留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分七号激光测高中全波形回波数据的EMD降噪

刘向锋 黄庚华 张志杰 王凤香 舒嵘

刘向锋, 黄庚华, 张志杰, 王凤香, 舒嵘. 高分七号激光测高中全波形回波数据的EMD降噪[J]. 红外与激光工程, 2020, 49(11): 20200261. doi: 10.3788/IRLA20200261
引用本文: 刘向锋, 黄庚华, 张志杰, 王凤香, 舒嵘. 高分七号激光测高中全波形回波数据的EMD降噪[J]. 红外与激光工程, 2020, 49(11): 20200261. doi: 10.3788/IRLA20200261
Liu Xiangfeng, Huang Genghua, Zhang Zhijie, Wang Fengxiang, Shu Rong. Noise reduction based on empirical mode decomposition for full waveforms data of GaoFen-7 laser altimetry[J]. Infrared and Laser Engineering, 2020, 49(11): 20200261. doi: 10.3788/IRLA20200261
Citation: Liu Xiangfeng, Huang Genghua, Zhang Zhijie, Wang Fengxiang, Shu Rong. Noise reduction based on empirical mode decomposition for full waveforms data of GaoFen-7 laser altimetry[J]. Infrared and Laser Engineering, 2020, 49(11): 20200261. doi: 10.3788/IRLA20200261

高分七号激光测高中全波形回波数据的EMD降噪

doi: 10.3788/IRLA20200261
基金项目: 中国博士后科学基金(2018M632172);高分辨率对地观测系统重大专项(06-Y20A17-9001-17/18);上海市科技创新行动计划项目(18511102202)
详细信息
    作者简介:

    刘向锋(1983-),男,助理研究员,博士,主要从事主被动遥感探测技术及其应用等方面研究。Email:xiangfeng_liu@163.com

    通讯作者: 舒嵘(1971−),男,研究员,博士生导师,主要从事空间主动光电载荷研制及光量子雷达技术方面的研究。Email:shurong@mail.sitp.ac.cn
  • 中图分类号: P228.3

Noise reduction based on empirical mode decomposition for full waveforms data of GaoFen-7 laser altimetry

  • 摘要: 针对具有多个高度层的复杂场景,全波形激光测高系统记录的回波信号中往往带有较高的噪声,采用合适的降噪方法将有助于提高计算激光测距的精确性、反演地物垂直结构和构建目标特征参数的准确性。根据高分七号激光测高在轨探测的低信噪比全波形数据的特性,采用经验模态分解(Empirical mode decomposition,EMD)方法来构建典型的本征模函数(Intrinsic mode function, IMF),对于分解出多个不同尺度IMF的筛选,比较了使用去除高频分量,阈值选取、Wavelet选取和去趋势波动分析(Detrended fluctuation analysis, DFA)等方法与策略,通过降噪效果及定量评价,测试结果表明EMD-DFA1与EMD-1IMF对高分七号激光测高的全波形数据具有较好的降噪效果,其次为EMD-Wavelet和EMD-Threshold。另外通过EMD-DFA1对单个波峰、混叠波峰、多个波峰等不同情况的全波形数据测试,结果表明该方法具有较好的自适应性。
  • 图  1  EMD的处理流程

    Figure  1.  Workflow of the EMD processing

    图  2  高分七号的足印图像及回波数据

    Figure  2.  Footprint image and waveforms from GaoFen-7 laser altimetry

    图  3  典型高分七号全波形数据中EMD分解出的IMF及残差

    Figure  3.  IMFs and residual of a typical GaoFen-7 full waveform decomposed by EMD

    图  4  复杂波形的不同EMD降噪比较

    Figure  4.  Comparison of noise reduction based on EMD

    图  5  高分七号多个复杂全波形的EMD-DFA1降噪

    Figure  5.  GaoFen-7 full waveform denoised with EMD-DFA1

    表  1  高分七号激光测高仪的主要参数

    Table  1.   Main parameters of the GaoFen-7 laser altimeter

    ItemValue
    Number of laser beams2
    Laser wavelength/nm1 064
    Laser energy/mJ100-180
    Pulse width/ns4-8
    Divergence/μrad30-40
    Emission frequency/Hz3, 6
    Digitization interval/ns0.5
    下载: 导出CSV

    表  2  不同基于EMD降噪效果定量对比

    Table  2.   Quantitative evaluation of denoised effect based on EMD

    SpotMethodsMSEMAESNRPSNRR2
    Spot AEMD-1IMFs0.0004030.01717221.95410833.9440320.994883
    EMD-2IMFs0.0007410.02037219.31358031.3035040.990584
    EMD-soft0.0006880.02009919.63473431.6246580.991269
    EMD-hard0.0005890.01915620.31209132.3020150.992524
    EMD-Wavelet0.0004520.01719121.46284733.4527710.994255
    EMD-DFA10.0004030.01717221.95410833.9440320.994883
    Spot BEMD-1IMFs0.0004280.01782421.52843133.6864380.991504
    EMD-2IMFs0.0031980.03359812.79385824.9518650.936689
    EMD-soft0.0014590.02808716.20136428.3593710.970888
    EMD-hard0.0009230.02339418.18980730.3478140.981577
    EMD-Wavelet0.0005980.01940420.07155732.2295640.988085
    EMD-DFA10.0004280.01782421.52843133.6864380.991504
    下载: 导出CSV
  • [1] 唐新明, 李国元, 高小明, 等. 卫星激光测高严密几何模型构建及精度初步验证[J]. 测绘学报, 2016, 45(10): 1182-1191. doi:  10.11947/j.AGCS.2016.20150357

    Tang Xinming, Li Guoyuan, Gao Xiaoming, et al. The rigorous geometric model of satellite laser altimeter and preliminarily accuracy validation [J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10): 1182-1191. (in Chinese doi:  10.11947/j.AGCS.2016.20150357
    [2] 李国元, 唐新明, 张重阳, 等. 多准则约束的ICESat-GLAS高程控制点筛选[J]. 遥感学报, 2017, 21(1): 96-104. doi:  10.11834/jrs.20175269

