留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度测量的三维成像技术

陈妮 左超 Byoungho Lee

陈妮, 左超, Byoungho Lee. 基于深度测量的三维成像技术[J]. 红外与激光工程, 2019, 48(6): 603013-0603013(25). doi: 10.3788/IRLA201948.0603013
引用本文: 陈妮, 左超, Byoungho Lee. 基于深度测量的三维成像技术[J]. 红外与激光工程, 2019, 48(6): 603013-0603013(25). doi: 10.3788/IRLA201948.0603013
Chen Ni, Zuo Chao, Byoungho Lee. 3D imaging based on depth measurement[J]. Infrared and Laser Engineering, 2019, 48(6): 603013-0603013(25). doi: 10.3788/IRLA201948.0603013
Citation: Chen Ni, Zuo Chao, Byoungho Lee. 3D imaging based on depth measurement[J]. Infrared and Laser Engineering, 2019, 48(6): 603013-0603013(25). doi: 10.3788/IRLA201948.0603013

基于深度测量的三维成像技术

doi: 10.3788/IRLA201948.0603013
基金项目: 

国家自然科学基金(61705241,61722506,61505081,11574152);上海市自然科学基金(17ZR1433800);江苏省杰出青年基金(BK20170034);江苏省重点研究开发项目(BE2017162)

详细信息
    作者简介:

