留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快速反射镜椭圆弧柔性铰链多目标优化设计

吴松航 董吉洪 徐抒岩 于夫男 许博谦

吴松航, 董吉洪, 徐抒岩, 于夫男, 许博谦. 快速反射镜椭圆弧柔性铰链多目标优化设计[J]. 红外与激光工程, 2021, 50(4): 20200286. doi: 10.3788/IRLA20200286
引用本文: 吴松航, 董吉洪, 徐抒岩, 于夫男, 许博谦. 快速反射镜椭圆弧柔性铰链多目标优化设计[J]. 红外与激光工程, 2021, 50(4): 20200286. doi: 10.3788/IRLA20200286
Wu Songhang, Dong Jihong, Xu Shuyan, Yu Funan, Xu Boqian. Multi-objective optimal design of elliptic flexible hinge in fast steering mirror[J]. Infrared and Laser Engineering, 2021, 50(4): 20200286. doi: 10.3788/IRLA20200286
Citation: Wu Songhang, Dong Jihong, Xu Shuyan, Yu Funan, Xu Boqian. Multi-objective optimal design of elliptic flexible hinge in fast steering mirror[J]. Infrared and Laser Engineering, 2021, 50(4): 20200286. doi: 10.3788/IRLA20200286

快速反射镜椭圆弧柔性铰链多目标优化设计

doi: 10.3788/IRLA20200286
基金项目: 国家重点研发计划(2016YFE020500)
详细信息
    作者简介:

    吴松航(1994−),男,博士生,主要从事光机结构仿真与优化、拼接式反射镜曲率误差调整机构等方面的研究

    董吉洪(1972−),男,研究员,载人航天突出贡献者(2011),主要从事机电一体化设计、空间光学遥感器光机总体设计、新材料、新技术等在空间光学遥感器中的应用研究等

  • 中图分类号: TH122

Multi-objective optimal design of elliptic flexible hinge in fast steering mirror

  • 摘要: 在快速反射镜柔性铰链优化设计中,为保障反射镜精度和稳定性,应尽量提高柔性铰链工作轴转动柔度和非工作轴转动刚度。以某快速反射镜的椭圆弧柔性铰链为研究对象,首先利用最小二乘法和积分思想推导了三个转动轴的转动柔度公式,与有限元法对比,二者最大相对误差小于6.8%,解决了矩形截面扭转柔度积分过于复杂的问题;其次基于改进的非支配排序遗传算法(NSGA-II)对三个转动轴进行了多目标优化设计,达到设计指标,所得最优解和求解效率较传统算法有了明显提高,其中Pareto解求解效率较多岛遗传算法(MIGA)提高了14.3%,较粒子群算法(PSO)提高了25%;最后对NSGA-II算法所得最优解进行了有限元验证,结果表明二者最大相对误差小于6.5%,吻合较好。
  • 图  1  椭圆弧柔性铰链

    Figure  1.  Elliptical flexible hinge

    图  2  椭圆弧柔性铰链正视图

    Figure  2.  Front view of elliptic flexible hinge

    图  3  I/I0s关系曲线

    Figure  3.  Relationship curve of I/I0 and s

    图  4  椭圆弧柔性铰链优化设计流程

    Figure  4.  Optimization design process of elliptic flexible hinge

    图  5  结构参数与轴向柔度的相关因子

    Figure  5.  Correlation factors between structural parameters and axial compliance

    图  6  Pareto前沿分布

    Figure  6.  Pareto solution distribution

    图  7  三轴转动分析结果

    Figure  7.  Three-axis rotation analysis results

    表  1  解析解与有限元解对比

    Table  1.   Comparison of analytical solution and finite element solution

    t0/mmw/mmCz-Mz/rad·Nm−1Cy-My/rad·Nm−1Cx-Mx/rad·Nm−1yc/m
    EQU 1 5 0.1130 8.699×10−3 7.572×10−2 1.000×10−7
    FEM 1 5 0.1106 8.989×10−3 7.380×10−2 9.993×10−8
    EQU 0.5 5 0.6479 1.360×10−2 0.4095 4.194×10−7
    FEM 0.5 5 0.6419 1.403×10−2 0.3996 4.179×10−7
    EQU 1 3 0.1884 4.028×10−2 0.1426 1.668×10−7
    FEM 1 3 0.1874 4.141×10−2 0.1329 1.677×10−7
    EQU 0.2 3 10.80 0.1089 4.508 4.501×10−6
    FEM 0.2 3 10.51 0.1098 4.790 4.487×10−6
    下载: 导出CSV

    表  2  转动惯量

    Table  2.   Moment of inertia

    Jθx/kg·m2Jθy/kg·m2Jθz/ kg·m2
    3.46×10−63.46×10−66.33×10−6
    下载: 导出CSV

    表  3  优化先后对比

    Table  3.   Comparison of before optimization and after optimization

    a/mmb/mmt0/mmw/mmCz-Mz/rad·Nm−1Cy-My/rad·Nm−1Cx-Mx/rad·Nm−1
    Initial value950.560.48597.079×10−30.2966
    Optimized value9.676.630.6619.740.13901.343×10−38.870×10−2
    下载: 导出CSV

    表  4  不同算法最优解对比

    Table  4.   Comparison of optimal solutions of different algorithms

    AlgorithmCz-Mz/rad·Nm−1Cy-My/rad·Nm−1Cx-Mx/rad·Nm−1RCPareto solution numberPareto solution efficiency
    MIGA0.13201.329×10−26.999×10−2−0.615338.2%
    PSO0.13014.630×10−27.075×10−20.411027.5%
    NSGA-II0.13901.343×10−28.870×10−2−0.821052.5%
    下载: 导出CSV

