留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向大振幅、长周期振动校准的零差正交激光干涉测振方法

崔俊宁 李伟 边星元 朱刚 何张强 邹丽敏

崔俊宁, 李伟, 边星元, 朱刚, 何张强, 邹丽敏. 面向大振幅、长周期振动校准的零差正交激光干涉测振方法[J]. 红外与激光工程, 2021, 50(6): 20200329. doi: 10.3788/IRLA20200329
引用本文: 崔俊宁, 李伟, 边星元, 朱刚, 何张强, 邹丽敏. 面向大振幅、长周期振动校准的零差正交激光干涉测振方法[J]. 红外与激光工程, 2021, 50(6): 20200329. doi: 10.3788/IRLA20200329
Cui Junning, Li Wei, Bian Xingyuan, Zhu Gang, He Zhangqiang, Zou Limin. Homodyne quadrature laser interferometry measurement method for large amplitude, long cycle vibration calibration[J]. Infrared and Laser Engineering, 2021, 50(6): 20200329. doi: 10.3788/IRLA20200329
Citation: Cui Junning, Li Wei, Bian Xingyuan, Zhu Gang, He Zhangqiang, Zou Limin. Homodyne quadrature laser interferometry measurement method for large amplitude, long cycle vibration calibration[J]. Infrared and Laser Engineering, 2021, 50(6): 20200329. doi: 10.3788/IRLA20200329

面向大振幅、长周期振动校准的零差正交激光干涉测振方法

doi: 10.3788/IRLA20200329
基金项目: 国家自然科学基金(51675139,L1924059);中央高校基本科研业务费专项资金
详细信息
    作者简介:

    崔俊宁,男,教授,博士生导师,主要从事超精密测量技术与仪器工程等方面的研究

    通讯作者: 李伟,男,博士生,主要从事超低频振动校准等方面的研究。
  • 中图分类号: TN249

Homodyne quadrature laser interferometry measurement method for large amplitude, long cycle vibration calibration

  • 摘要: 针对零差正交干涉测量应用于超低频超大振幅标准振动台性能测试时非正交相移误差补偿困难、所需采样率极高的问题,提出了一种欠采样零差正交激光干涉测振方法。在设计消偏振分光测量光路的基础上,提出波片偏航调整方法,进行非正交相移误差的硬件实时补偿;提出基于运动状态预估的卡尔曼正交信号解调算法,对深度欠采样的干涉条纹进行相位信号解调,以大幅降低所需的采样率及产生的数据量。实验和仿真结果表明,文中方法可大幅降低零差正交干涉的非正交相移误差及其对波片角度偏差的灵敏度,且在测量超低频振动时,卡尔曼正交信号解调算法所需的采样率和每通道数据采集点数降低至奈奎斯特采样定理的0.056%。文中提出的欠采样零差正交激光干涉测振方法较好地满足超低频超大振幅标准振动测试的需求。
  • 图  1  欠采样零差正交干涉测量方法原理示意图。LB-激光器;O-光学法拉第隔离器;N1-消偏振分光器 1;N2-消偏振分光器 2;Q1-1/4 波片 1;Q2-1/4 波片 2;W-渥拉斯特棱镜;H-半波片;R-参考镜;T-目标镜;PD-光电探测器;DA-差分放大器;KQSD-卡尔曼正交信号解调算法

    Figure  1.  Schematic diagram of undersampling homodyne quadrature interferometry measurement method. LB, Laser beam;O, Optical Faraday isolator;N1, Non-polarizing beam splitters 1;N2, Non-polarizing beam splitters 2;Q1, Quarter-wave plate 1;Q2, Quarter-wave plate 2;W, Wollaster prism;H, Half-wave plate;R, Reference mirror;T, Target mirror;PD, Photodetector;DA, Differential amplifier;KQSD, Kalman quadrature signal demodulation

    图  2  (a)入射光垂直波片;(b) 通过波片偏转补偿非正交误差

    Figure  2.  (a) Normal beam incident to wave plates; (b) Non quadrature phase error compensation by yawing wave plates