    Li Guoyuan, Tang Xinming, Zhang Chongyang, et al. Multi-criteria constraint algorithm for selecting ICESat/GLAS data as elevation control points [J]. Journal of Remote Sensing, 2017, 21(1): 96-104. (in Chinese doi:  10.11834/jrs.20175269
    [3] 杨学博, 王成, 习晓环, 等. 大光斑LiDAR全波形数据小波变换的高斯递进分解[J]. 红外与毫米波学报, 2017, 36(6): 749-755. doi:  10.11972/j.issn.1001-9014.2017.06.019

    Yang Xuebo, Wang Cheng, Xi Xiaohuan, et al. Wavelet transform of Gaussian progressive decomposition method for full-waveform LiDAR data [J]. Journal of Infrared and Millimeter Waves, 2017, 36(6): 749-755. (in Chinese doi:  10.11972/j.issn.1001-9014.2017.06.019
    [4] 赵明波, 何俊, 付强. 全波形激光雷达回波信号建模仿真与分析[J]. 光学学报, 2012, 32(6): 0628002. doi:  10.3788/AOS201232.0628002

    Zhao Mingbo, He Jun, Fu Qiang. Simulation modeling and analysis of full-waveform Ladar signatures [J]. Acta Optica Sinica, 2012, 32(6): 0628002. (in Chinese doi:  10.3788/AOS201232.0628002
    [5] 蓝晓萍, 黄庚华, 王海伟, 等. 激光大足印多目标距离信息提取与验证技术[J]. 光学学报, 2015, 35(7): 0701001. doi:  10.3788/AOS201535.0701001

    Lan Xiaoping, Huang Genghua, Wang Haiwei, et al. Technology of laser large-footprint multi-objective relative distance information extraction and verification [J]. Acta Optica Sinica, 2015, 35(7): 0701001. (in Chinese doi:  10.3788/AOS201535.0701001
    [6] Hollaus M, Wager W, Eberhofer C, et al. Accuracy of large-scale canopy heights derived from LiDAR data under operational constraints in a complex alpine environment[J]. ISPRS Journal of Photogramm & Remote Sensing, 2006, 60(5): 323-338.
    [7] Brenner A C, Zwally H J, Bentley C R, et al. GLAS: derivation of range and range distributions from laser pulse waveform analysis for surface elevations, roughness, slope, and vegetation heights prepared[C]//Geoscience Laser Altimeter System (GLAS) Algorithm Theoretical Basis Document, 2003: 93.
    [8] Schutz B, Zwally H, Shuman C, et al. Determination of local slope on the greenland ice sheet using a multibeam photon-counting lidar in preparation for the ICESat-2 mission [J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5): 935-939. doi:  10.1109/LGRS.2013.2282217
    [9] Schutz B, Zwally H, Shuman C, et al. Overview of the ICESat mission [J]. Geophysical Research Letters, 2005, 32(21): L21S01.
    [10] Zwally H J, Schutzb B, Abdalati W, et al. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land [J]. Journal of Geodynamics, 2002, 34(3-4): 405-445. doi:  10.1016/S0264-3707(02)00042-X
    [11] Wang X, Cheng X, Gong P, et al. Earth science applications of ICESat/GLAS: a review[J]. International Journal of Remote Sensing, 2011, 32(23): 8837-8864.
    [12] Hofton M A, Minster J B, Blair J B. Decomposition of laser altimeter waveforms [J]. IEEE Transactions on Geoscience and Remote sensing, 2000, 38(4): 1989-1996. doi:  10.1109/36.851780
    [13] 谢俊峰, 朱广彬, 付兴科, 等. 资源三号卫星激光测距定轨精度分析[J]. 测绘科学, 2016, 41(10): 69-73.

    Xie Junfeng, Zhu Guangbin, Fu Xingke, et al. Accuracy analysis of orbit determination with satellite laser ranging for ZY-3 satellite [J]. Science of Surveying and Mapping, 2016, 41(10): 69-73. (in Chinese
    [14] 黄庚华, 童鹏, 丁宇星, 等. 星载激光测高仪高精度波形数字化获取技术研究[J]. 航天返回与遥感, 2020, 41(2): 39-46. doi:  10.3969/j.issn.1009-8518.2020.02.005

    Huang Genghua, Tong Peng, Ding Yuxing, et al. High accuracy full waveform digitizing technology of spaceborne laser altimeter [J]. Spacecraft Recovery & Remote Sensing, 2020, 41(2): 39-46. (in Chinese doi:  10.3969/j.issn.1009-8518.2020.02.005
    [15] Duong V H, Lindenbergh R, Pfeifer N, et al. Single and two epoch analysis of ICESat full waveform data over forested areas [J]. International Journal of Remote Sensing, 2008, 29(5): 1453-1473. doi:  10.1080/01431160701736372
    [16] 陈露, 高志山, 袁群, 等. 星载激光测高仪距离参数地面标定方法[J]. 中国光学, 2019, 12(4): 896-904. doi:  10.3788/co.20191204.0896

    Chen Lu, Gao Zhishan, Yuan Qun, et al. Ground calibration method for distance parameters of satellite-borne laser altimeter [J]. Chinese Optics, 2019, 12(4): 896-904. (in Chinese doi:  10.3788/co.20191204.0896
    [17] 周辉, 李松, 王良训, 等. 噪声对星载激光测高仪测距误差的影响[J]. 红外与激光工程, 2015, 44(8): 2256-2261. doi:  10.3969/j.issn.1007-2276.2015.08.004

    Zhou Hui, Li Song, Wang Liangxun, et al. Influence of noise on range error for satellite laser altimeter [J]. Infrared and Laser Engineering, 2015, 44(8): 2256-2261. (in Chinese doi:  10.3969/j.issn.1007-2276.2015.08.004
    [18] 邹永宁, 姚功杰. 自适应窗口形状的中值滤波[J]. 光学 精密工程, 2018, 26(12): 3028-3039. doi:  10.3788/OPE.20182612.3028

    Zou Yongning, Yao Gongjie. Median filtering algorithm for adaptive window shape [J]. Optics and Precision Engineering, 2018, 26(12): 3028-3039. (in Chinese doi:  10.3788/OPE.20182612.3028
    [19] 梁敏, 马凯. 基于高斯滤波的回波信号去噪方法的研究[J]. 测绘与空间地理信息, 2017, 40(1): 40-42. doi:  10.3969/j.issn.1672-5867.2017.01.011