    表  5  最优解与有限元解对比

    Table  5.   Comparison of optimal solution and finite element solution

    Cz-Mz/rad·Nm−1Cy-My/rad·Nm−1Cx-Mx/rad·Nm−1
    EQU0.13901.343×10−38.870×10−2
    FEM0.13201.340×10−38.290×10−2
    下载: 导出CSV
  • [1] Ai Zhiwei, Ji Jianbo, Wang Pengjv, et al. Integrative design of structure control for two-axis fast steering mirror with flexible support [J]. Infrared and Laser Engineering, 2020, 49(7): 20190479. (in Chinese)
    [2] Ma Li, Yang Bing, Tian Yingzhong, et al. Design of 3-DOF planar nano-positioning platform with 3-PRR structure [J]. Optics and Precision Engineering, 2017, 25(7): 1866-1873. (in Chinese)
    [3] Zhang Lei, Ke Shanliang, Li Lin, et al. Optimun design of ultra-light mirror series flexible support structure [J]. Acta Photonica Sinica, 2018, 47(1): 0122001. (in Chinese) doi:  10.3788/gzxb20184701.0122001
    [4] Fu Jinjiang, Yan Changxiang, Liu Wei, et al. Stiffness calculation and optimal design of elliptical flexure hinges [J]. Optics and Precision Engineering, 2016, 24(7): 1704-1709. (in Chinese)
    [5] Zhou Zhiyun, Gao Yunguo, Shao Shuai, et al. Design of fast steering mirror using flexible hinge [J]. Optics and Precision Engineering, 2014, 22(6): 1548-1554. (in Chinese)
    [6] Zhao Lei, Ji Ming, Wang Jia, et al. Design and simulation of fast steering mirrors connected by universal flexure hinges [J]. Infrared and Laser Engineering, 2019, 48(2): 0218002. (in Chinese) doi:  10.3788/IRLA201948.0218002
    [7] 许宁. 基于柔性机构的快速反射镜研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2018.