    图  3  波片角度偏差引入的非正交相移误差仿真结果

    Figure  3.  Simulation results of non quadrature phase error introduced by angle deviations of wave plates

    图  4  波片角度偏差的非正交相移误差灵敏度仿真结果

    Figure  4.  Simulation results of non quadrature phase error sensitivities to angle deviations of wave plates

    图  5  欠采样零差正交激光干涉测量方法的实验装置

    Figure  5.  Experimental setup of undersampling homodyne quadrature interferometry measurement method

    图  6  正交相移误差随波片光轴角度变化的实验结果

    Figure  6.  Experimental results of quadrature phase error vs. optical axis angles of wave plate

    图  7  非线性误差随波片安装角度变化的实验结果

    Figure  7.  Experimental results of nonlinear error varying with the assembling angle of wave plate

    图  8  最大加速度与振动频率关系曲线

    Figure  8.  Relation curve between amax and vibration frequency

    图  9  采样率与振动频率关系示意图

    Figure  9.  Sampling rate vs. vibration frequency

    图  10  低频干涉条纹采样点数与振动频率之间的关系

    Figure  10.  The sampling numbers of interference fringe as a function of vibration frequency in low frequency vibration

    图  11  0.01 Hz解调振动信号与标准正弦振动信号的剩余误差

    Figure  11.  Residual error between demodulation vibration signal and the standard sinusoidal vibration for 0.01 Hz

  • [1] Liu Y, Fan K, Chu C, et al. Development of an optical accelerometer for low-frequency vibration using the voice coil on a DVD pickup head [J]. Measurement Science and Technology, 2008, 19(8): 084012. doi:  10.1088/0957-0233/19/8/084012
    [2] He W, Zhang X, Wang C, et al. A long-stroke horizontal electromagnetic vibrator for ultralow-frequency vibration calibration [J]. Measurement Science and Technology, 2014, 25(8): 085901. doi:  10.1088/0957-0233/25/8/085901
    [3] Musinski D. Displacement-measuring interferometers provide precise metrology [J]. Laser Focus World, 2003, 39(2): 80-83.
    [4] European Association of National Metrology Institutes. Publishable JRP summary for T3 J1.4 NANOTRACE. New traceability routes for nanometrology[R]. Braunschweig, Germany: EURAMET, 2009.
    [5] Gregorčič P, Požar T, Možina J. Quadrature phase-shift error analysis using a homodyne laser interferometer [J]. Optics Express, 2009, 17(18): 16322-16331. doi:  10.1364/OE.17.016322
    [6] Gregorcic P, Požar T, Mozina J. Phase-shift error in quadrature-detection-based interferometers[C]// Proceedings of SPIE, 2010, 7726: 77260X.
    [7] Eang S, Yoon S, Park J, et al. Scanning balanced-path homodyne I/Q-interferometer scheme and its applications [J]. Optics Letters, 2015, 40(11): 2457-2460. doi:  10.1364/OL.40.002457
    [8] Hu P, Zhu J, Zhai X, et al. DC-offset-free homodyne interferometer and its nonlinearity compensation [J]. Optics Express, 2015, 23(7): 8399-8408. doi:  10.1364/OE.23.008399
    [9] Cui J, He Z, Tan J. Proposal and analysis of three closed double magnetic circuits to obtain a very long stroke for electrodynamic force generators [J]. Sensors and Actuators A: Physical, 2017, 263: 122-130. doi:  10.1016/j.sna.2017.05.049
    [10] Pozar T, Gregorcic P, Mozina J. Optimization of displacement-measuring quadrature interferometers considering the real properties of optical components [J]. Applied Optics, 2011, 50(9): 1210-1219. doi:  10.1364/AO.50.001210
    [11] Ahn J, Kim J A, Kang C S, et al. A passive method to compensate nonlinearity in a homodyne interferometer [J]. Optics Express, 2009, 17(25): 23299-23308. doi:  10.1364/OE.17.023299
    [12] Yu Mei, Liu Aidong, Ma Mingde, et al. Magnitude and phase measurement technology for ultra-low frequency vibration using laser interferometry [J]. Journal of Vibration and Shock, 2011, 30(11): 130-134. (in Chinese) doi:  10.3969/j.issn.1000-3835.2011.11.026
    [13] 何张强. 基于两端励磁矩形闭合双磁路的低频振动绝对校准技术[D]. 哈尔滨工业大学, 2018.