    Liang Min, Ma Kai. Study on the method of echo signal denoising based on gauss filter [J]. Geomatics & Spatial Information Technology, 2017, 40(1): 40-42. (in Chinese doi:  10.3969/j.issn.1672-5867.2017.01.011
    [20] 赵欣, 张毅, 张黎明, 等. 激光测高仪高斯回波分解算法[J]. 红外与激光工程, 2012, 41(3): 643-648. doi:  10.3969/j.issn.1007-2276.2012.03.019

    Zhao Xin, Zhang Yi, Zhang Liming, et al. Algorithm of laser altimeter reflecting waveform based on Gaussian decomposition [J]. Infrared and Laser Engineering, 2012, 41(3): 643-648. (in Chinese doi:  10.3969/j.issn.1007-2276.2012.03.019
    [21] Xu L J, Li D, Li X L. A high success rate full-waveform lidar echo decomposition method [J]. Measurement Science and Technology, 2016, 27(1): 015205. doi:  10.1088/0957-0233/27/1/015205
    [22] Zhou Z, Huan Dengxin, Wang Yufeng, et al. Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique [J]. Optics and Lasers in Engineering, 2013, 51(8): 961-966. doi:  10.1016/j.optlaseng.2013.02.011
    [23] Li D, Xu L J, Li X L. Full-waveform LiDAR echo decomposition based on wavelet decomposition and particle swarm optimization [J]. Measurement Science and Technology, 2017, 28(4): 045205. doi:  10.1088/1361-6501/aa5c1e
    [24] Jutzi B, Stilla U. Range determination with waveform recording laser systems using a Wiener Filter[J]. ISPRS Journal of Photogramm & Remote Sensing, 2006, 61(2): 95-107.
    [25] 马跃, 李松, 周辉, 等. 利用自适应滤波星载激光测高仪回波噪声抑制方法[J]. 红外与激光工程, 2012, 41(12): 3263-3268. doi:  10.3969/j.issn.1007-2276.2012.12.024

    Ma Yue, Li Song, Zhou Hui, et al. Noise suppression method for received waveform of satellite laser altimeter based on adaptive filter [J]. Infrared and Laser Engineering, 2012, 41(12): 3263-3268. (in Chinese doi:  10.3969/j.issn.1007-2276.2012.12.024
    [26] 何亮. 小光斑ALS全波形数据处理技术研究[D]. 成都: 电子科技大学, 2015: 1-34.

    He Liang. Research on small-footprint ALS full-waveform data processing technology[D]. Chengdu: University of Electronic Science and Technology of China, 2015: 1-34. (in Chinese).
    [27] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454: 903-995.
    [28] 戴璨, 梁冬冬, 王元庆, 等. 基于EMD及FFT的激光雷达回波降噪算法[J]. 电子器件, 2015, 38(6): 1352-1355. doi:  10.3969/j.issn.1005-9490.2015.06.029

    Dai Can, Liang Dongdong, Wang Yuanqing, et al. The LiDAR echo denoising algorithm based on EMD and FFT [J]. Chinese Journal of Electron Devices, 2015, 38(6): 1352-1355. (in Chinese doi:  10.3969/j.issn.1005-9490.2015.06.029
    [29] 李洪鹏, 李国元, 蔡志坚, 等. 全波形激光雷达回波分解方法[J]. 遥感学报, 2019, 23(1): 89-98.

    Li Hongpeng, Li Guoyuan, Cai Zhijian, et al. Full-waveform LiDAR echo decomposition method [J]. Journal of Remote Sensing, 2019, 23(1): 89-98. (in Chinese
    [30] Zhang Zhijie, Xie Huan, Tong Xiaohua, et al. Denoising for satellite laser altimetry full-waveform data based on EMD-Hurst analysis [J]. International Journal of Digital Earth, 2020, 13(11): 1212-1229. doi:  10.1080/17538947.2019.1698665
    [31] Donoho D L. De-noising by soft-thresholding [J]. IEEE Transactions on Information Theory, 1995, 41(3): 613-627. doi:  10.1109/18.382009
    [32] 于金涛, 赵树延, 王祁. 基于经验模态分解和小波变换声发射信号去噪[J]. 哈尔滨工业大学学报, 2011, 43(10): 88-92. doi:  10.11918/j.issn.0367-6234.2011.10.019

    Yu Jintao, Zhao Shuyan, Wang Qi. De-noising of acoustic emission signals based on empirical mode decomposition and wavelet transform [J]. Journal of Harbin Institute of Technology, 2011, 43(10): 88-92. (in Chinese doi:  10.11918/j.issn.0367-6234.2011.10.019
    [33] 陈真诚, 吴贤亮, 赵飞骏. EEMD结合小波阈值的光电容积脉搏波信号降噪[J]. 光学 精密工程, 2019, 27(6): 1327-1334. doi:  10.3788/OPE.20192706.1327

