留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Laser-induced transformation of carbon nanotubes into graphene nanoribbons and their conductive properties

Liu Zhi Chen Jimin Li Dongfang Zhang Chenyu

刘志, 陈继民, 李东方, 张成宇. 激光诱导碳纳米管制备石墨烯纳米带及其电学性能分析[J]. 红外与激光工程, 2020, 49(9): 20200298. doi: 10.3788/IRLA20200298
引用本文: 刘志, 陈继民, 李东方, 张成宇. 激光诱导碳纳米管制备石墨烯纳米带及其电学性能分析[J]. 红外与激光工程, 2020, 49(9): 20200298. doi: 10.3788/IRLA20200298
Liu Zhi, Chen Jimin, Li Dongfang, Zhang Chenyu. Laser-induced transformation of carbon nanotubes into graphene nanoribbons and their conductive properties[J]. Infrared and Laser Engineering, 2020, 49(9): 20200298. doi: 10.3788/IRLA20200298
Citation: Liu Zhi, Chen Jimin, Li Dongfang, Zhang Chenyu. Laser-induced transformation of carbon nanotubes into graphene nanoribbons and their conductive properties[J]. Infrared and Laser Engineering, 2020, 49(9): 20200298. doi: 10.3788/IRLA20200298

激光诱导碳纳米管制备石墨烯纳米带及其电学性能分析

doi: 10.3788/IRLA20200298
详细信息
  • 中图分类号: TB332

Laser-induced transformation of carbon nanotubes into graphene nanoribbons and their conductive properties

More Information
    Author Bio:

    刘志(1984-),博士生,主要研究激光与物质作用以及3D打印技术方面的研究。Email:qihuoyan@163.com

    陈继民(1965-),教授,博士生导师,主要从事3D打印、激光快速成型、激光微纳加工等方面的研究。Email: Jimin@bjut.edu.cn

  • 摘要: 通过将纳米管解压缩可以很容易地生产石墨烯纳米带,因为碳纳米管结构可以被认为是卷起的石墨烯筒。这是一种特殊的2D石墨结构,具有出色的性能。应用领域广泛,包括晶体管、光学和微波通信设备、生物传感器、化学传感器、电子存储和处理设备以及纳米机电系统和复合材料。通过扫描电子显微镜(SEM)观察薄膜的形貌,通过拉曼光谱法表征石墨烯的性质,并通过半导体参数测量系统测量薄膜的电导率。拉曼光谱表明,通过优化工艺可以增强石墨烯的拉曼特性。碳纳米管制备石墨烯带的两个重要参数是激光能量密度和辐照时间。在这项研究中,通过准分子激光辐照碳纳米管薄膜来生产石墨烯纳米带。实验结果表明,在150 mJ的激光能量下,观察到连接时碳纳米管没有打开。在450 mJ的能量下,可以有效地破坏碳纳米管,并且使其部分地形成石墨烯带。此时,膜的电导率达到最大值。由于蓄热作用,在碳纳米管壁上出现大量的多孔结构。
  • Figure  1.  Schematic diagram of laser irradiation

    Figure  2.  Deposited multiwalled carbon nanotube films

    Figure  3.  SEM after laser irradiation with energy of (a) 150 mJ, (b) 450 mJ, (c) 250 mJ, and (d) 550 mJ

    Figure  4.  Raman spectra of carbon nanotube films

    Figure  5.  Raman spectra of GNRs produced by laser irradiation

    Figure  6.  I-V curves of carbon nanotube films before and after laser irradiation