    陈妮(198X-),女,博士,主要从事光学三维成像相关研究。Email:nichen@snu.ac.kr

  • 中图分类号: O438.1

3D imaging based on depth measurement

  • 摘要: 由于三维(3D)成像技术有着广泛的应用,尤其是在信息和生命科学领域的应用,因此越来越受到人们的关注。这些技术大致可分为两类:基于光线的三维成像技术和基于波前的三维成像技术。传统成像技术存在系统装置复杂和成像质量不尽人意等问题,极大限制了其在相关领域的应用,因此基于深度测量的三维成像技术越来越受到重视。文中概述了基于深度测量的三维成像技术,分别详细描述了基于深度测量三维成像的光线场和光波场的相关技术,给出了光线场和光波场成像技术之间的联系,基于这些描述和分析,给出了基于深度测量三维成像研究领域的研究方向。
  • [1] Watanabe T M, Sato T, Gonda K, et al. Three-dimensional nanometry of vesicle transport in living cells using dual-focus imaging optics[J]. Biochem Biophys Res Commun, 2007, 359:1-7.
    [2] Tanida J, Kumagai T, Yamada K, et al. Thin observation module by bound optics (TOMBO):concept and experimental verification[J]. Appl Opt, 2001, 40:1806-1813.
    [3] Yamaguchi M. Light-field and holographic three-dimensional displays[J]. J Opt Soc Am A, 2016, 33:2348-2364.
    [4] Martnez-Corral M, Javidi B. Fundamentals of 3D imaging and displays:A tutorial on integral imaging, light-field, and plenoptic systems[J]. Adv Opt Photonics, 2018, 10:512-566.
    [5] Bruning J H, Herriott D R, Gallagher J E, et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses[J]. Appl Opt, 1974, 13:2693-2703.
    [6] Wolf E. Three-dimensional structure determination of semi-transparent objects from holographic data[J]. Opt Commun,1969, 1:153-156.
    [7] Born M, Wolf E. Principles of Optics[M]. 7th ed. Cambridge:Cambridge University Press, 1999.
    [8] Saleh B E, Teich M C, Saleh B E. Fundamentals of Photonics[M]. 2nd ed. Wiley:New York, 2007.
    [9] Gershun A. The light field[J]. J Math Phys, 1939, 18:51-151.
    [10] Lam E Y. Computational photography with plenoptic camera and light field capture:Tutorial[J]. J Opt Soc Am, 2015, 32:2021-2032.
    [11] Zheng J, Mic V, Gao P. Resolution enhancement in phase microscopy:A review[J]. Preprints, 2018,
    [12] Hong J, Kim Y, Choi H J, et al. Three-Dimensional display technologies of recent interest:principles, status, and issues[J]. Appl Opt, 2011, 50:H87-H115.
    [13] Park S G, Yeom J, Jeong Y, et al. Recent issues on integral imaging and its applications[J]. J Inf Dis, 2014, 15:37-46.
    [14] Zhao Y, Kwon K C, Piao Y L, et al. Depth-layer weighted prediction method for a full-color polygon-based holographic system with real objects[J]. Opt Lett, 2017, 42:2599-2602.
    [15] Li G, Hong K, Yeom J, et al. Acceleration method for computer generated spherical hologram calculation of real objects using graphics processing unit[J]. Chin Opt Lett, 2014, 12:060016.
    [16] Mait J N, Euliss G W, Athale R A. Computational imaging[J]. Adv Opt Photonics, 2018, 10:409-483.
    [17] Horisaki R, Ogura Y, Aino M, et al. Single-shot phase imaging with a coded aperture[J]. Opt Lett, 2014, 39:6466-6469.
    [18] Fienup J R. Phaseretrieval algorithms:Acomparison[J]. Appl Opt, 1982, 21:2758-2769.
    [19] Testorf M, Hennelly, B, Ojeda-Castaneda J. Phase-Space Optics[M]. New York:McGraw-Hill Professional Publishing, 2009.
    [20] Teague MR. Deterministic phase retrieval:A Green's function solution[J]. J Opt Soc Am, 1983, 73:1434-1441.
    [21] Gabor D. A new microscopic principle[J]. Nature, 1948, 161:777-778.
    [22] Poon T C. Digital Holography and Three-Dimensional Display:Principles and Applications[M]. London:Springer, 2006.
    [23] Boesl U. Time-of-flight mass spectrometry:Introduction to the basics[J]. Mass Spectrom Rev, 2016, 36:86-109.
    [24] Geng J. Structured-light 3D surface imaging:A tutorial[J]. Adv Opt Photonics, 2011, 3:128-160.
    [25] Banks M S, Read J C A, Allison R S, et al. Stereoscopy and the Human Visual System[J]. SMPTE Motion Imaging J, 2012, 121:24-43.
    [26] Orth A, Crozier K B. Light field moment imaging[J]. Opt Lett, 2013, 38:2666-2668.
    [27] Levoy M. Light fields and computational imaging[J]. Computer, 2006, 39:46-55.
    [28] Levoy M, Ng R, Adams A, et al. Light field microscopy[J]. ACM Trans Gr, 2006, 25:924-934.
    [29] Ng R. Fourier slice photography[J]. ACM Trans Gr, 2005, 24:735-744.
    [30] Levoy M, Hanrahan P. Light field rendering[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, 1996:31-42.
    [31] Ng R, Levoy M, Brdif M, et al. Light field photography with a hand-held plenoptic camera[J]. Comput Sci Tech Rep, 2005, 2:1-11.
    [32] Xiao X, Javidi B, Martinez-Corral M, et al. Advances in three-dimensional integral imaging:sensing, display, and applications[J]. Appl Opt, 2013, 52:546-560.
    [33] Wilburn B, Joshi N, Vaish V, et al. High performance imaging using large camera arrays[J]. ACM Trans Gr, 2005, 24:765-776.