    Chen Zhencheng, Wu Xianliang, Zhao Feijun. Denoising and implementation of photoplethysmography signal based on EEMD and wavelet threshold [J]. Optics and Precision Engineering, 2019, 27(6): 1327-1334. (in Chinese doi:  10.3788/OPE.20192706.1327
    [34] Kantelhardt J W, Koscielny-Bunde E, Rego H H A, et al. Detecting long-range correlations with detrended fluctuation analysis [J]. Physica A Statistical Mechanics & Its Applications, 2001, 295(3): 441-454.
  • [1] 周晓丽, 贝超, 张楠, 辛星, 孙祚明.  基于事件相机的空间目标事件流降噪算法 . 红外与激光工程, 2023, 52(9): 20220824-1-20220824-10. doi: 10.3788/IRLA20220824
    [2] 朱思奥, 李国元, 郭金权, 张焜, 张帅台, 裴亮.  国产立体测图卫星典型冰川区高精度DEM生产及质量对比 . 红外与激光工程, 2023, 52(10): 20230231-1-20230231-17. doi: 10.3788/IRLA20230231
    [3] 梅永康, 谢俊峰, 陈伟, 刘仁.  多特征参数约束的星载激光高程控制点提取 . 红外与激光工程, 2022, 51(9): 20210997-1-20210997-12. doi: 10.3788/IRLA20210997
    [4] 李国元, 唐新明, 周平, 陈继溢, 刘诏, 窦显辉, 周晓青, 王霞.  资源三号03星激光测高数据处理与复合测绘应用 . 红外与激光工程, 2022, 51(5): 20210356-1-20210356-9. doi: 10.3788/IRLA20210356
    [5] 胡柳茹, 唐新明, 张智, 李国元, 陈继溢, 田怀启, 张帅台, 乔俊平, 李昕.  高分七号卫星多源遥感数据精度优化与评估 . 红外与激光工程, 2022, 51(6): 20210458-1-20210458-10. doi: 10.3788/IRLA20210458
    [6] 汪自军, 张扬, 刘东, 王晓波, 袁金如, 潘超, 赵一鸣, 韩晓爽, 周雨迪, 刘群, 王成.  新型多波束陆-海激光雷达探测卫星技术发展研究 . 红外与激光工程, 2021, 50(7): 20211041-1-20211041-11. doi: 10.3788/IRLA20211041
    [7] 孙俊灵, 马鹏阁, 郭清源, 韩红印, 李伟, 陶然.  低信噪比下机载平台多脉冲激光测距机目标回波降噪算法 . 红外与激光工程, 2021, 50(6): 20210005-1-20210005-9. doi: 10.3788/IRLA20210005
    [8] 么嘉棋, 李国元, 陈继溢, 周晓青, 国爱燕, 黄庚华, 唐新明, 艾波.  高分七号卫星激光测高仪光斑质心位置变化分析 . 红外与激光工程, 2021, 50(S2): 20210539-1-20210539-10. doi: 10.3788/IRLA20210539
    [9] 舒嵘, 黄庚华, 孔伟.  空间激光测高技术发展及展望 . 红外与激光工程, 2020, 49(11): 20201047-1-20201047-10. doi: 10.3788/IRLA20201047
    [10] 张鑫磊, 邢帅, 徐青, 张国平, 李鹏程, 焦麟, 刘宸博.  ATLAS数据与资源三号02星影像联合区域网平差 . 红外与激光工程, 2020, 49(S2): 20200194-20200194. doi: 10.3788/IRLA20200194
    [11] 高小明, 李国元, 郭金权, 欧阳斯达, 樊文锋.  发展三极观测激光测高卫星的探讨 . 红外与激光工程, 2020, 49(11): 20200233-1-20200233-7. doi: 10.3788/IRLA20200233
    [12] 谢俊峰, 杨晨晨, 梅永康, 韩保民.  基于遗传算法的星载激光全波形分解 . 红外与激光工程, 2020, 49(11): 20200245-1-20200245-7. doi: 10.3788/IRLA20200245
    [13] 郭金权, 李国元, 左志强, 张宁, 裴亮, 卢刚.  高分七号卫星激光测高仪全波形数据质量及特征分析 . 红外与激光工程, 2020, 49(S2): 20200387-20200387. doi: 10.3788/IRLA20200387
    [14] 曾雅楠, 卢钧胜, 常新宇, 刘源, 胡晓东, 卫勇, 王艳艳.  数字像面全息显微技术的降噪方法 . 红外与激光工程, 2019, 48(5): 524003-0524003(7). doi: 10.3788/IRLA201948.0524003
    [15] 叶松, 李源壮, 孙永丰, 高凤艳, 王新强, 汪杰君, 张文涛, 王方原.  基于经验模态分解与回归分析的空间外差光谱目标提取 . 红外与激光工程, 2018, 47(12): 1223001-1223001(7). doi: 10.3788/IRLA201847.1223001
    [16] 张文豪, 李松, 张智宇, 刘芮, 马跃.  利用波形匹配实现卫星激光测高脚点精确定位的方法 . 红外与激光工程, 2018, 47(11): 1117007-1117007(8). doi: 10.3788/IRLA201847.1117007
    [17] 马跃, 阳凡林, 王明伟, 李松, 翁寅侃.  利用GLAS激光测高仪计算格陵兰冰盖高程变化 . 红外与激光工程, 2015, 44(12): 3565-3569.
    [18] 马跃, 阳凡林, 卢秀山, 冯成凯, 李松.  对地观测星载激光测高系统高程误差分析 . 红外与激光工程, 2015, 44(3): 1042-1047.
    [19] 邢砾云, 张瑾, 崔洪亮.  小波域马尔可夫随机场在THz 图像处理中的应用 . 红外与激光工程, 2014, 43(7): 2324-2334.
    [20] 孟祥涛, 王巍, 向政.  基于光纤陀螺与经验模态分解的航天器微小角振动检测技术 . 红外与激光工程, 2014, 43(8): 2619-2625.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  553
  • HTML全文浏览量:  187
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-01
  • 修回日期:  2020-08-10
  • 刊出日期:  2020-11-25

高分七号激光测高中全波形回波数据的EMD降噪

doi: 10.3788/IRLA20200261
    作者简介:

    刘向锋(1983-),男,助理研究员,博士,主要从事主被动遥感探测技术及其应用等方面研究。Email:xiangfeng_liu@163.com

    通讯作者: 舒嵘(1971−),男,研究员,博士生导师,主要从事空间主动光电载荷研制及光量子雷达技术方面的研究。Email:shurong@mail.sitp.ac.cn
基金项目:  中国博士后科学基金(2018M632172);高分辨率对地观测系统重大专项(06-Y20A17-9001-17/18);上海市科技创新行动计划项目(18511102202)
  • 中图分类号: P228.3