  • [1] Kumar P, Panchakarla L S, Rao C N R. Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons [J]. Nanoscale, 2011, 3(5): 2127. doi:  10.1039/c1nr10137d
    [2] Novoselov K S. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669. doi:  10.1126/science.1102896
    [3] Zhang Haiyan, Chen Kexin, Zhu Yanjuan. Preparation and Raman spectroscopy of single wall carbon nanotubes by using CO2 continuous laser vaporization [J]. Acta Physica Sinica, 2002, 51(2): 444-448.
    [4] Murty B S, Shankar B, Raj B, et al. Textbook of Nanoscience and Nanotechnology[M]. Berlin Heidelberg: Springer , 2013.
    [5] Yu M F, Files B S, Arepalli S, et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties [J]. Physical Review Letters, 2014, 84(3-4): 5552-5555.
    [6] Yin Yanhong, Wu Ziping, Yang Jiangao, et al. Research on preparation and properties of carbon nanotubes films [J]. Nonferrous Metals Science and Engineering, 2012, 3(3): 27-32. (in Chinese)
    [7] Yuan Yanping, Shang Yitong, Chen Jimin. Effects of laser power on nano-welding and morphology changes of multi-walled carbon nanotubes [J]. Journal of Beijing University of Technology, 2016, 42(10): 1446-1450. (in Chinese)
    [8] Long Jing, Xiong Wei, Liu Ying, et al. 3D assenmbly of aliged carbon nanotubes via fenmtosecond laser direct writing [J]. Chinese Journal of Lasers, 2017, 44(1): 0102003. (in Chinese)
    [9] Lenton T M. Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model [J]. Tellus Series B-Chemical & Physical Meteorology, 2010, 52(5): 1159-1188.
    [10] Evanoff K, Khan J, Balandin A A, et al. Towards ultrathick battery electrodes: Aligned carbon nanotube-enabled architecture [J]. Advanced Materials, 2012, 24(4): 533-537. doi:  10.1002/adma.201103044
    [11] Tsukagoshi K, Yoneya N, Uryu S, et al. Carbon nanotube devices for nanoelectronics [J]. Physica B: Physics of Condensed Matter, 2002, 323(1): 107-114.
    [12] Chen C, Liu L, Lu Y, et al. A method for creating reliable and low-resistance contacts between carbon nanotubes and microelectrodes [J]. Carbon, 2007, 45(2): 436-442. doi:  10.1016/j.carbon.2006.08.021
    [13] Luo Fang, Wang Weibin, Lu Xiaoxiao, et al. Micromorphology and crystallinity of nano-graphite transformation products after laser irradiation [J]. Chinese Journal of Lasers, 2016, 43(10): 1002006. (in Chinese)
    [14] Kroto H W, Allaf A W, Balm S P. C60: Buckminsterfullerene [J]. Nature, 1985, 318(6042): 162-163. doi:  10.1038/318162a0
    [15] Fu B, Gui L, Zhang W, et al. Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber [J]. Optics Communications, 2013, 286(1): 304-308.
    [16] Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene [J]. Carbon, 2010, 48(8): 2127-2150. doi:  10.1016/j.carbon.2010.01.058
    [17] Wang Y, Maspoch D, Zou S, et al. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(7): 2026-2031. doi:  10.1073/pnas.0511022103
    [18] Banhart F. Irradiation effects in carbon nanostructures [J]. Reports on Progress in Physics, 1999, 62(8): 1181. doi:  10.1088/0034-4885/62/8/201
    [19] Joseì-Yacamaìn M, Miki-Yoshida M, Rendoìn L. Catalytic growth of carbon microtubules with fullerene structure [J]. Applied Physics Letters, 1993, 62: 657. doi:  10.1063/1.108857