    [34] Lin X, Wu J, Zheng G, et al. Camera array based light field microscopy[J]. Biomed Opt Express, 2015, 6:3179-3189.
    [35] Georgiev T, Zheng K C, Curless B, et al. Spatio-angular resolution tradeoffs in integral photography[J]. Render Tech,2006:263-272.
    [36] Veeraraghavan A, Raskar R, Agrawal A, et al. Dappled photography:Mask enhanced cameras for heterodyned light fields and coded aperture refocusing[J]. ACM Trans Gr, 2007, 26:69.
    [37] Liang C K, Lin T H, Wong B Y, et al. Programmable aperture photography:Multiplexed light field acquisition[J]. ACM Trans Gr, 2008, 27:55:1-55:10.
    [38] Fuchs M, Kachele M, Rusinkiewicz S. Design and fabrication of faceted mirror arrays for light field capture[J]. Comput Gr Forum, 2013, 32:246-257.
    [39] Manakov A, Restrepo J F, Klehm O, et al. A reconfigurable camera add-on for high dynamic range, multispectral, polarization, and light-field imaging[J]. ACM Trans Gr, 2013, 32:1-47.
    [40] Levoy M, Zhang Z, Mcdowall I. Recording and controlling the 4D light field in a microscope using microlens arrays[J]. J Microsc, 2009, 235:144-162.
    [41] Ng R. Digital light field photography[D]. San Francisco:Standford University, 2006.
    [42] Park J H, Hong K, Lee B. Recent progress in three-dimensional information processing based on integral imaging[J]. Appl Opt, 2009, 48:H77-H94.
    [43] Chen N, Park J H, Kim N. Parameter analysis of integral Fourier hologram and its resolution enhancement[J]. Opt Express, 2010, 18:2152-2167.
    [44] Chen N, Yeom J, Jung J H, et al. Resolution comparison between integral-imaging-based hologram synthesis methods using rectangular and hexagonal lens arrays[J]. Opt Express,2011, 19:26917-26927.
    [45] Denisyuk Y N. On the reflection of optical properties of an object in a wave field of light scattered by it[J]. Dokl Akad Nauk, SSSR, 1962, 144:1275-1278.
    [46] Leith E N, Upatnieks J. Wavefront reconstruction with continuous-tone objects[J]. J Opt Soc Am, 1963, 53:1377-1381.
    [47] Hariharan P, Oreb B F, Eiju T. Digital phase-shifting interferometry:A simple error-compensating phase calculation algorithm[J]. Appl Opt, 1987, 26:2504-2506.
    [48] Nugent K A. X-ray non-interferometric phase imaging:A unified picture[J]. J Opt Soc Am A, 2007, 24:536-547.
    [49] Chen N, Ren Z, Li D, et al. Analysis of the noise in back-projection light field acquisition and its optimization[J]. Appl Opt, 2017, 56:F20-F26.
    [50] Goodman J W. Introduction to Fourier Optics[M]. 3rd ed. New Zealand:Roberts Company, 2005.
    [51] Park J H, Seo S W, Chen N, et al. Fourier hologram generation from multiple incoherent defocused images[C]//The Three-Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security, and Avionics IV, 2010:7690-7698.
    [52] Park J H, Seo S W, Chen N, et al. Hologram synthesis from defocused images captured under incoherent illumination[C]//Proceedings of the Digital Holography and Three-Dimensional Imaging, 2010:12-14.
    [53] Levin A, Durand F. Linear view synthesis using a dimensionality gap light field prior[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010:1831-1838.
    [54] Marwah K, Wetzstein G, Bando Y, et al. Compressive light field photography using overcomplete dictionaries and optimized projections[J]. ACM Trans Gr, 2013, 32, 46:1-46:12.
    [55] Bailey S W, Echevarria J I, BodenheimerB, et al. Fast depth from defocus from focal stacks[J]. Vis Comput, 2014, 31:1697-1708.
    [56] Kuthirummal S, Nagahara H, Zhou C, et al. Flexible depth of field photography[J]. IEEE Trans Pattern Anal Mach Intell, 2011, 33:58-71.
    [57] Zeng G L. One-angle fluorescence tomography with in-and-out motion[J]. J Electron Imaging, 2013, 22:043018.
    [58] McMillan L, Bishop G. Plenoptic modeling:An image-based rendering system[C]//Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, 1995:39-46.
    [59] Park J H, Lee S K, Jo N Y, et al. Light ray field capture using focal plane sweeping and its optical reconstruction using 3D displays[J]. Opt Express, 2014, 22:25444-25454.
    [60] Mousnier A, Vural E, Guillemot C. Partial light field tomographic reconstruction from a fixed-camera focal stack[J]. Computer Science, 2015, 22(8):347-356.
    [61] Wang H, Chen N, Zheng S, et al. Fast and high-resolution light field acquisition using defocus modulation[J]. Appl Opt, 2018, 57:A250-A256.
    [62] Wang H, Chen N, Liu J, et al. Light field imaging based on defocused photographic images[C]//Digital Holography and Three-Dimensional Imaging, 2017:W3A-3.