    Xu Ning. Research on fast steering mirror based on compliant mechanism[D]. Changchun: Changchun In stitute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2018. (inChinese)
    [8] Chen G M, Wang J L, Liu X Y. Generalized equations for estimating stress concentration factors of various notch flexure hinges [J]. Journal of Mechanical Design, 2014, 136(1): 1-8.
    [9] Chen Guimin, Liu Xiaoyuan, Jia Jianyuan. Compliance calculation of elliptical flexure hinge [J]. Chinsese Journal of Mechanical Engineering, 2006(5): 112-114. (in Chinese) doi:  10.3321/j.issn:0577-6686.2006.09.019
    [10] Ni Yingxue, San Xiaogang, Gao Shijie, et al. Research on flexibility of the novel hybrid flexure hinge [J]. Infrared and Laser Engineering, 2016, 45(10): 1017001. (in Chinese) doi:  10.3788/IRLA201645.1017001
    [11] Chen Guimin, Larry L H. Two general solutions of torsional compliance for variable rectangular cross-section hinges in compliant mechanisms [J]. Precision Engineering, 2009, 33: 268-274.
    [12] Li Yao, Wu Hongtao, Yang Xiaolong, et al. Optimization design of circular flexure hinges [J]. Optics and Precision Engineering, 2018, 26(6): 1371-1378. (in Chinese)
    [13] Kuai Tengfei, Lin Changhang, Yang Chunhao, et al. Stiffness optimization of sliding adapter based on latin hypercube test design [J]. Journal of Ordnance Equipment Engineering, 2019, 40(10): 27-29. (in Chinese)
    [14] Wei Chuangxin, Chen Hongda, Yi Dayi. Optimization design of cross-spring compliant miro-displacement mechanism based on RSM [J]. Infrared and Laser Engineering, 2016, 45(10): 1018005. (in Chinese) doi:  10.3788/IRLA201645.1018005
  • [1] 王朋朋, 辛宏伟, 朱俊青, 王永宪, 沙巍, 陈长征.  长条反射镜及柔节的参数优化设计 . 红外与激光工程, 2021, 50(8): 20200493-1-20200493-6. doi: 10.3788/IRLA20200493
    [2] 张玮钒, 颜昌翔, 高志良, 王思宇, 申箫, 袁静, 董有志.  二自由度快速控制反射镜系统固有频率优化设计 . 红外与激光工程, 2021, 50(6): 20200450-1-20200450-12. doi: 10.3788/IRLA20200450
    [3] 赵磊, 柳秋兴, 胡博, 王虎, 梁亮, 卢恒.  单轴半蝶形柔性铰链在快速反射镜中的设计与应用 . 红外与激光工程, 2021, 50(10): 20210118-1-20210118-10. doi: 10.3788/IRLA20210118
    [4] 方连伟, 史守峡, 蒋志勇.  柔性支撑快速反射镜伺服机构的参数辨识 . 红外与激光工程, 2021, 50(5): 20200303-1-20200303-11. doi: 10.3788/IRLA20200303
    [5] 艾志伟, 嵇建波, 王鹏举, 李静, 周皓阳.  两轴柔性支承快速反射镜结构控制一体化设计 . 红外与激光工程, 2020, 49(7): 20190479-1-20190479-8. doi: 10.3788/IRLA20190479
    [6] 汪奎, 辛宏伟, 徐宏, 任天赐.  空间相机快速反射镜的结构轻量化设计 . 红外与激光工程, 2019, 48(4): 418001-0418001(7). doi: 10.3788/IRLA201948.0418001
    [7] 汪奎, 辛宏伟, 曹乃亮, 石震.  空间相机快速反射镜的两轴柔性支撑结构设计 . 红外与激光工程, 2019, 48(12): 1214005-1214005(8). doi: 10.3788/IRLA201948.1214005
    [8] 赵磊, 纪明, 王佳, 赵振海, 王虎.  万向柔性铰链连接快速反射镜的设计与仿真 . 红外与激光工程, 2019, 48(2): 218002-0218002(7). doi: 10.3788/IRLA201948.0218002
    [9] 张伟, 杨立保, 李清雅, 王严, 王晶.  直圆抛物线复合铰链柔度研究 . 红外与激光工程, 2018, 47(11): 1117009-1117009(7). doi: 10.3788/IRLA201847.1117009
    [10] 王凯迪, 苏秀琴, 李哲, 吴少博.  像移补偿快速反射镜时频特性优化控制 . 红外与激光工程, 2018, 47(S1): 112-118. doi: 10.3788/IRLA201847.S120003
    [11] 吕世良, 刘金国, 周怀得, 梅贵.  星载红外探测器快速反射镜控制系统设计 . 红外与激光工程, 2017, 46(9): 904005-0904005(6). doi: 10.3788/IRLA201746.0904005
    [12] 倪迎雪, 伞晓刚, 高世杰, 王晶, 王涛, 吴佳彬, 桑志昕, 张楠.  新型混合柔性铰链柔度研究 . 红外与激光工程, 2016, 45(10): 1017001-1017001(6). doi: 10.3788/IRLA201645.1017001
    [13] 方楚, 郭劲, 徐新行, 姜振华, 王挺峰.  适用于FSM系统的菱形微位移放大机构设计 . 红外与激光工程, 2016, 45(10): 1018004-1018004(7). doi: 10.3788/IRLA201645.1018004
    [14] 鄢南兴, 林喆, 谭爽.  基于PQ法的惯性/光机复合指向控制方法 . 红外与激光工程, 2016, 45(3): 331001-0331001(6). doi: 10.3788/IRLA201645.0331001
    [15] 张雷, 丁亚林, 徐正平, 张洪文, 张健, 郭万存.  长条形扫描反射镜的柔性支撑 . 红外与激光工程, 2015, 44(12): 3678-3683.
    [16] 方楚, 郭劲, 徐新行, 王挺峰.  压电陶瓷驱动FSM三自由度柔性支撑设计 . 红外与激光工程, 2015, 44(10): 2987-2994.
    [17] 胥青青, 刘伟, 纪明, 杨光, 尹明东, 李红光.  远程红外探测系统瞄准线高精度稳定技术 . 红外与激光工程, 2014, 43(11): 3646-3650.
    [18] 彭树萍, 于洪君, 王伟国, 刘廷霞, 周子云.  新型快速反射镜伺服系统设计 . 红外与激光工程, 2014, 43(5): 1610-1615.
    [19] 杨东, 毛耀, 丁科, 李志俊.  模型参考算法在快速反射镜中的应用 . 红外与激光工程, 2013, 42(10): 2790-2795.
    [20] 马佳光, 唐涛.  复合轴精密跟踪技术的应用与发展 . 红外与激光工程, 2013, 42(1): 218-227.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  69
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-20
  • 修回日期:  2020-09-30
  • 网络出版日期:  2021-05-12
  • 刊出日期:  2021-04-25

快速反射镜椭圆弧柔性铰链多目标优化设计

doi: 10.3788/IRLA20200286
    作者简介:

    吴松航(1994−),男,博士生,主要从事光机结构仿真与优化、拼接式反射镜曲率误差调整机构等方面的研究

    董吉洪(1972−),男,研究员,载人航天突出贡献者(2011),主要从事机电一体化设计、空间光学遥感器光机总体设计、新材料、新技术等在空间光学遥感器中的应用研究等

基金项目:  国家重点研发计划(2016YFE020500)
  • 中图分类号: TH122

摘要: 在快速反射镜柔性铰链优化设计中,为保障反射镜精度和稳定性,应尽量提高柔性铰链工作轴转动柔度和非工作轴转动刚度。以某快速反射镜的椭圆弧柔性铰链为研究对象,首先利用最小二乘法和积分思想推导了三个转动轴的转动柔度公式,与有限元法对比,二者最大相对误差小于6.8%,解决了矩形截面扭转柔度积分过于复杂的问题;其次基于改进的非支配排序遗传算法(NSGA-II)对三个转动轴进行了多目标优化设计,达到设计指标,所得最优解和求解效率较传统算法有了明显提高,其中Pareto解求解效率较多岛遗传算法(MIGA)提高了14.3%,较粒子群算法(PSO)提高了25%;最后对NSGA-II算法所得最优解进行了有限元验证,结果表明二者最大相对误差小于6.5%,吻合较好。

English Abstract

    • 柔性铰链作为无机械摩擦的旋转运动副,因其体积小、结构紧凑和精度高等特点被广泛应用于精密光学设备和高精度机械结构当中,如快速反射镜[1]、精密定位平台[2]和柔性支撑[3]等。随着对光机系统精度和稳定性需求的不断提高,对柔性铰链的性能要求也随之提高。