摘要: 针对具有多个高度层的复杂场景,全波形激光测高系统记录的回波信号中往往带有较高的噪声,采用合适的降噪方法将有助于提高计算激光测距的精确性、反演地物垂直结构和构建目标特征参数的准确性。根据高分七号激光测高在轨探测的低信噪比全波形数据的特性,采用经验模态分解(Empirical mode decomposition,EMD)方法来构建典型的本征模函数(Intrinsic mode function, IMF),对于分解出多个不同尺度IMF的筛选,比较了使用去除高频分量,阈值选取、Wavelet选取和去趋势波动分析(Detrended fluctuation analysis, DFA)等方法与策略,通过降噪效果及定量评价,测试结果表明EMD-DFA1与EMD-1IMF对高分七号激光测高的全波形数据具有较好的降噪效果,其次为EMD-Wavelet和EMD-Threshold。另外通过EMD-DFA1对单个波峰、混叠波峰、多个波峰等不同情况的全波形数据测试,结果表明该方法具有较好的自适应性。

English Abstract

    • 星载激光测高是一种主动式的远距离高精度探测技术,通过接收卫星所搭载激光测距系统发射的激光脉冲经大气传播后被地表反射回的微弱信号,获得激光脉冲从卫星到地表的飞渡时间,依据激光的传播速度计算准确的距离;并结合卫星精密轨道和姿态数据,生成激光脚点的精确地理位置和地表高程;借助卫星的连续运行,可获得覆盖全球的地表高程,用于获取全球高程控制点提高立体影像测图精度及探测全球的环境变化[1-2]。与阈值型激光雷达相比,全波形激光雷达能够以极小的时间间隔记录地物的回波信号,提供激光光斑内丰富的垂直结构信息[3];针对森林、城区或隐蔽目标等具有多个高度层次的复杂场景,具有较强的探测能力和适用性[4-6]。NASA于2003年发射的Ice, Cloud and Land Elevation Satellite (ICESat)卫星上,首次搭载了Geoscience Laser Altimeter System (GLAS)对地观测激光测高系统[7-8],通过记录单波束激光的全波形回波信号,用于测量冰盖高程及其变化、云层和气溶胶的垂直分布、陆地高和植被的高度,以及海冰的厚度等。该系统采用波长1064 nm、频率40 Hz的激光器,沿轨方向形成约172 m间隔直径为50~70 m的光斑采样[8],提供全球的地表高程及沿轨方向的局部坡度信息,但不能提供垂轨方向的坡度信息[9],被大量应用于南极与格林兰冰盖检测[3, 10],海冰、森林、云高、大气垂直分布等方面[11- 12]。我国于2016年5月发射了资源三号02卫星,搭载了试验性激光测高系统[1, 13];并于2019年11月发射了高分七号卫星,搭载了两个1064 nm波长的激光束,在沿垂轨方向约±0.7°固定角,采用高速数字化回波获取技术来记录全波形回波信号,用于沿轨方向的地表垂直结构及局部坡度信息反演[14],且双波束可用来描述垂轨方向的局部坡度信息。

      在星载激光测高数据处理中,全波形回波信号的数据处理及波形分解,直接影响激光测距的计算精度和地物目标特征参数(如坡度、粗糙度等)的提取[15-16]。由于激光脉冲在传播过程中,受自身性能、云层、大气、地物特征等因素的影响,记录的回波信号中不可避免地混有不同程度的噪声[17](如暗电流噪声、暗背景、热噪声、散斑噪声等);且场景越复杂,噪声也越大。因此,针对低信噪比的全波形回波信号,有必要采用适当的降噪方法来降低其影响程度。根据信号的频域和时域特性,降噪方法可分为两种:(1)基于频域,主要有傅里叶低通滤波、小波滤波等;其中,傅里叶低通滤波能有效消除高频噪声,但需要通过测试来确定能反映原始信号中细节信息的截至频率;小波滤波可有效保留信号特征,但选择基函数、分解尺度、重构方法等参数的不同,将影响其降噪效果,且选用有限的小波基去应对所有的信号,不具有自适应性。(2)基于时域,主要有高斯滤波、均值或中值滤波[18]等;其中,高斯滤波依赖于核函数的宽度,宽度过小将降低降噪效果,反之过大将损失有效信号,使两者很难兼顾;均值或中值滤波无需信号的先验知识,但会造成信号变形。当前用于激光回波全波形数据的研究,主要有高斯滤波[12, 19-21]、小波滤波[22-23]、卷积降噪[20]、低通滤波、维纳滤波[24]、阈值法、自适应滤波[25]等;以及比较了阈值法、频域低通滤波和小波降噪[26]。通常情况下,全波形数据是非平稳和非线性序列的自然信号,很难选用固定的截至频率或选用固有的小波基来描述信号分量,且不损失有效信号。经验模态分解(Empirical Mode Decomposition,EMD)根据数据自身的时间尺度特征[27],无须预先设定任何基函数,将信号序列分解成数个不偏离时间域的“模态”,即描述各层信号分量的本征模函数(Intrinsic Mode Function,IMF)。该方法与基于先验性的谐波基函数或小波基函数上的傅里叶分解和小波分解具有本质性的差别;克服了傅里叶变换中时域和频域的局部化的矛盾,避免了小波变换中固定小波基函数拟合所有数据,适用于非线性、非平稳信号序列分析,具有较高的信噪比[22];被认为以傅里叶变换为基础的线性和稳态频谱分析的一个重大突破。戴璨等结合EMD与傅里叶降噪对激光雷达回波降噪[28],李洪鹏等采用可变阈值EMD(即EMD-soft)对仿真全波形数据进行了测试[29],Zhang等采用Hurst指数对GLAS全波形数据进行降噪[30]

      针对具有多个高度层的复杂场景,全波形激光测高系统记录了噪声相对较高的全波形回波信号,采用合适的降噪方法将有助于提高计算激光测距的精确性、反演地物的垂直结构和构建目标特征参数的准确性。文中根据高分七号激光测高仪在轨探测的低信噪比全波形数据的特性,采用EMD方法来构建典型的IMF,介绍并比较了对多个IMF的筛选方法,如去除高频分量,阈值法、Wavelet选取和去趋势波动分析(Detrended fluctuation analysis, DFA)的Hurst选取等,采用探测到的几种典型的低信噪比全波形数据测试并比较了降噪效果。