    [63] Chen N, Ren Z, Lam E Y. High-resolution Fourier hologram synthesis from photographic images through computing the light field[J]. Appl Opt, 2016, 55:1751-1756.
    [64] Liu J, Xu T, Yue W, et al. Light-field moment microscopy with noise reduction[J]. Opt Express, 2015, 23:29154-29162.
    [65] Zhang Z, Levoy M. Wigner distributions and how they relate to the light field[C]//Proceedings of the 2009 IEEE International Conference on Computational Photography (ICCP), 2009:1-10.
    [66] Liu C, Qiu J, Jiang M. Light field reconstruction from projection modeling of focal stack[J]. Opt Express, 2017, 25:11377-11388.
    [67] Yin X, Wang G, Li W, et al. Iteratively reconstructing 4D light fields from focal stacks[J]. Appl Opt, 2016, 55:8457-8463.
    [68] Jiang Z, Pan X, Liu C, et al. Light field moment imaging with the ptychographic iterative engine[J]. AIP Adv, 2014, 4:107108.
    [69] Teague M R. Irradiance moments:their propagation and use for unique retrieval of phase[J]. J Opt Soc Am, 1982, 72:1199-1209.
    [70] Falaggis K, Kozacki T, Kujawin'ska M, et al. Optimum plane selection criteria for single-beam phase retrieval techniques based on the contrast transfer function[J]. Opt Lett, 2014, 39:30-33.
    [71] Martinez-Carranza J, Falaggis K, Kozacki T. Optimum measurement criteria for the axial derivative intensity used in transport of intensity-equation-based solvers[J]. Opt Lett, 2014, 39:182-185.
    [72] Liu C, Qiu J, Zhao S. Iterative reconstruction of scene depth with fidelity based on light field data[J]. Appl Opt, 2017, 56:3185-3192.
    [73] Zuo C, Chen Q, Qu W, et al. High-speed transport-of-intensity phase microscopy with an electrically tunable lens[J]. Opt Express, 2013, 21:24060-24075.
    [74] Gerchberg R W, Saxton W O. A practical algorithm for the determination of the phase from image and diffraction plane pictures[J]. J Phys D Appl Phys, 1972, 35:237-246.
    [75] Gureyev T E, Roberts A, Nugent K A. Partially coherent fields, the transport-of-intensity equation, and phase uniqueness[J]. J Opt Soc Am A, 1995, 12:1942-1946.
    [76] Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light[J]. Phys Rev Lett, 1998, 80:2586-2589.
    [77] Yang G Z, Dong B Z, Gu B Y, et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system:A comparison[J]. Appl Opt, 1994, 33:209-218.
    [78] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Opt Lett, 1978, 3:27-29.
    [79] Cederquist J N, Fienup J R, Wackerman C C, et al. Wave-front phase estimation from Fourier intensity measurements[J]. J Opt Soc Am A, 1989, 6:1020-1026.
    [80] Devaney A J, Chidlaw R. On the uniqueness question in the problem of phase retrieval from intensity measurements[J]. J Opt Soc Am, 1978, 68:1352-1354.
    [81] Fienup J R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint[J]. J Opt Soc Am A, 1987, 4:118-123.
    [82] Guo C, Liu S, Sheridan JT. Iterative phase retrieval algorithms I:optimization[J]. Appl Opt, 2015, 54:4698-4708.
    [83] Rolleston R, George N. Image reconstruction from partial Fresnel zone information[J]. Appl Opt, 1986, 25:178-183.
    [84] Misell D L. An examination of an iterative method for the solution of the phase problem in optics and electron optics:I. Test calculations[J]. J Phys D Appl Phys, 1973, 6:2200-2216.
    [85] Fienup J R. Lensless coherent imaging by phase retrieval with an illumination pattern constraint[J]. Opt Express, 2006, 14:498-508.
    [86] Guo C, Shen C, Li Q, et al. A fast-converging iterative method based on weighted feedback for multi-distance phase retrieval[J]. Sci Rep, 2018, 8:6436.
    [87] Konijnenberg A, Coene W, Pereira S, et al. Combining ptychographical algorithms with the Hybrid Input-Output (HIO) algorithm[J]. Ultramicroscopy, 2016, 171:43-54.
    [88] Lu X, Gao W, Zuo J M, et al. Atomic resolution tomography reconstruction of tilt series based on a GPU accelerated hybrid input-output algorithm using polar Fourier transform[J]. Ultramicroscopy, 2015, 149:64-73.
    [89] Rolleston R, George N. Stationary phase approximations in Fresnel-zone magnitude-only reconstructions[J]. J Opt Soc Am A, 1987, 4:148-153.
    [90] Dean B H, Bowers C W. Diversity selection for phase-diverse phase retrieval[J]. J Opt Soc Am A, 2003, 20:1490-1504.
    [91] Mayo S C, Miller P R, Wilkins S W, et al. Quantitative X-ray projection microscopy:phase-contrast and multi-spectral imaging[J]. J Microsc, 2002, 207:79-96.