    [20] Ma R. The morphology changes of carbon nanotubes under laser irradiation [J]. Carbon, 2000, 38(4): 636-638. doi:  10.1016/S0008-6223(00)00008-7
    [21] Su Q S, Chen J M, Liu F R. Research on multi-walled carbon nanotubes by fiber laser irradiation [J]. Key Engineering Materials, 2014, 609-610: 382-387. doi:  10.4028/www.scientific.net/KEM.609-610.382
    [22] Hu A, Zhou Y, Duley W W. Femtosecond laser-induced nanowelding: Fundamentals and applications [J]. Open Surface Science Journal, 2011, 3: 42-49.
  • [1] 喻学昊, 方晓东, 游利兵, 王怡哲, 刘墨林, 王豪.  半导体集成电路制造中的准分子激光退火研究进展 . 红外与激光工程, 2023, 52(12): 20230285-1-20230285-22. doi: 10.3788/IRLA20230285
    [2] 王怡哲, 喻学昊, 刘墨林, 朱能伟, 游利兵, 方晓东.  低抖动准分子激光放大器光源的研究 . 红外与激光工程, 2023, 52(3): 20220468-1-20220468-7. doi: 10.3788/IRLA20220468
    [3] 刘强, 罗芳, 邓小江, 朱梦剑, 朱志宏, 秦石乔.  悬空石墨烯/六方氮化硼异质结焦耳热红外辐射器件的可控制备与光电性能研究(特邀) . 红外与激光工程, 2023, 52(6): 20230218-1-20230218-9. doi: 10.3788/IRLA20230218
    [4] 司赶上, 刘家祥, 李振钢, 宁志强, 方勇华.  石英管增强拉曼光纤探头粉末样品探测 . 红外与激光工程, 2022, 51(12): 20220187-1-20220187-7. doi: 10.3788/IRLA20220187
    [5] 刘冬生, 梁勖, 林颖, 徐一帆, 方晓东.  Simulink仿真指导放电准分子激光长脉宽的实验探究 . 红外与激光工程, 2021, 50(11): 20210022-1-20210022-7. doi: 10.3788/IRLA20210022
    [6] 吕嘉明.  利伐沙班的定量检测:拉曼光谱法与远红外吸收光谱法 . 红外与激光工程, 2021, 50(2): 20210038-1-20210038-5. doi: 10.3788/IRLA20210038
    [7] 李彬, 王守山, 张旻南, 贾群, 王青.  用于新型精神活性物质检测的手持拉曼光谱仪 . 红外与激光工程, 2020, 49(S1): 20200101-20200101. doi: 10.3788/IRLA20200101
    [8] 冯泽斌, 周翊, 江锐, 韩晓泉, 孙泽旭, 张华.  高重频KrF准分子激光器能量特性控制 . 红外与激光工程, 2020, 49(11): 20200043-1-20200043-12. doi: 10.3788/IRLA20200043
    [9] Yang Ce, Chen Meng, Ma Ning, Xue Yaoyao, Du Xinbiao, Ji Lingfei.  Picosecond multi-pulse burst pump KGW infrared multi-wavelength Raman laser . 红外与激光工程, 2020, 49(11): 20200044-1-20200044-11. doi: 10.3788/IRLA20200044
    [10] 李天舒, 姚齐峰, 李红, 王帅, 董明利.  用于易燃易爆危险化学品快速识别的手机拉曼系统 . 红外与激光工程, 2019, 48(7): 717002-0717002(6). doi: 10.3788/IRLA201948.0717002
    [11] 王帅, 夏嘉斌, 姚齐峰, 董明利, 祝连庆.  远程激光拉曼光谱探测系统前置光学系统设计 . 红外与激光工程, 2018, 47(4): 418004-0418004(8). doi: 10.3788/IRLA201847.0418004
    [12] 刘翠玲, 赵琦, 孙晓荣, 邢瑞芯.  QuEChERS-拉曼光谱法测定黄瓜上的吡虫啉残留量 . 红外与激光工程, 2017, 46(11): 1123002-1123002(8). doi: 10.3788/IRLA201746.1123002
    [13] 王玺, 方晓东.  KrF激光和脉冲CO2激光损伤K9玻璃的实验对比与分析 . 红外与激光工程, 2016, 45(12): 1206009-1206009(5). doi: 10.3788/IRLA201645.1206009
    [14] 王昕, 吴景林, 范贤光, 许英杰, 卢仙聪, 左勇.  双波长激光移频激发拉曼光谱测试系统设计 . 红外与激光工程, 2016, 45(1): 106005-0106005(6). doi: 10.3788/IRLA201645.0106005
    [15] 张威, 梁勖, 陶汝华, 方晓东.  用于制作FBG的紧凑型准分子激光器的研究 . 红外与激光工程, 2016, 45(1): 105001-0105001(6). doi: 10.3788/IRLA201645.0105001
    [16] 胡云, 王大辉, 赵学庆.  连续分振幅式高功率准分子激光角多路编码光路设计 . 红外与激光工程, 2016, 45(6): 606001-0606001(5). doi: 10.3788/IRLA201645.0606001
    [17] 邵碧波, 马连英, 钱航, 王大辉, 赵学庆, 张永生, 冯刚, 易爱平.  基于叉丝阵列的准分子激光MOPA系统多路光束自动准直 . 红外与激光工程, 2015, 44(12): 3507-3511.
    [18] 石海燕, 赵江山, 宋兴亮, 沙鹏飞, 单耀莹, 王倩, 翟晔, 周翊.  光刻用准分子激光器能量稳定性影响因素分析 . 红外与激光工程, 2014, 43(11): 3540-3546.
    [19] 王玥, 何雨霖, 张丽颖, 王暄, 童一静, 吴群.  碳纳米管束/介质界面表面波激发与传输特性 . 红外与激光工程, 2014, 43(11): 3843-3848.
    [20] 李姣, 张天序.  基于Laplacian-Markov先验数据的加权光谱反卷积模型 . 红外与激光工程, 2013, 42(12): 3464-3469.
  • 加载中
图(6)
计量
  • 文章访问数:  441
  • HTML全文浏览量:  209
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-06
  • 修回日期:  2020-05-17
  • 网络出版日期:  2020-09-22
  • 刊出日期:  2020-09-22