      国内外已有多名学者对柔性铰链在快速反射镜中的应用进行了研究。付锦江等通过柔度公式简化对椭圆弧柔性铰链工作轴柔度进行了优化设计,优化结果与有限元分析结果误差小于4%[4];周子云等采用序列二次规划法对直梁形柔性铰链工作轴柔度进行了优化[5];赵磊等对万向柔性铰链进行了优化设计[6]。上述柔性铰链的优化对象主要集中于柔性铰链工作轴转动变形,对非工作转动变形研究较少。而在快速反射镜工作中,绝大多数柔性铰链都会受到非工作轴向载荷,为提高反射镜稳定性和保障结构谐振频率远离控制系统伺服带宽,应尽量提高工作轴柔度和非工作轴刚度,以参考文献[7]中快速反射镜为例,仅对工作轴柔度优化难以满足设计指标。

      关于柔性铰链的工作轴向柔度公式已有多位学者对其进行了推导。Chen等研究了椭圆弧倒角直梁柔性铰链工作轴转动柔度[8];陈贵敏等对椭圆弧柔性铰链的柔度公式进行了推导,所得结果与有限元分析结果误差不超过3%[9];倪迎雪等设计并推导了混合柔性铰链柔度矩阵,与有限元分析结果误差在8%以内[10]。而关于非工作轴中的扭转柔度公式研究较少,主要由于矩形截面应力集中,使扭转柔度推导过于复杂。Guimin等在传统椭圆弧柔性铰链扭转柔度公式基础上进行了近似,与有限元分析结果的误差在15%以内[11];李耀等对圆弧柔性铰链柔度公式进行了推导,所得结果与有限元分析结果对比,扭转柔度误差在10%以内,其余方向柔度误差在6%以内[12]

      针对上述现状,文中首先利用积分法和最小二乘法对某快速反射镜的椭圆弧柔性铰链三轴转动柔度公式进行了推导,解决传统变矩形截面梁扭转柔度公式积分过于复杂的问题;其次基于NSGA-II算法对该柔性铰链的工作轴转动柔度以及两个非工作转动柔度共计三个目标进行了优化设计,达到设计指标,与普通遗传算法和粒子群算法对比,NSGA-II算法有效地提高了椭圆弧柔性铰链的优化效果和优化效率;最后对优化结果进行了有限元验证,二者相互吻合,设计效果良好。文中所推导的柔度公式和所应用的优化设计方法对提高柔性铰链稳定性具有一定的工程意义。

    • 由于柔性铰链的转动柔度远大于平移柔度,其优化设计以转动柔度为研究对象,以下主要对力矩作用下三个轴的转动角位移进行推导。如图1所示,假设椭圆弧柔性铰链一端固定,一端受xyz三轴方向力矩,其中:l为铰链长度;w为铰链宽度。

      图  1  椭圆弧柔性铰链

      Figure 1.  Elliptical flexible hinge

      柔性铰链的正视图如图2所示,其中:a为长半轴长;b为短半轴长;t0为铰链最薄处厚度,设椭圆的离心角为θ, θ值范围为$\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$,则有:$h\left( \theta \right) = 2b - $$ 2b\cos (\theta ) + {t_0}$。令$k = \dfrac{b}{{{t_0}}}$,则有:

      图  2  椭圆弧柔性铰链正视图

      Figure 2.  Front view of elliptic flexible hinge

      $$g(\theta ) = \frac{{h(\theta )}}{{{t_0}}} = 2k - 2k\cos (\theta ) + 1$$ (1)

      以下推导中:E为弹性模量;G为剪切模量;u为泊松比;Iz, Iy分别为铰链在zy轴的惯性矩。

    • 利用积分思想,当椭圆弧柔性铰链一端受z轴方向力矩${M_Z}$,产生${\delta _{\textit{z}}}$角位移时,该方向的转动柔度为:

      $$\begin{split} {C_{{\textit{z}} - {M_{\textit{z}}}}} = &\dfrac{{{\delta _{\textit{z}}}}}{{{M_{\textit{z}}}}} = \int_0^{2a} {\dfrac{1}{{E{I_{\textit{z}}}(x)}}} {\rm{d}}x = \\ & \int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\dfrac{{a\cos (\theta )}}{{E{I_{\textit{z}}}(\theta )}}} {\rm{d}}\theta = \dfrac{{12a}}{{Ew{t_0}^3}}\int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\dfrac{{\cos (\theta )}}{{g{{(\theta )}^3}}}} {\rm{d}}\theta \end{split} $$ (2)

      其中

      $$ \begin{split} \int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\cos (\theta )}}{{g{{(\theta )}^3}}}} {\rm{d}}\theta = \frac{{12{k^2} + 8k + 2}}{{{{(4k + 1)}^2}(2k + 1)}} + \frac{{12k(2k + 1){\arctan} {{(4k + 1)}^{0.5}}}}{{{{(4k + 1)}^{2.5}}}} \\ \end{split} $$ (3)

      同理,将惯性矩中的y轴与z轴互换,得到y轴转动柔度如下:

      $$\begin{split} {C_{y - {M_y}}} = &\frac{{{\delta _y}}}{{{M_y}}} = \int_0^{2a} {\frac{1}{{E{I_y}(x)}}} {\rm{d}}x = \int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{a\cos (\theta )}}{{E{I_y}(\theta )}}} {\rm{d}}\theta = \\ & \frac{{12a}}{{E{w^3}{t_0}}}\int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\cos (\theta )}}{{g(\theta )}}} {\rm{d}}\theta \\ \end{split} $$ (4)