    [92] Anand A, Pedrini G, Osten W, et al. Wavefront sensing with random amplitude mask and phase retrieval[J]. Opt Lett,2007, 32:1584-1586.
    [93] Almoro P F, Hanson S G. Random phase plate for wavefront sensing via phase retrieval and a volume speckle field[J]. Appl Opt, 2008, 47:2979-2987.
    [94] Zhang F, Chen B, Morrison G R, et al. Phase retrieval by coherent modulation imaging[J]. Nat Commun, 2016, 7:13367.
    [95] Brady G R, Guizar-Sicairos M, Fienup J R. Optical wavefront measurement using phase retrieval with transverse translation diversity[J]. Opt Express, 2009, 17:624-639.
    [96] Rodenburg J M, Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Appl Phys Lett, 2004, 85:4795-4797.
    [97] Pedrini G, Osten W, Zhang Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes[J]. Opt Lett, 2005, 30:833-835.
    [98] Chen N, Yeom J, Hong K, et al. Fast converging algorithm for wavefront reconstruction based on a sequence of diffracted intensity images[J]. J Opt Soc Korea, 2014, 18:217-224.
    [99] Bao P, Zhang F, Pedrini G, et al. Phase retrieval using multiple illumination wavelengths[J]. Opt Lett, 2008, 33:309-311.
    [100] Zhou A, Chen N, Wang H, et al. Analysis of Fourier ptychographic microscopy with half of the captured images[J]. J Opt, 2018, 20:095701.
    [101] Zhou A, Wang W, Chen N, et al. Fast and robust misalignment correction of Fourier ptychographic microscopy for full field of view reconstruction[J]. Opt Express, 2018, 26:23661-23674.
    [102] Gao P, Pedrini G, Osten W. Phase retrieval with resolution enhancement by using structured illumination[J]. Opt Lett, 2013, 38:5204-5207.
    [103] Almoro P, Pedrini G, Osten W. Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field[J]. Appl Opt, 2006, 45:8596-8605.
    [104] Camacho L, Mic V, Zalevsky Z, et al. Quantitative phase microscopy using defocussing by means of a spatial light modulator[J]. Opt Express, 2010, 18:6755-6766.
    [105] Agour M, Almoro P F, Falldorf C. Investigation of smooth wave fronts using SLM-based phase retrieval and a phase diffuser[J]. J Eur Opt Soc Rapid Publ, 2012, 7:12051.
    [106] Almoro P F, Glckstad J, Hanson S G. Single-plane multiple speckle pattern phase retrieval using a deformable mirror[J]. Opt Express, 2010, 18:19304-19313.
    [107] Roddier F, Roddier C, Roddier N. Curvature sensing:A new wavefront sensing method[C]//Proceedings of the 32nd Annual International Technical Symposium on Optical and Optoelectronic Applied Science and Engineering, 1988.
    [108] Bajt S, Barty A, Nugent K, et al. Quantitative phase-sensitive imaging in a transmission electron microscope[J]. Ultramicroscopy, 2000, 83:67-73.
    [109] Nugent K A. Coherent methods in the X-ray sciences[J]. Adv Phys, 2010, 59:1-99.
    [110] Allman B, McMahon P, Nugent K, et al. Phase radiography with neutrons[J]. Nature, 2000, 408:158-159.
    [111] Streibl N. Phase imaging by the transport equation of intensity[J]. Opt Commun, 1984, 49:6-10.
    [112] Barty A, Nugent K A, Paganin D, et al. Quantitative optical phase microscopy[J]. Opt Lett, 1998, 23:817-819.
    [113] Kou S S, Waller L, Barbastathis G, et al. Quantitative phase restoration by direct inversion using the optical transfer function[J]. Opt Lett, 2011, 36:2671-2673.
    [114] Zuo C, Chen Q, Qu W, et al. Noninterferometric single-shot quantitative phase microscopy[J]. Opt Lett, 2013, 38:3538-3541.
    [115] Zuo C, Chen Q, Asundi A. Light field moment imaging:Comment[J]. Opt Lett, 2014, 39:654.
    [116] Woods S C, Greenaway A H. Wave-front sensing by use of a Green's function solution to the intensity transport equation[J]. J Opt Soc Am A, 2003, 20:508-512.
    [117] Allen L, Oxley M. Phase retrieval from series of images obtained by defocus variation[J]. Opt Commun, 2001, 199:65-75.
    [118] Pinhasi S V, Alimi R, Perelmutter L, et al. Topography retrieval using different solutions of the transport intensity equation[J]. J Opt Soc Am A, 2010, 27:2285-2292.
    [119] Gureyev T E, Roberts A, Nugent K A. Phase retrieval with the transport-of-intensity equation:Matrix solution with use of Zernike polynomials[J]. J Opt Soc Am A, 1995, 12:1932-1941.
    [120] Gureyev T E, Nugent K A. Phase retrieval with the transport-of-intensity equation. Ⅱ. Orthogonal series solution for nonuniform illumination[J]. J Opt Soc Am A, 1996, 13:1670-1682.
    [121] Gureyev T E, Nugent K A. Rapid quantitative phase imaging using the transport of intensity equation[J]. Opt Commun,1997, 133:339-346.