Laser-induced transformation of carbon nanotubes into graphene nanoribbons and their conductive properties

doi: 10.3788/IRLA20200298
    作者简介:

    刘志(1984-),博士生,主要研究激光与物质作用以及3D打印技术方面的研究。Email:qihuoyan@163.com

    陈继民(1965-),教授,博士生导师,主要从事3D打印、激光快速成型、激光微纳加工等方面的研究。Email: Jimin@bjut.edu.cn

  • 中图分类号: TB332

摘要: 通过将纳米管解压缩可以很容易地生产石墨烯纳米带,因为碳纳米管结构可以被认为是卷起的石墨烯筒。这是一种特殊的2D石墨结构,具有出色的性能。应用领域广泛,包括晶体管、光学和微波通信设备、生物传感器、化学传感器、电子存储和处理设备以及纳米机电系统和复合材料。通过扫描电子显微镜(SEM)观察薄膜的形貌,通过拉曼光谱法表征石墨烯的性质,并通过半导体参数测量系统测量薄膜的电导率。拉曼光谱表明,通过优化工艺可以增强石墨烯的拉曼特性。碳纳米管制备石墨烯带的两个重要参数是激光能量密度和辐照时间。在这项研究中,通过准分子激光辐照碳纳米管薄膜来生产石墨烯纳米带。实验结果表明,在150 mJ的激光能量下,观察到连接时碳纳米管没有打开。在450 mJ的能量下,可以有效地破坏碳纳米管,并且使其部分地形成石墨烯带。此时,膜的电导率达到最大值。由于蓄热作用,在碳纳米管壁上出现大量的多孔结构。

English Abstract

    • As a zero bandgap material[1], graphene is difficult to realize switching characteristics directly in application[2]. Therefore if used in field effect transistor devices, the gating effect of graphene is extremely limited. At present, one approach is to turn graphene into a strip with tens of nanometers in width in the transverse direction afterunfolded as a flat plane, that is, graphene nanoribbon (GNRS), so as to form a quasi-one-dimensional nanosystem[3]. In this way, the electrons are transversely confined, the energy gap is opened, and a high on/off ratio at room temperature is realized. Then it can be used as semiconductor conductors in field-effect transistors[4-5]. The previous reports show that graphene nanoribbons have high magnetoresistance and good magnetoelectric properties[6]. Due to the unique structure, electronic properties and broad application prospects in electronic and spintronic devices, GNRS has attracted extensive attention in the past decades[7-12].