      其中

      $$ \begin{split} \int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{\cos (\theta )}}{{g(\theta )}}} {\rm{d}}\theta = \frac{{(8k + 4){\arctan} {{(4k + 1)}^{0.5}} - \pi {{(4k + 1)}^{0.5}}}}{{2k{{(4k + 1)}^{0.5}}}} \\ \end{split} $$ (5)
    • 由于矩形截面铰链发生扭转时横截面边线不再保持平直,使其关于扭转角的积分过于复杂。由卡式第二定理,当柔性铰链自由度端受x轴力矩${M_X}$, x轴转动柔度为:

      $${C_{x - {M_x}}} = \frac{{{\delta _x}}}{{{M_x}}} = \int_0^{2a} {\frac{1}{{G{I_j}(x)}}} {\rm{d}}x = \int_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\frac{{a\cos (\theta )}}{{G{I_j}(\theta )}}} {\rm{d}}\theta $$ (6)

      其中,${I_j}(\theta )$θ处厚度$h(\theta )$和宽度w有关,当$w \geqslant h(\theta )$时,由参考文献[9]给出的${I_j}(\theta )$近似公式如下:

      $${I_j}(\theta ) = wh{(\theta )^3}{I_0}\left(\frac{{h(\theta )}}{w}\right)$$ (7)
      $${I_0}\left(\frac{{h(\theta )}}{w}\right) = \frac{1}{3} - 0.21\frac{{h(\theta )}}{w}\left[ {1 - {{\left( {\frac{{h(\theta )}}{w}} \right)}^4}} \right]$$ (8)

      由于公式(8)为五次多项式,后期积分过于复杂,为方便工程计算,使用最小二乘法对其局部进行近似:令$\dfrac{1}{{{I_0}}}$为纵坐标,令$\dfrac{{h(\theta )}}{w}$s,得到图3

      图  3  I/I0s关系曲线

      Figure 3.  Relationship curve of I/I0 and s

      图3可知,s在[0,1]段变化近似于一元三次方程,因此以一元三次方程为基底,通过最小二乘法对其进行近似,近似后的决定系数为0.9999,近似结果如下:

      $$\frac{1}{{{I_0}'}} = 1.387{s^3} + 0.9426{s^2} + 1.923s + 2.999$$ (9)

      将近似结果代入公式(6)和(7),则当$w \geqslant h(\theta )$时,x轴转动柔度表达式为:

      $$ \begin{split} {C_{X - {M_X}}} =& \frac{1}{G}\left(\frac{{1.387}}{{{w^4}}}{f_0} + \frac{{0.9426}}{{{w^3}}}{f_1} + \frac{{1.923}}{{{w^2}}}{f_2} + \frac{{2.999}}{w}{f_3}\right) \\ \end{split} $$ (10)

      $w < h(\theta )$时,$w$$h(\theta )$互换,所得x轴转动柔度表达式为:

      $$ \begin{split} {C_{X - {M_X}}} = \frac{1}{G}\left(1.387{f_4} + \frac{{0.9426}}{w}{f_3} + \frac{{1.923}}{{{w^2}}}{f_2} + \frac{{2.999}}{{{w^3}}}{f_1}\right) \\ \end{split} $$ (11)

      其中

      $$\left\{ {\begin{array}{*{20}{c}} {{f_0} = 2 \displaystyle\int_0^{\frac{\pi }{2}} {a\cos (\theta ){\rm{d}}\theta } } \\ {{f_1} = 2 \displaystyle\int_0^{\frac{\pi }{2}} {\dfrac{{a\cos (\theta )}}{{h(\theta )}}{\rm{d}}\theta } } \\ {{f_2} = 2 \displaystyle\int_0^{\frac{\pi }{2}} {\dfrac{{a\cos (\theta )}}{{h{{(\theta )}^2}}}{\rm{d}}\theta } } \\ \begin{gathered} {f_3} = 2 \displaystyle\int_0^{\frac{\pi }{2}} {\dfrac{{a\cos (\theta )}}{{h{{(\theta )}^3}}}{\rm{d}}\theta } \\ {f_4} = 2 \displaystyle\int_0^{\frac{\pi }{2}} {\dfrac{{a\cos (\theta )}}{{h{{(\theta )}^4}}}{\rm{d}}\theta } \\ \end{gathered} \end{array}} \right.$$ (12)

      运算时还应注意:当${t_0} < w \leqslant 2b + {t_0}$时,需将求解区间$\left[0,\dfrac{\pi }{2}\right]$分为$\left[0,{\theta _w}\right]$$\left[{\theta _w},\dfrac{\pi }{2}\right]$两段,$\Bigg(h({\theta _w}) = w, $$ {\theta _w} = {\rm{arccos}} \left(1 + \dfrac{{{t_0}}}{{2b}} - \dfrac{w}{{2b}}\right)\Bigg)$,再分别将两段区间代入公式(10)和(11)求解再求和;当$w \leqslant {t_0}$$w > 2b + {t_0}$时,则直接将区间$\left[0,\dfrac{\pi }{2}\right]$代入公式(10)或(11)中求解。