    • EMD滤波与小波滤波具有一定的相似,区别是小波滤波需要选取某固定小波基,分析过程中小波基的选择对整个分析结果影响很大,一旦确定了小波基,在整个分析过程中将无法替换,有时该小波基在全局上虽是最佳的,但在某些局部上并不适应;而EMD滤波,针对任何一段未知信号,根据数据自身的时间尺度特征,无须预先设定任何基函数,而是从信号数据中直接分解出若干个IMF和一个单调余项[27]。该方法无需人为设置或干预,并自动按模态层次分好,且所分解出的各个IMF分量表示了原信号在不同时间尺度的局部特征。在该过程中,特征时间尺度及IMF都具有一定的经验性和近似性。EMD使非平稳数据进行平稳化处理,然后基于希尔伯特变换的时频谱图,得到有物理意义的频率。由于EMD从信号中分解出一些列的IMF,表示了从高频到低频排列的信号分量,具有主成分分析特点;各分量通过希尔伯特变换,得到时频谱图的瞬时特征量,具有自适应时频分析特点;且单分量信号的瞬时频率强调信号的局部瞬时特性,具有信号局瞬特性表征等优势。相比于傅里叶变换、小波分解等方法,更加直接、直观、后验和自适应。

      首先,EMD滤波需要将原始信号分解出能表示各层信号分量的IMF。针对激光测高中回波信号的全波形数据,通常噪声以高频形式存在,那么过滤其高频信号分量也就达到降噪效果。EMD分解方法是基于以下假设条件:(1)数据至少有两个极值,即最大值和最小值;(2)数据的局部时域特性,由极值点间的时间尺度来唯一确定;(3)当数据没有极值点但有拐点,则通过对数据微分一次或多次求出极值,再通过积分来获得分解结果。同时,EMD所分解出的IMF应满足两个约束条件:在整个数据段内,零点数与极点数的个数相等,或至多相差值为1;在任意时刻,由局部极大值点确定的上包络线和由局部极小值点确定的下包络线的平均值都为零[27]。如图1所示,其具体的计算过程有:

      图  1  EMD的处理流程

      Figure 1.  Workflow of the EMD processing

      (1)对于一个序列信号x(t),确定所有的极值点;

      (2)根据局部最大值和最小值,采用三次样条曲线拟合出上包络线emax(t)和下包络线emin(t),并求出两条包络线的平均值m(t),在原始信号中减去平均值得到h(t)=x(t)−m(t);

      (3)根据约束条件来判断h(t)是否为IMF;

      (4)若否,将h(t)替换x(t),重复前两个步骤直至满足,则该h(t)为信号分量IMFk(t);

      (5)每得到一阶信号分量IMF,就从原信号中扣除它,重复以上步骤;直到信号最后剩余部分rn只是单调序列或常值序列。

      由此,能被EMD分解的原始信号x(t),由分解出高频到低频的一些列IMF,与一项剩余部分(频率接近零,也称为残差)的线性叠加,可用公式(1)表示。

      $$ x\left( {{t}} \right) = \mathop \sum \limits_{k = 0}^n IM{F_k}\left( t \right) + {r_n}\left( t \right) $$ (1)
    • EMD依据分解原则,分解出不同尺度下的若干个IMF,并从中选取适当尺度下的IMF进行拟合重构达到降噪效果,由此针对描述噪声IMF的合理筛选尤为重要,目前主要有以下几种方法:

      (1) EMD-N:假设信号中噪声存在于高频信号的前N个IMF,则可以选取并去除前N个IMF,并将剩余的低频IMF重新构建波形信号,实现波形信号的降噪[30]。通常情况下,分别选取第一个或前两个IMF作为噪声尺度。

      (2) EMD-Threshold:在对信号进行平滑重建时,通过构建阈值函数,并设置阈值参数来筛选IMF,进而实现波形信号的降噪。对于信号中高斯白噪声过滤,Donoho等采用τ值作为通用阈值[31],其计算公式为:

      $$ {\tau _j} = {{\tilde \sigma }_j}\sqrt {2{\rm{log}}{_e}\left( T \right)} $$ (2)
      $$ {{\tilde \sigma }_j} = MA{D_j}/0.6745 $$ (3)
      $$ MA{D_j} = Median\left\{ {\left| {IM{F_j}\left( t \right) - median\left( {IM{F_j}\left( t \right)} \right)} \right|} \right\} $$ (4)
      $$ {{\hat f}_j}\left( t \right) = \left\{ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{r}} {IM{F_j}\left( t \right) - {\tau _j},}\\ {0,}\\ {IM{F_j}\left( t \right) + {\tau _j},} \end{array}}&{\begin{array}{*{20}{l}} {IM{F_j}\left( t \right) \geqslant {\tau _j}}\\ {|IM{F_j}\left( t \right)| < {\tau _j}}\\ {IM{F_j}\left( t \right) \leqslant - {\tau _j}} \end{array}} \end{array}} \right. $$ (5)
      $$ {{\hat f}_j}\left( t \right) = \left\{ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{r}} {IM{F_j}\left( t \right),}\\ {0,} \end{array}}&{\begin{array}{*{20}{l}} {IM{F_j}\left( t \right)| > {\tau _j}}\\ {|IM{F_j}\left( t \right)| \leqslant {\tau _j}} \end{array}} \end{array}} \right. $$ (6)

      式中:$ {{\tilde \sigma }_j}$表示对第j个IMF噪声水平的估计;T表示波形数据的个数;MADj表示第j个IMF绝对中位数偏差。对于软阈值和硬阈值分别如公式(5)和公式(6)表示。

      (3) EMD-Wavelet:将回波信号的全波形数据进行EMD分解之后,对每个IMF降噪后信号进行小波阈值降噪,然后重新构建波形信号,实现波形信号降噪[32-33]

      (4) EMD-DFA:通过DFA确定非稳态信号中长程的幂函数相关性,定量分析IMF序列的关联性质,采用过滤各阶趋势成分来避免噪声和信号的伪关联。也称为线性回归分析的DFA确定拟合阶数K构建Hurst指数[34],估计时间序列上波形分量的自相关性。当指数H=0.5时表明时间序列,可以用随机游走来描述,具有马尔科夫性;当0.5<H<1时序列数据存在状态持续性,是一个有偏的随机游走;当0<H<0.5时序列数据反持续性的,即序列前一个点是向上走的,下一个点多半是向下走的,时间序列处理振荡时刻[30]