      At present, there are many synthesis methods of GNRS, including graphene photolithography[6], organic synthesis[7], SiC epitaxy growth[8], chemical vapor deposition[9], plasma etching[10], and longitudinal dissociation nanotubes (MWNTs)[11], etc. Longitudinal dissociation of MWNTs leads to a high yield of graphene nanoribbons, which is one of the main methods to prepare graphene nanoribbons. Kosynkin et al. opened nanotubes along the axis with strong oxidation of potassium permanganate and sulfuric acid mixed solution[12]. Jiao et al. prepared graphene by argon plasma cutting along the axis[13]. However, graphene nanoribbons prepared in this method contain high proportion, which also reduces the properties of graphene nanoribbons[14-16]. Kumar et al. prepared axially opened graphene nanoribbons by pulsed laser irradiation of multi-walled carbon nanotubes[1]. This physical method can avoid oxidation. Its main concern is the formation of graphene bands, but it does not discriminate against the state of carbon nanotubes that have not been dissociated, nor does it measure electrical properties. At the same time, the changes in surface morphology and structure of carbon nanotubes mainly depend on the parameters of laser processing[17], and the related research on changing or regulating the surface morphology of multi-walled carbon nanotubes by adjusting laser parameters, still needs to be further explored.

      Here, a single-step method to unravel multi-walled carbon nanotubes by laser irradiation is reported. This method can produce GNRs efficiently and without pollution. The excimer laser irradiation of multi-walled carbon nanotubes (MWCNTs) was used to dissociate MWCNTs. The surface morphology of MWCNTs was investigated by changing laser energy and irradiation time. The graphene properties were characterized by Raman spectroscopy. Finally, the conductivity of MWCNTs was measured by a semiconductor parameter measurement system.

    • The experiment scheme is shown in Fig.1. The excimer laser used in the experiment is Lambda-Physik (LPX 305iF, Germany). The laser buffer gas is Ne with working gas of KrF. The emission wavelength is 248 nm with the pulse width 30 ns and repetition rate in the range of 1-50 Hz. The single pulse energy of the laser is adjustable with a maximum energy of 800 mJ. The spot size applied is about 35.4 mm × 16.4 mm.

      Figure 1.  Schematic diagram of laser irradiation

      The sample graphite target was prepared by the deposition of MWNTs suspension on a polished silicon wafer. Firstly, the silicon substrates were thoroughly cleaned by deionized water-isopropanol-alcohol-acetone-alcohol. The 1.5 mL of water dispersion (0.2% of dispersant concentration) of 1 mg/mL multi-walled carbon nanotubes were added to 98.5 mL isopropanol, and then 10 mg Mg(NO3)2·6H2O was added to ultrasonic vibration for 10 minutes to obtain uniform and dispersed electrophoretic solution[18]. MWNTs thin films were deposited on silicon wafers by electrophoresis. The thickness of MWNTs thin films was 200-250 nm.

      Oxygen and nitrogen in the air will react with carbon in laser irradiation, causing adverse effects[19]. Then inert gas protection is needed. Ar is chosen as the protective gas and the flow rate is 10 L/min. The inert atmosphere in the sealing device is ensured by ventilating for 5 minutes before irradiation[20]. For knowing the laser influence affection upon the CNT film, the excimer laser output single pulse energy is 150, 250, 350, 450, 550 mJ in different irradiation experiments at the repetition rate of 25 Hz, pulse number is 50. The thickness and surface roughness of carbon nanotube films were measured by the optical profiler (Wyko NT1100). A scanning electron microscope (SEM) is used to observe the microscopic morphology (Hitachi S4800). Raman spectroscopy of graphene was characterized by Raman spectrometer (Jobin Yvon's T64000). Lastly, the I-V characteristics of carbon nanotube films were measured by a semiconductor parameter measurement system (Weida Technologies Co., Ltd., PDA-FS360).

    • The macro-morphology of carbon nanotube films was measured by the optical profiler. As shown in Fig.2(a), the film thickness is uniform, and the shape is regular. The SEM of MWNTs without laser irradiation shows that the wall of MWNTs is smooth and uniform, and no obvious defects and damage are observed. Its diameter is about 20-30 nm and has a large aspect ratio.