    [122] Zuo C, Chen Q, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation:fast solution with use of discrete cosine transform[J]. Opt Express, 2014, 22:9220-9244.
    [123] Zuo C, Chen Q, Li H, et al. Boundary-artifact-free phase retrieval with the transport of intensity equation Ⅱ:Applications to microlens characterization[J]. Opt Express,2014, 22:18310-18324.
    [124] Huang L, Zuo C, Idir M, et al. Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine transforms[J]. Opt Lett,2015, 40:1976-1979.
    [125] Volkov V, Zhu Y, Graef M D. A new symmetrized solution for phase retrieval using the transport of intensity equation[J]. Micron, 2002, 33:411-416.
    [126] Martinez-Carranza J, Falaggis K, Kozacki T, et al. Effect of imposed boundary conditions on the accuracy of transport of intensity equation-based solvers[C]//Proceedings of the Modeling Aspects in Optical Metrology IV, 2013:87890N.
    [127] Frank J, Altmeyer S, Wernicke G. Non-interferometric, non-iterative phase retrieval by Green's functions[J]. J Opt Soc Am A, 2010, 27:2244-2251.
    [128] Ishizuka A, Mitsuishi K, Ishizuka K. Direct observation of curvature of the wave surface in transmission electron microscope using transport intensity equation[J]. Ultramicroscopy, 2018, 194:7-14.
    [129] Ishizuka A, Ishizuka K, Mitsuishi K. Boundary-artifact-free observation of magnetic materials using the transport of intensity equation[J]. Microsc Microanal, 2018, 24:924-925.
    [130] Schmalz J A, Gureyev T E, Paganin D M, et al. Phase retrieval using radiation and matter-wave fields:Validity of Teague's method for solution of the transport-of-intensity equation[J]. Phys Rev A, 2011, 84:023808.
    [131] Zuo C, Chen Q, Huang L, et al. Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation[J]. Opt Express, 2014, 22:17172-17186.
    [132] Ferrari J A, Ayubi G A, Flores J L, et al. Transport of intensity equation:Validity limits of the usually accepted solution[J]. Opt Commun, 2014, 318:133-136.
    [133] Zuo C, Chen Q, Yu Y, et al. Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications[J]. Opt Express, 2013, 21:5346-5362.
    [134] Waller L, Tian L, Barbastathis G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives[J]. Opt Express, 2010, 18:12552-12561.
    [135] Paganin D, Barty A, McMahon P J, et al. Quantitative phase-amplitude microscopy. Ⅲ. The effects of noise[J]. J Microsc, 2004, 214:51-61.
    [136] Martin A, Chen F R, Hsieh W K, et al. Spatial incoherence in phase retrieval based on focus variation[J]. Ultramicroscopy, 2006, 106:914-924.
    [137] Ishizuka K, Allman B. Phase measurement of atomic resolution image using transport of intensity equation[J]. Microscopy, 2005, 54:191-197.
    [138] Soto M, Acosta E. Improved phase imaging from intensity measurements in multiple planes[J]. Appl Opt, 2007, 46:7978-7981.
    [139] Cong W, Wang G. Higher-order phase shift reconstruction approach:Higher-order phase shift reconstruction approach[J]. Med Phys, 2010, 37:5238-5242.
    [140] Bie R, Yuan X H, Zhao M,et al. Method for estimating the axial intensity derivative in the TIE with higher order intensity derivatives and noise suppression[J]. Opt Express,2012, 20:8186-8191.
    [141] Gureyev T, Pogany A, Paganin D, et al. Linear algorithms for phase retrieval in the Fresnel region[J]. Opt Commun, 2004, 231:53-70.
    [142] Martinez-Carranza J, Falaggis K, Kozacki T. Multi-filter transport of intensity equation solver with equalized noise sensitivity[J]. Opt Express, 2015, 23:23092-23107.
    [143] Sun J, Zuo C, Chen Q. Iterative optimum frequency combination method for high efficiency phase imaging of absorptive objects based on phase transfer function[J]. Opt Express, 2015, 23:28031-28049.
    [144] Jenkins M H, Long J M, Gaylord T K. Multifilter phase imaging with partially coherent light[J]. Appl Opt, 2014, 53:D29-D39.
    [145] Zhong J, Claus R A, Dauwels J, et al. Transport of intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes[J]. Opt Express, 2014, 22:10661-10674.
    [146] Xue B, Zheng S, Cui L, et al. Transport of intensity phase imaging from multiple intensities measured in unequally-spaced planes[J]. Opt Express, 2011, 19:20244-20250.
    [147] Zheng S, Xue B, Xue W, et al. Transport of intensity phase imaging from multiple noisy intensities measured in unequally-spaced planes[J]. Opt Express, 2012, 20:972-985.
    [148] Savitzky A, Golay M J E. Smoothing and differentiation of data by dimplified least squares procedures[J]. Anal Chem,1964, 36:1627-1639.