    • 对激光测高中回波信号的全波形数据,进行EMD降噪后得到平滑的全波形数据。通过降噪前后波形数据分布情况及IMF的拟合精度,可以通过一定的评价指标来描述。通常,采用均方根误差(Mean squared error, MSE)、平均绝对误差(Mean absolute error,MAE)、波形相关性(Correlation coefficient, R2)等,用来表示降噪前后波形间的偏离程度及相似性;采用输出信号的信噪比(Signal noise ratio, SNR)和峰值信噪比(Peak signal noise ratio, PSNR),用来表示降噪后保留有用信号的程度。其具体表示公式如下所示[30]

      $$ {\rm{MSE}} = \sqrt {\frac{1}{N}\mathop \sum \limits_{n = 1}^N {{\left( {Ra{w_{\rm{s}}}\left( n \right) - Smoot{h_{\rm{s}}}\left( n \right)} \right)}^2}} $$ (7)
      $$ {\rm{MAE}} = \dfrac{{ \displaystyle\sum _{n = 1}^N \left| {Ra{w_{\rm{s}}}\left( n \right) - Smoot{h_{\rm{s}}}\left( n \right)} \right|}}{N} $$ (8)
      $$ {\rm{SNR}} = 10{\rm{*log}}( {\frac{{ \displaystyle\sum _{n = 1}^N {{\left| {Ra{w_{\rm{s}}}\left( n \right)} \right|}^2}}}{{ \displaystyle\sum _{n = 1}^N {{\left| {Ra{w_{\rm{s}}}\left( n \right) - Smoot{h_{\rm{s}}}\left( n \right)} \right|}^2}}}} ) $$ (9)
      $$ {\rm{PSNR}} = 10{\rm{*log}}\frac{{ \displaystyle\sum _{n = 1}^N ma{x^2}}}{{ \displaystyle\sum _{n = 1}^N {{\left( {Ra{w_{\rm{s}}}\left( n \right) - Smoot{h_{\rm{s}}}\left( n \right)} \right)}^2}}} $$ (10)
      $$ {R^2} = \frac{{{{\left[ { \displaystyle\sum _{n = 1}^N \left( {Ra{w_{\rm{s}}}\left( n \right) - \overline {Ra{w_{\rm{s}}}\left( n \right)} } \right)\left( {Smoot{h_{\rm{s}}} - \overline {Smoot{h_{\rm{s}}}} } \right)} \right]}^2}}}{{ \displaystyle\sum _{n = 1}^N {{\left( {Ra{w_{\rm{s}}}\left( n \right) - \overline {Ra{w_{\rm{s}}}\left( n \right)} } \right)}^2}\mathop \sum \nolimits_{n = 1}^N {{\left( {Smoot{h_{\rm{s}}} - \overline {Smoot{h_{\rm{s}}}} } \right)}^2}}} $$ (11)

      式中:$ Raw_{\rm{s}}$表示原始的回波信号;$ {Smoot{h_{\rm{s}}}}$表示降噪后的回波信号。

    • 高分七号激光测高系统的主要组成部分有[14]:1台主接收望远镜、2台二级扩束镜、4台±0.7°的主备份激光器、2套发射光路调整机构、2台±0.7°的足印相机、1台0°监视相机、2套足印相机调焦机构及4套主备光路切换机构、激光驱动组件、全波形组件等。激光测高仪利用垂轨方向±0.7°的两台激光器及对应的足印相机,在沿轨方向上形成两条相平行的激光脚点轨迹,提供地表高程及沿轨和垂轨方向的局部坡度信息,并在激光发射瞬时拍摄地表上激光脚点区域的可见光影像(即激光光斑足印图像)。黄庚华等对其系统设计及采集数据形式进行了详细的描述[14],其中激光测高仪的主要参数如表1所示。

      表 1  高分七号激光测高仪的主要参数

      Table 1.  Main parameters of the GaoFen-7 laser altimeter

      ItemValue
      Number of laser beams2
      Laser wavelength/nm1 064
      Laser energy/mJ100-180
      Pulse width/ns4-8
      Divergence/μrad30-40
      Emission frequency/Hz3, 6
      Digitization interval/ns0.5

      为验证EMD方法对高分七号激光测高仪全波形回波信号的降噪效果,文中选取两个比较复杂的低信噪比波形数据进行测试与比较,其全波形数据为2019年11月11日采集于我国西南部高山区域,两个激光脚点分别位于约(33°18′20.15″N, 104°30′10.15″E)的森林区域(如图2(a)所示)和位于约(33°7′1.10″N, 104°27′18.39″E)的坡地(如图2(b)所示)。(a1)、(b1)为遥感影像;(a2)、(a3)、(b2)、(b3)为足印图像与回波数据。其中,A区域内呈现出复杂回波波形是因为该区域地形与植被比较复杂,存在密集的森林;B区域内呈现出复杂回波波形是因为该区域地形复杂,通过遥感影像与足印图像来分析区域内地表粗糙,另外观测时刻的云层也导致回波数据中噪声比较大。对于激光测高的足印图像,内部自检光在足印相机及光轴监视相机中均有成像光斑[14],如图2足印图像中绿圈标注;但该成像光斑与激光在地面的实际落点位置间存在一定几何关系,根据实验室标定出的转换关系,其转换的实际光斑位置,如图2足印图像中蓝圈标注。对激光测高的全波形数据降噪,文中中仅选取回波信号中的低增益全波形数据进行测试。

      图  2  高分七号的足印图像及回波数据

      Figure 2.  Footprint image and waveforms from GaoFen-7 laser altimetry

      针对高分七号激光测高采集到的低信噪比复杂全波形数据,依据全波形数据的自身时间尺度,采用EMD方法分解之后得到6个分量,依次为从高频到低频的系列本征模函数,以及最后的残差,其典型高分七号全波形数据中EMD分解出的IMF及残差如图3所示。

      图  3  典型高分七号全波形数据中EMD分解出的IMF及残差

      Figure 3.  IMFs and residual of a typical GaoFen-7 full waveform decomposed by EMD

