾济华, 陈大庆.  数字全息多平面成像技术研究 . 红外与激光工程, 2015, 44(2): 513-518.
    [18] 贺小军, 张贵祥, 郑亮亮, 曲宏松.  高分辨相机传函测试误差分析 . 红外与激光工程, 2014, 43(S1): 89-94.
    [19] 范俊叶, 尹博超, 王文生.  双曝光数字全息三维变形测试 . 红外与激光工程, 2014, 43(5): 1582-1586.
    [20] 朱钧, 朱景雷, 冯辰, 魏继卿, 侯威.  高分辨折反式红外探测系统光学设计 . 红外与激光工程, 2013, 42(5): 1280-1284.
  • 加载中
计量
  • 文章访问数:  1147
  • HTML全文浏览量:  218
  • PDF下载量:  348
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-13
  • 修回日期:  2019-06-21
  • 刊出日期:  2019-06-25

大视场高分辨率数字全息成像技术综述

doi: 10.3788/IRLA201948.0603008
    作者简介:

    张文辉(1993-),男,博士生,主要从事数字全息方面的研究。Email:zhang-wh16@mails.tsinghua.edu.cn

基金项目:

国家重点研发计划(2018YFF0212302)

  • 中图分类号: O438.1

摘要: 数字全息作为一种干涉成像方式,能够准确记录物体的相位信息,具有快速、无损、三维成像等优势,被广泛应用于生物成像与材料科学等领域。与其他光学成像方式相同,数字全息也面临分辨率与成像视场互为限制而导致空间带宽积受限的问题。研究人员提出了计算照明、计算调制与计算探测等方法,通过牺牲成像系统的时间、偏振等自由度来扩展其空间带宽积。文中分析了光学系统信息承载能力的理论基础,总结了近年来大视场高分辨率的数字全息成像技术,介绍了倾斜照明、结构光照明、随机调制照明、多位置综合孔径探测和像素超分辨等方法实现分辨率增强,以及基于角度复用的视场扩展的原理及具体实现,对不同方法进行了比较和分析,并对提高分辨率以及扩大视场的途径进行了展望。

English Abstract

参考文献 (82)

目录

    /

    返回文章
    返回