      为方便求不定积分,令$n = \dfrac{{{t_0}}}{{2b}}$,则公式(12)中的不定积分为:

      $$\int {\frac{{a\cos (\theta )}}{{h(\theta )}}{\rm{d}}\theta = \frac{a}{b}} \left( {\frac{{2(1{{ + n}}){\arctan} \left[ {{{\left( {\dfrac{{n + 2}}{n}} \right)}^{0.5}}\tan \left( {\dfrac{\theta }{2}} \right)} \right]}}{{{{({n^2} + 2n)}^{0.5}}}} - \theta } \right)$$ (13)
      $$\int {\dfrac{{a\cos (\theta )}}{{h{{(\theta )}^2}}}{\rm{d}}\theta = \dfrac{a}{{2{b^2}}}} \left( {\dfrac{{2{\arctan} \left[ {{{\left( {\dfrac{{n + 2}}{n}} \right)}^{0.5}}\tan \left( {\dfrac{\theta }{2}} \right)} \right]}}{{{{({n^2} + 2n)}^{1.5}}}} + \dfrac{{(1 + n)\sin (\theta )}}{{n(n + 2)(1 + n - \cos (\theta ))}}} \right)$$ (14)
      $$\int {\dfrac{{a\cos (\theta )}}{{h{{(\theta )}^3}}}{\rm{d}}\theta =\! \dfrac{a}{{4{b^3}}}} \left( {\dfrac{{2(1{{ \!+\! n}}){\arctan} \left[ {{{\left( {\dfrac{{n + 2}}{n}} \right)}^{0.5}}\tan \left( {\dfrac{\theta }{2}} \right)} \right]}}{{{{({n^2} + 2n)}^{2.5}}}} + \dfrac{{{{(\cos (\theta ) +\! 1)}^2}\tan \left(\dfrac{\theta }{2}\right)}}{{4{n^2}{{(n + 2)}^2}{{(1 +\! n -\! \cos (\theta ))}^2}}}(2{n^3} \!+\! 7{n^2} \!+\! 9n + 6){{\tan }^2}\left(\dfrac{\theta }{2}\right) + 2{n^3} + 5{n^2}\! +\! 5n} \right)$$ (15)
      $$ \begin{split} \int \dfrac{{a\cos (\theta )}}{{h{{(\theta )}^4}}}{\rm{d}}\theta =& \dfrac{a}{{8{b^4}}}\left[ {\dfrac{{(4{n^2} + 8n + 5){\arctan} \left[ {{{\left( {\dfrac{{n + 2}}{n}} \right)}^{0.5}}\tan \left( {\dfrac{\theta }{2}} \right)} \right]}}{{{{({n^2} + 2n)}^{3.5}}}} + } \right.\dfrac{{{{(\cos (\theta ) + 1)}^3}}}{{8{{(1 + n - \cos (\theta ))}^3}}}\left[ {\dfrac{{(2{n^3} + 8{n^2} + 16n + 11)\tan \left( {\dfrac{\theta }{2}} \right)}}{{n{{(n + 2)}^3}}} + } \right.\\ &\left. {\left. {\dfrac{{(12{n^3} + 36{n^2} + 64n + 40){{\tan }^3}\left( {\dfrac{\theta }{2}} \right)}}{{3{n^2}{{(n + 2)}^2}}} + \dfrac{{\left( {2{n^3} + 4{n^2} + 8n + 5} \right){{\tan }^5}\left( {\dfrac{\theta }{2}} \right)}}{{{n^3}(n + 2)}}} \right]} \right] \end{split} $$ (16)
    • 轴飘是衡量柔性铰链精度的一项重要指标。目前主要以椭圆弧柔性铰链z轴受单位力矩${M_z}$时,中心点沿y轴的位移作为衡量轴飘的标准。中心点线位移可以用角位移的积分形式表示,中心点y轴位移${y_c}$为:

      $${y_c} = \int_{ - \frac{\pi }{2}}^0 {\left[ {\int_{ - \frac{\pi }{2}}^\varphi {\frac{{12a\cos (\theta )}}{{Ew{h^3}(\theta )}}{\rm{d}}\theta } } \right]} {\rm{d}}\varphi = \frac{{6{a^2}}}{{Ew{t_0}^3(1 + 2k)}}$$ (17)
    • 为验证上述柔度公式的正确性,选用表1中结构参数分别计算有限元解和方程解析解进行对比。其中:弹性模量$E$为109 GPa;泊松比$u$为0.34;剪切模量G为40.67 GPa ;a为0.01 m;b为0.005 m;EQU为解析解;FEM为有限元解。

      表 1  解析解与有限元解对比

      Table 1.  Comparison of analytical solution and finite element solution

      t0/mmw/mmCz-Mz/rad·Nm−1Cy-My/rad·Nm−1Cx-Mx/rad·Nm−1yc/m
      EQU 1 5 0.1130 8.699×10−3 7.572×10−2 1.000×10−7
      FEM 1 5 0.1106 8.989×10−3 7.380×10−2 9.993×10−8
      EQU 0.5 5 0.6479 1.360×10−2 0.4095 4.194×10−7
      FEM 0.5 5 0.6419 1.403×10−2 0.3996 4.179×10−7
      EQU 1 3 0.1884 4.028×10−2 0.1426 1.668×10−7
      FEM 1 3 0.1874 4.141×10−2 0.1329 1.677×10−7
      EQU 0.2 3 10.80 0.1089 4.508 4.501×10−6
      FEM 0.2 3 10.51 0.1098 4.790 4.487×10−6