      Figure 2.  Deposited multiwalled carbon nanotube films

      The SEM images of multi-walled carbon nanotube films irradiated by excimer laser (Lambda-Physik LPX 305iF/248 nm/30 ns/50 pulses) are shown in Fig.3. The laser energy is adjusted in the range of 150-550 mJ to test its role in opening nanotubes. As shown in Fig.3 (a), carbon nanotubes were not destroyed when irradiated with 150 mJ. The diameter of carbon nanotubes was 20-30 nm. Figure 3(b) is an SEM image of GNRS obtained from carbon nanotube films irradiated by 450 mJ laser. The width of GNRs is about 70-90 nm. It can be seen that the excimer laser irradiation can well unravel carbon nanotubes to form graphene nanoribbons. As can be seen from Fig.3(c): The wall morphology of 150 mJ irradiated tube is similar to that of MWNTs without laser irradiation, and no dissociation occurs. (2) The Outer wall of MWNTs fused and combined with each other, and there is a connection at the overlap. Figure 3(d) shows that for undissociated MWNTs at 550 mJ, the wall of MWNTs is severely damaged due to thermal accumul, and the aspect ratio of MWNTs is severely reduced, resulting in aggregation of carbon nanotubes.

      Figure 3.  SEM after laser irradiation with energy of (a) 150 mJ, (b) 450 mJ, (c) 250 mJ, and (d) 550 mJ

      Raman spectroscopy is one of the important means to characterize the quality and defects of carbon nanotubes and graphene[21]. The defect peaks (D peaks) of carbon nanotubes near 1 330 cm−1 come from their structural defects, such as carbon nanotube particles adsorbed on the wall, amorphous carbon, and other nano-sized microcrystals[1]. The peak of carbon nanotubes (CNTs) near 1580 cm−1 is graphite peak (G peak), which is generated by the graphite base surface (wall of CNTs). As shown in Fig.4, Raman spectra of MWNTs without laser irradiation show G-band characteristics due to tangential mode, and D-band and 2D-band characteristics due to defects.

      Figure 4.  Raman spectra of carbon nanotube films

      Raman spectrum G band is sensitive to the displacement of Fermi level[22]. The typical Raman spectra of GNRs are shown in Fig.5. Compared with MWNT, the intensity ratio of D band to G band (ID/IG) in GNRS increased significantly with the increase of dissociation. In MWNTs, ID/IG is 0.42, while in GNRs irradiated by laser, ID/IG is 0.7-0.9. The ratio of I2D/IG in MWNTs is higher than that in GNRs. In MWNTs, the ratio of I2D/IG is 0.5 and GNRS is 0.15-0.4. It can also be judged that more GNRS will be produced with the laser energy of 350-450 mJ.

      Figure 5.  Raman spectra of GNRs produced by laser irradiation

      By testing the I-V characteristic curve of the film, it can be seen that the conductivity of the film is greatly enhanced after laser irradiation, especially after 450 mJ laser energy irradiation (see Fig.6). This is because excimer laser irradiation can effectively open carbon nanotubes to form GNRS and improve the conductivity of the films. However, when the laser energy increases to 550 mJ, the conductivity of the films decreases sharply due to the damage of thermal accumulation.

      Figure 6.  I-V curves of carbon nanotube films before and after laser irradiation

    • In summary, our study shows that the excimer laser irradiation of carbon nanotubes thin films is a simple method for preparing graphene nanoribbons without surface pollution. When MWNTs are irradiated, the defect location is easy to reach a high temperature that leads to longitudinal dissociation. With the pulse energy of 450 mJ, the film disassembled at the best result and the conductivity is improved significantly. In addition, when the laser energy is 150 mJ, no carbon nanotubes are opened, and the connection of carbon nanotubes can be observed. At 550 mJ, the thermal accumulation of the film was seriously damaged, and the conductivity of the film decreased sharply.The result shows a certain significance for the efficient preparation of 2D graphene ribbon structure materials.

参考文献 (22)

目录

    /

    返回文章
    返回