    [149] Gorry P A. General least-squares smoothing and differentiation of nonuniformly spaced data by the convolution method[J]. Anal Chem, 1991, 63:534-536.
    [150] Luo J, Ying K, He P, et al. Properties of Savitzky-Golay digital differentiators[J]. Dig Signal Process, 2005, 15:122-136.
    [151] Zuo C, Sun J, Zhang J, et al. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix[J]. Opt Express, 2015, 23:14314-14328.
    [152] Waller L, Kou S S, Sheppard C J R, et al. Phase from chromatic aberrations[J]. Opt Express, 2010, 18:22817-22825.
    [153] Nguyen T, Nehmetallah G, Tran D, et al. Fully automated, high speed, tomographic phase object reconstruction using the transport of intensity equation in transmission and reflection configurations[J]. Appl Opt, 2015, 54:10443-10453.
    [154] Almoro P F, Waller L, Agour M, et al. Enhanced deterministic phase retrieval using a partially developed speckle field[J]. Opt Lett, 2012, 37:2088-2090.
    [155] Gorthi S S, Schonbrun E. Phase imaging flow cytometry using a focus-stack collecting microscope[J]. Opt Lett, 2012, 37:707-709.
    [156] Zuo C, Sun J, Li J, et al. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination[J]. Sci Rep, 2017, 7:7654.
    [157] Li J, Chen Q, Zhang J, et al. Efficient quantitative phase microscopy using programmable annular LED illumination[J]. Biomed Opt Express, 2017, 8:4687-4705.
    [158] Chakraborty T, Petruccelli J C. Source diversity for transport of intensity phase imaging[J]. Opt Express, 2017, 25:9122-9137.
    [159] Chakraborty T, Petruccelli J C. Optical convolution for quantitative phase retrieval using the transport of intensity equation[J]. Appl Opt, 2018, 57:A134-A141.
    [160] Shaked N T, Katz B, Rosen J. Review of three-dimensional holographic imaging by multiple-viewpoint projection-based methods[J]. Appl Opt, 2009, 48:H120-H136.
    [161] McCrickerd J T, George N. Holographic stereogram from sequential component photographs[J]. Appl Phys Lett, 1968, 12:10-12.
    [162] Benton S A. Survey of holographic stereograms[C]//Proceedings of the Processing and Display of Three-Dimensional Data, 1983.
    [163] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J]. Optica, 2015, 2:104-111.
    [164] Adelson E H, Bergen J R. The Plenoptic Function and the Elements of Early Vision[M]. Cambridge:MIT Press, 1991:3-20.
    [165] Gureyev T E, Paganin D M, Stevenson A W, et al. Generalized Eikonal of partially coherent beams and its use in quantitative imaging[J]. Phys Rev Lett, 2004, 93:068103.
    [166] Bastiaans M J. Application of the Wigner distribution function to partially coherent light[J]. J Opt Soc Am A, 1986, 3:1227-1238.
    [167] Walther A. Radiometry and coherence[J]. J Opt Soc Am,1968, 58:1256-1259.
    [168] Zuo C, Chen Q, Tian L, et al. Transport of intensity phase retrieval and computational imaging for partially coherent fields:The phase space perspective[J]. Opt Lasers Eng, 2015, 71:20-32.
    [169] Boashash B. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals[J]. Proc IEEE, 1992, 80:520-538.
    [170] Bastiaans M J. The Wigner distribution function applied to optical signals and systems[J]. Opt Commun, 1978, 25:26-30.
    [171] Petruccelli J C, Tian L, Barbastathis G. The transport of intensity equation for optical path length recovery using partially coherent illumination[J]. Opt Express, 2013, 21:14430-14441.
    [172] Dragoman D. Phase-space interferences as the source of negative values of the Wigner distribution function[J]. J Opt Soc Am A, 2000, 17:2481-2485.
    [173] Bastiaans M J. Uncertainty principle for partially coherent light[J]. J Opt Soc Am, 1983, 73:251-255.
    [174] Paganin D, Gureyev T E, Mayo S C, et al. X-ray omni microscopy[J]. J Microsc, 2004, 214:315-327.
    [175] Li J, Chen Q, Sun J, et al. Multimodal computational microscopy based on transport of intensity equation[J]. J Biomed Opt, 2016, 21:126003.
    [176] Friberg A T. On the existence of a radiance function for finite planar sources of arbitrary states of coherence[J]. J Opt Soc Am, 1979, 69:192-198.
    [177] Oh S B, Kashyap S, Garg R, et al. Rendering wave effects with augmented light field[J]. Comput Gr Forum, 2010, 29:507-516.
    [178] Schwiegerling J.Wavefront Sensing:Shack-Hartmann sensing[J]. J Refract Surg, 2001, 17:573-577.
    [179] Waller L. Phase imaging with partially coherent light[C]//Proceedings of the Three-dimensional and multidimensional microscopy:Image acquisition and processing XX, 2013.
    [180] Iaconis C, Walmsley I A. Direct measurement of the two-point field correlation function[J]. Opt Lett, 1996, 21:1783-1785.