      表1可知,Cz-MzCy-Myyc解析解与有限元解相对误差小于3.3%;Cx-Mx解析解与有限元解相对误差小于6.8%,验证了所推导柔度公式的正确性。

    • 某快速反射镜柔性铰链为避免共振,要求柔性铰链的基频高于控制系统伺服带宽fc(200 Hz)。对于工作轴向谐振可用伺服控制抑制,而非工作轴向谐振只能通过提高刚度的方式。快速反射镜分配到该柔性铰链的转动惯量如表2所示。

      表 2  转动惯量

      Table 2.  Moment of inertia

      Jθx/kg·m2Jθy/kg·m2Jθz/ kg·m2
      3.46×10−63.46×10−66.33×10−6

      为避免共振现象,一般要求结构谐振频率高于系统伺服带宽的$\sqrt 2 $倍,三个转动轴谐振频率要求为:

      $${f_{x,y}} \geqslant \sqrt 2 {f_c} = 282\;{\rm{Hz}}$$ (18)
      $${f_z} \leqslant {f_c} = 200\;{\rm{Hz}}$$ (19)

      由参考文献[10]中的快速反射镜刚度与系统谐振近似公式${f_i} = \dfrac{1}{{2\pi }}\sqrt {\dfrac{{{K_\theta }_i}}{{{J_\theta }_i}}} $,可得各个方向柔度要求如公式(20)所示:

      $$\left\{ {\begin{array}{*{20}{c}} {{C_{Y - {M_Y}}},{C_{X - {M_X}}} \leqslant 9.21 \times {{10}^{ - 2}}\;{\rm{rad}}/{\rm{Nm}}} \\ {{C_{Z - {M_Z}}} \geqslant 0.100\;{\rm{rad}}/{\rm{Nm}}} \end{array}} \right.$$ (20)

      该柔性铰链的优化函数如下:

      $$\left\{ \begin{gathered} {\rm{Object}}:\max ({C_{Z - {M_Z}}}),\min ({C_{Y - {M_Y}}}),\min ({C_{X - {M_X}}}) \\ {\rm{s.t}}\begin{array}{*{20}{c}} :&\begin{gathered} 0.005\;{\rm{m}} \leqslant a \leqslant 0.01\;{\rm{m}} \\ 0.001\;{\rm{m}} \leqslant b \leqslant 0.01\;{\rm{m}} \\ 0.000\;1\;{\rm{m}} \leqslant {t_0} \leqslant 0.005\;{\rm{m}} \\ 0.005\;{\rm{m}} \leqslant w \leqslant 0.01\;{\rm{m}} \\ {y_c} \leqslant 0.000\;001\;{\rm{m}} \\ {\delta _{\max }} \leqslant \frac{{4.3 \times {{10}^8}\;{\rm{Pa}}}}{2} \\ \end{gathered} \end{array} \\ \end{gathered} \right.$$ (21)

      在进行柔性铰链设计时,除了尺寸约束和中心点位移约束,还应对铰链中心处进行强度校核,以保障工作时铰链不被破坏。强度校核公式如下:

      $${\delta _{\max }} = \frac{{{M_{\max }}{t_0}}}{{2{I_z}(a)}} = \leqslant \frac{{{\delta _s}}}{{{n_s}}}$$ (22)

      式中:${\delta _{\max }}$为铰链中心处弯曲正应力;${\delta _s}$为屈服强度;${n_s}$为安全系数;${I_z}(a)$为铰链中心处的z轴惯性距;${M_{\max }}$为铰链所受的最大弯矩。该柔性铰链材料为钛合金TC4,屈服强度${\delta _s}$$4.3 \times {10^8}\;{\rm{Pa}}$,安全系数${n_s}$为2,最大弯矩${M_{\max }}$为0.2 Nm。

    • 由于目前柔性铰链优化设计所使用的算法,如遗传算法、退火算法、粒子群算法等对多目标优化存在过早收敛、求解效率低和Pareto解分布不均等问题。为保障三轴柔度同时优化的效率和准确性,基于NSGA-II算法对椭圆弧柔性铰链进行三轴柔度优化设计,流程如图4所示。

      图  4  椭圆弧柔性铰链优化设计流程

      Figure 4.  Optimization design process of elliptic flexible hinge

      优化问题的相关性分析是明确设计变量和目标函数之间关系,确定初始变量采样密度和提高优化效率的重要过程。基于拉丁超立方采样法[13]在设计变量区域内选取100个点,对三个轴向柔度进行相关性分析[14],所得结果如图5所示。由图5分析可知,结构参数与轴向柔度成负相关,其中t0w的相关因子较大,ab的相关因子较小。由于在NSGA-II算法中每个个体由30位二进制编码组成,根据相关性分析结果设置结构参数在个体中所占二进制位数比例,这里ab的所占比例为0.1;t0w的所占比例为0.4。

      图  5  结构参数与轴向柔度的相关因子

      Figure 5.  Correlation factors between structural parameters and axial compliance

      NSGA-II算法与普通优化算法的主要区别在于采用了非支配分层方法,即通过比较个体间的支配关系(若个体Xi在所有优化目标上都优于个体Xj,则称Xi支配Xj),将整个种群进行分层。每次迭代后,以支配层由高到低的顺序调用个体生成新种群。如若新种群个体数与所设个体数N之差小于当前支配层个体数,则采用拥挤度比较的方式从当前个体层中选取较优个体进行填补。每次重新迭代开始前,将父代种群和当前种群组合形成2N大小的新种群。这样有利于保证某些优良的个体在进化过程中不被丢弃。