    • 为测试EMD所分解出不同尺度IMF的筛选方法,实验中对激光脚点A和B区域的全波形数据,分别采用EMD-N、EMD-Threshold、EMD-Wavelet和EMD-DFA等筛选方法对IMF分量进行选取并滤波。其中,对于EMD-N方法,选取了第1个和前2个IMFs作为噪声IMF,分别标记为EMD-1IMF和EMD-2IMFs;对于EMD-Threshold方法,选取了软阈值和硬阈值对前2个IMFs进行筛选,分别标记为EMD-soft和EMD-hard;对于EMD-Wavelet方法,选取“db4”小波基和软阈值进行IMF降噪和重构;对于EMD-DFA采用拟合阶数K为1对时间序列Hurst指数进行估算,标记为EMD-DFA1。

      针对激光脚点A和B区域的全波形数据,通过对几种基于EMD的降噪方法的降噪效果定性和定量比较。如图4所示,在全波形的EMD降噪中,(1) EMD-DFA1指数与EMD-1IMF降噪效果最好,且基本上保持一致,都是去除了第1个高频成分;(2) EMD-Wavelet降噪效果较好,但存在降低峰值幅值、展宽波形等偏离现象;(3) EMD-2IMFs由于直接去除前两个IMF存在过降噪现象,消除了有效的波形信号;(4) EMD-soft和EMD-hard与EMD-2IMFs相比均取得了较好的降噪效果,但EMD-soft仍存在过降噪现象。另外,对于同一个全波形数据,由于在滤波过程中选用不同的IMF筛选方法,得到的降噪后波形数据间存在一定的差异,其原因可能是不同尺度的混淆,自动识别IMF的阈值不稳健。

      图  4  复杂波形的不同EMD降噪比较

      Figure 4.  Comparison of noise reduction based on EMD

      表2所示,通过对EMD分解量的几种IMF筛选方法定量比较,可以看出:(1)在R2系数上,EMD-DFA1与EMD-1IMF的值最高,而EMD-2IMFs与EMD-soft值分别最小与次最小,表明前两种方法降噪后相关性最好,而后两种方法相关性较差;(2)在MSE和MAE上,EMD-2IMFs最大,其次为EMD-soft,表明该方法降噪后的偏离程度较大;(3)在SNR和PSNR上,EMD-DFA1与EMD-1IMF最大,其次为EMD-Wavelet和EMD-hard,表明其各自降噪后保留有用信号的程度由大到小。另外,EMD- DFA1与EMD-1IMF由于都是去除了第1个高频成分,降噪后的MSE、MAE、SNR、PSNR和R2量值一致。

      表 2  不同基于EMD降噪效果定量对比

      Table 2.  Quantitative evaluation of denoised effect based on EMD

      SpotMethodsMSEMAESNRPSNRR2
      Spot AEMD-1IMFs0.0004030.01717221.95410833.9440320.994883
      EMD-2IMFs0.0007410.02037219.31358031.3035040.990584
      EMD-soft0.0006880.02009919.63473431.6246580.991269
      EMD-hard0.0005890.01915620.31209132.3020150.992524
      EMD-Wavelet0.0004520.01719121.46284733.4527710.994255
      EMD-DFA10.0004030.01717221.95410833.9440320.994883
      Spot BEMD-1IMFs0.0004280.01782421.52843133.6864380.991504
      EMD-2IMFs0.0031980.03359812.79385824.9518650.936689
      EMD-soft0.0014590.02808716.20136428.3593710.970888
      EMD-hard0.0009230.02339418.18980730.3478140.981577
      EMD-Wavelet0.0005980.01940420.07155732.2295640.988085
      EMD-DFA10.0004280.01782421.52843133.6864380.991504

      另外,为验证EMD-DFA1滤波对高分七号激光测高全波形数据的适应性,采用多组不同波峰分布情况的复杂波形进行测试。同时,采用传统高斯滤波与该方法进行比较,这里采用高斯模板和标准差分别是19和6。如图5所示,对于单个主波峰的光斑A和光斑B,降噪后的波形与原始波形的形状保持一致,并且保留了明显的混叠波峰;对于多个波峰的光斑C和光斑D,降噪后的波形与原始波形的形状和波峰个数都保持一致。另外,高斯滤波降噪后波形更加平滑,但是在混叠波峰情况下会丢失细节波峰,如图5(D)所示。由此可见,该方法可适用于单个波峰、混叠波峰、多个波峰的全波形数据,在混叠波峰情况下比高斯滤波效果更好。

      图  5  高分七号多个复杂全波形的EMD-DFA1降噪

      Figure 5.  GaoFen-7 full waveform denoised with EMD-DFA1

    • 全波形星载激光测高系统能够以极小的时间间隔记录地物的回波信号,提供激光光斑内丰富的垂直结构信息,针对森林、城区或隐蔽目标等有多个高度层次的复杂场景,具有较强的探测能力和适用性。而在激光脉冲的传播过程中,受自身器件、云层、大气、地物特征等因素的影响,使记录的回波信号中不可避免地混有不同程度的噪声,且越复杂的场景噪声越大。对探测得到的低信噪比全波形回波信号,采用合适的降噪方法来降低噪声的影响,将有助于提高计算激光测距的精确性、反演地物的垂直结构和构建目标特征参数的准确性。

      针对高分七号激光测高系统在轨探测的低信噪比全波形回波信号,文中根据回波数据特性,采用经验模态分解方法来构建典型的本征模函数(Intrinsic Mode Function,IMF),对于多个不同尺度下的IMF,对比了采用高频个数选择,阈值选取、Wavelet选取和DFA指数等筛选方法,通过不同降噪方法的降噪效果与定量分析,测试结果表明,EMD-DFA1与EMD-1IMF对高分七号激光测高系统的全波形数据具有较强的降噪效果,其次为EMD-Wavelet和EMD-Threshold。另外通过EMD-DFA1对单个波峰、混叠波峰、多个波峰等不同情况的全波形数据测试,结果表明该方法具有较好的自适应性。但是,通过基于EMD的不同IMF筛选方法间的对比,降噪后的数据存过降噪或偏离等现象。虽然EMD具有更直观、后验和自适应,然而在不用尺度IMF的筛选方法和识别阈值上仍需要进一步的改进。

参考文献 (34)

目录

    /

    返回文章
    返回