    [181] Marks D L, Stack R A, Brady D J. Three-dimensional coherence imaging in the Fresnel domain[J]. Appl Opt, 1999, 38:1332-1342.
    [182] Nugent K A. Wave field determination using three-dimensional intensity information[J]. Phys Rev Lett, 1992, 68:2261-2264.
    [183] Raymer M G, Beck M, McAlister D. Complex wave-field reconstruction using phase-space tomography[J]. Phys Rev Lett, 1994, 72:1137-1140.
    [184] Rydberg C, Bengtsson J. Numerical algorithm for the retrieval of spatial coherence properties of partially coherent beams from transverse intensity measurements[J]. Opt Express, 2007, 15:13613-13623.
    [185] Zhang Z, Chen Z, Rehman S, et al. Factored form descent:A practical algorithm for coherence retrieval[J]. Opt Express, 2013, 21:5759.
    [186] Tian L, Zhang Z, Petruccelli J C, et al. Wigner function measurement using a lenslet array[J]. Opt Express, 2013, 21:10511-10525.
    [187] Waller L, Situ G, Fleischer J W. Phase-space measurement and coherence synthesis of optical beams[J]. Nat Photonics,2012, 6:474-479.
    [188] Allen L J, Faulkner H M L, Nugent K A, et al. Phase retrieval from images in the presence of first-order vortices[J]. Phys Rev E, 2001, 63:037602.
    [189] Lubk A, Guzzinati G, Brrnert F, et al. Transport of intensity phase retrieval of arbitrary wave fields including vortices[J]. Phys Rev Lett, 2013, 111:173902.
  • [1] 曹杰, 郝群, 张芳华, 徐辰宇, 程阳, 张佳利, 陶禹, 周栋, 张开宇.  APD三维成像激光雷达研究进展 . 红外与激光工程, 2020, 49(9): 20190549-1-20190549-10. doi: 10.3788/IRLA20190549
    [2] 孙宝清, 江山, 马艳洋, 蒋文杰, 殷永凯.  单像素成像在特殊波段及三维成像的应用发展 . 红外与激光工程, 2020, 49(3): 0303016-0303016-16. doi: 10.3788/IRLA202049.0303016
    [3] 左超, 张晓磊, 胡岩, 尹维, 沈德同, 钟锦鑫, 郑晶, 陈钱.  3D真的来了吗?— 三维结构光传感器漫谈 . 红外与激光工程, 2020, 49(3): 0303001-0303001-45. doi: 10.3788/IRLA202049.0303001
    [4] 冯世杰, 左超, 尹维, 陈钱.  深度学习技术在条纹投影三维成像中的应用 . 红外与激光工程, 2020, 49(3): 0303018-0303018-17. doi: 10.3788/IRLA202049.0303018
    [5] 王帅, 孙华燕, 赵延仲, 曾海瑞, 刘田间.  基于光学相控阵的提高APD阵列三维成像分辨率方法 . 红外与激光工程, 2019, 48(4): 406003-0406003(8). doi: 10.3788/IRLA201948.0406003
    [6] 潘安, 姚保利.  高通量快速傅里叶叠层显微成像技术研究进展 . 红外与激光工程, 2019, 48(6): 603012-0603012(19). doi: 10.3788/IRLA201948.0603012
    [7] 张佳琳, 陈钱, 张翔宇, 孙佳嵩, 左超.  无透镜片上显微成像技术:理论、发展与应用 . 红外与激光工程, 2019, 48(6): 603009-0603009(33). doi: 10.3788/IRLA201948.0603009
    [8] 刘正君, 耿勇, 谭久彬.  基于柱透镜多旋转测量的计算成像 . 红外与激光工程, 2019, 48(6): 603016-0603016(5). doi: 10.3788/IRLA201948.0603016
    [9] 程鸿, 熊帮玲, 王金成, 马慧敏, 张芬, 韦穗.  透镜模型下基于色散和强度传输方程的相位恢复技术 . 红外与激光工程, 2019, 48(6): 603018-0603018(6). doi: 10.3788/IRLA201948.0603018
    [10] 赵楠翔, 胡以华.  激光反射层析成像相位恢复算法研究 . 红外与激光工程, 2019, 48(10): 1005005-1005005(7). doi: 10.3788/IRLA201948.1005005
    [11] 李潇, 石柱, 代千, 覃文治, 寇先果, 袁鎏, 刘期斌, 黄海华.  64×64 InGaAs/InP三维成像激光焦平面探测器 . 红外与激光工程, 2018, 47(8): 806004-0806004(5). doi: 10.3788/IRLA201847.0806004
    [12] 程鸿, 吕倩倩, 韦穗, 邓会龙, 高要利.  基于光强传输方程与SLM的快速相位恢复 . 红外与激光工程, 2018, 47(7): 722003-0722003(5). doi: 10.3788/IRLA201847.0722003
    [13] 程鸿, 邓会龙, 沈川, 王金成, 韦穗.  光强传输方程与图像插值融合的相位恢复 . 红外与激光工程, 2018, 47(10): 1026003-1026003(7). doi: 10.3788/IRLA201847.1026003
    [14] 倪丽霞, 李海峰, 刘旭.  基于多视角采样校正的大尺度多投影光场显示系统 . 红外与激光工程, 2018, 47(6): 603004-0603004(6). doi: 10.3788/IRLA201847.0603004
    [15] 马晓珊, 杨震, 李立钢, 倪伟, 李毓伦.  基于光场理论的场景仿真 . 红外与激光工程, 2018, 47(8): 818003-0818003(8). doi: 10.3788/IRLA201847.0818003
    [16] 刘正君, 郭澄, 谭久彬.  基于多距离相位恢复的无透镜计算成像技术 . 红外与激光工程, 2018, 47(10): 1002002-1002002(16). doi: 10.3788/IRLA201847.1002002
    [17] 张振振, 杨爱玲, 赵扬, 南钢洋.  人工缺陷铝块试样的激光超声三维成像 . 红外与激光工程, 2015, 44(S1): 57-62.
    [18] 李小珍, 吴玉峰, 郭亮, 曾晓东.  合成孔径激光雷达下视三维成像构型及算法 . 红外与激光工程, 2014, 43(10): 3276-3281.
    [19] 马鑫雪, 王建立, 王斌.  利用相位恢复波前传感技术检测球面镜面形 . 红外与激光工程, 2014, 43(10): 3428-3433.
    [20] 曾文雯, 钟小品, 李景镇.  从单幅干涉图中恢复相位的区间反转方法 . 红外与激光工程, 2014, 43(9): 3151-3156.
  • 加载中
计量
  • 文章访问数:  397
  • HTML全文浏览量:  57
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-05
  • 修回日期:  2019-02-22
  • 刊出日期:  2019-06-25

基于深度测量的三维成像技术

doi: 10.3788/IRLA201948.0603013
    作者简介:

    陈妮(198X-),女,博士,主要从事光学三维成像相关研究。Email:nichen@snu.ac.kr

基金项目:

国家自然科学基金(61705241,61722506,61505081,11574152);上海市自然科学基金(17ZR1433800);江苏省杰出青年基金(BK20170034);江苏省重点研究开发项目(BE2017162)

  • 中图分类号: O438.1

摘要: 由于三维(3D)成像技术有着广泛的应用,尤其是在信息和生命科学领域的应用,因此越来越受到人们的关注。这些技术大致可分为两类:基于光线的三维成像技术和基于波前的三维成像技术。传统成像技术存在系统装置复杂和成像质量不尽人意等问题,极大限制了其在相关领域的应用,因此基于深度测量的三维成像技术越来越受到重视。文中概述了基于深度测量的三维成像技术,分别详细描述了基于深度测量三维成像的光线场和光波场的相关技术,给出了光线场和光波场成像技术之间的联系,基于这些描述和分析,给出了基于深度测量三维成像研究领域的研究方向。

English Abstract

参考文献 (189)

目录

    /

    返回文章
    返回