      拥挤度比较是解决同一支配层拥有相同适应值所致的解集单一性的重要方法。其过程为:首先,针对每一个优化目标,将个体进行排序,令边界的两个个体拥挤度为最大值,之后,其他个体i的拥挤度${c_i}$的计算公式为:

      $${c_i} = \sum\limits_{j = 1}^m {\left(\left| {f_j^{i + 1} - f_j^{i - 1}} \right|\right)} $$ (23)

      式中:$f_j^{i + 1}$i+1点的第j个优化目标值;$f_j^{i - 1}$i-1点的第j个优化目标值;m为优化目标数。

      多目标优化算法所得结果一般为Pareto解集形式,而工程应用中往往只需要一个最优解,对此给每一个优化目标添加权值,使用相对排序法在Pareto解集内寻找最优解。设zxy轴转动柔度的权值为αzαxαy,解p在Pareto解集内每个方向转动柔度从小到大的排列顺序为${R_{{\textit{z}} - {M_{\textit{z}}}}}(p)$${R_{x - {M_x}}}(p)$${R_{y - {M_y}}}(p)$,则解p在Pareto解集内的相对排序R(P)为:

      $$R(p) = - {\alpha _{\textit{z}}}{R_{{\textit{z}} - {M_{\textit{z}}}}}(p) + {\alpha _x}{R_{x - {M_x}}}(p) + {\alpha _y}{R_{y - {M_y}}}(p)$$ (24)

      该Pareto解集内的最优解为相对排序R最小的解。

    • 设置NSGA-II算法种群数都为20,循环20次,迭代400次之后优化结束,以目标权值(${\alpha _z} = 0.6, $$ {\alpha _x} = 0.2,{\alpha _y} = 0.2$)获取最优解。将依据经验设计的初始值与经NSGA-II算法优化后的结果对比,如表3所示。

      表 3  优化先后对比

      Table 3.  Comparison of before optimization and after optimization

      a/mmb/mmt0/mmw/mmCz-Mz/rad·Nm−1Cy-My/rad·Nm−1Cx-Mx/rad·Nm−1
      Initial value950.560.48597.079×10−30.2966
      Optimized value9.676.630.6619.740.13901.343×10−38.870×10−2

      分析可知,初始结构Cz-Mz虽然较高,但Cx-Mx不满足公式(20)的要求,经优化之后满足要求。

    • 为验证NSGA-II算法的优化效果,分别使用多岛遗传算法(MIGA)、粒子群算法(PSO)优化与上述NSGA-II算法的优化结果对比。其中,多岛遗传算法的种群数为10,共有四个岛,进化10次,共迭代400次;粒子群算法种群数为20,循环20次,共迭代400次,三种算法所得Pareto前沿如图6所示。以目标权值(${\alpha _z} = 0.6,{\alpha _x} = 0.2,{\alpha _y} = 0.2$)获取每种算法Pareto解集的最优解,再以公式(24)算出三个最优解的相对排序RC表4所示。

      图  6  Pareto前沿分布

      Figure 6.  Pareto solution distribution

      表 4  不同算法最优解对比

      Table 4.  Comparison of optimal solutions of different algorithms

      AlgorithmCz-Mz/rad·Nm−1Cy-My/rad·Nm−1Cx-Mx/rad·Nm−1RCPareto solution numberPareto solution efficiency
      MIGA0.13201.329×10−26.999×10−2−0.615338.2%
      PSO0.13014.630×10−27.075×10−20.411027.5%
      NSGA-II0.13901.343×10−28.870×10−2−0.821052.5%

      图6表4对比可知,在Pareto前沿分布上, NSGA-II算法Pareto解的分布相比多岛遗传算法和粒子群算法更为集中,同时求解效率较多岛遗传算法提高了14.3%,较粒子群算法提高了25%;在优化的结果上NSGA-II算法给出的最优解相对排序RC在三种算法中最低,质量最好。综上,NSGA-II算法可以有效地提高柔性铰链多目标优化效率和优化质量。

    • 为验证最优解的正确性,使用有限元法对NSGA-II算法给出的最优解进行验证,结果如表5所示。

      表 5  最优解与有限元解对比

      Table 5.  Comparison of optimal solution and finite element solution

      Cz-Mz/rad·Nm−1Cy-My/rad·Nm−1Cx-Mx/rad·Nm−1
      EQU0.13901.343×10−38.870×10−2
      FEM0.13201.340×10−38.290×10−2

      表5可知,Cz-MzCy-My与有限元解误差小于5%,Cx-Mx与有限元解误差小于6.5%,证明了最优解的正确性。图7为柔性铰链最优解的有限元分析结果。

      图  7  三轴转动分析结果

      Figure 7.  Three-axis rotation analysis results

    • 为对某快速反射镜的椭圆弧柔性铰链进行多目标优化设计,文中首先使用最小二乘法和积分法对该柔性铰链的三轴转动柔度公式进行了推导,解决了矩形截面扭转柔度计算过于复杂,不利于工程应用的问题;其次基于NSGA-II算法以工作轴柔度最大、非工作轴柔度最小为目标进行了优化设计,达到设计指标,在Pareto解的求解效率上较多岛遗传算法提高了14.3%,较粒子群算法提高了25%;最后通过有限元法对所推公式和最优解进行了验证,其中公式的最大相对误差小于6.8%,最优解的最大相对误差小于6.5%,证明了公式和优化算法正确性。文中所推的公式和使用的优化方法对椭圆弧柔性铰链的稳定性和精度提高具有一定的工程意义。

参考文献 (14)

目录

    /

    返回文章
    返回