    He Zhangqiang. Technologies of low frequency primary vibration calibration based on two-ends excitation and rectangular closed double magnetic circuit[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [14] Qi H, Hong R, Yi K, et al. Nonpolarizing and polarizing filter design [J]. Applied Optics, 2005, 44(12): 2343-2348. doi:  10.1364/AO.44.002343
    [15] Shi J, Wang Z, Guan C. Theoretical analysis of non-polarizing beam splitters with appropriate amplitude and phase [J]. Optics & Laser Technology, 2009, 41(3): 351-355.
    [16] Zander T E, Madyastha V, Patil A, et al. Phase-step estimation in interferometry via an unscented Kalman filter [J]. Optics Letters, 2009, 34(9): 1396-398. doi:  10.1364/OL.34.001396
    [17] Tao L, Liu Z, Zhang W, et al. Frequency-scanning interferometry for dynamic absolute distance measurement using Kalman filter [J]. Optics Letters, 2014, 39(24): 6997-7000. doi:  10.1364/OL.39.006997
    [18] Kulkarni R, Rastogi P. Phase derivative estimation from a single interferogram using a Kalman smoothing algorithm [J]. Optics Letters, 2015, 40(16): 3794-3797. doi:  10.1364/OL.40.003794
    [19] Xie X, Zeng Q. Efficient and robust phase unwrapping algorithm based on unscented Kalman filter, the strategy of quantizing paths-guided map, and pixel classification strategy [J]. Applied Optics, 2015, 54(31): 9294-9307. doi:  10.1364/AO.54.009294
    [20] ISO 16063-41-2011. Methods for the calibration of vibration and shock Transducers-part 41: Calibration of laser vibrometers[S]. Geneva: ISO, 2011.
  • [1] 于淼, 张耀鲁, 徐泽辰, 何禹潼.  基于MEEMD-HHT的分布式光纤振动传感系统信号特征提取方法 . 红外与激光工程, 2021, 50(7): 20210223-1-20210223-12. doi: 10.3788/IRLA20210223
    [2] 王晓娜, 张亦舒, 侯德鑫, 叶树亮.  基于线激光正交扫描的电感微裂纹热成像检测 . 红外与激光工程, 2020, 49(7): 20190522-1-20190522-8. doi: 10.3788/IRLA20190522
    [3] 李博, 杨军, 黄楠, 石玉松.  基于激光干涉法测水介质正弦压力的动态校准技术 . 红外与激光工程, 2019, 48(8): 805003-0805003(7). doi: 10.3788/IRLA201948.0805003
    [4] 蔡文涛, 李晶, 江海波, 孙秀辉, 杨若夫, 尹韶云.  基于非均匀采样的高分辨曲面投影计算全息方法 . 红外与激光工程, 2019, 48(5): 524004-0524004(6). doi: 10.3788/IRLA201948.0524004
    [5] 王毅, 何明元, 葛晶晶, 项杰.  基于正交匹配追踪的云检测算法研究 . 红外与激光工程, 2019, 48(12): 1203003-1203003(6). doi: 10.3788/IRLA201948.1203003
    [6] 徐宁, 秦水介.  正交偏振激光回馈干涉仪稳定性提高方法研究 . 红外与激光工程, 2019, 48(3): 320003-0320003(6). doi: 10.3788/IRLA201948.0320003
    [7] 李阳, 李述涛, 李耀, 王超.  正交增益型被动调Q激光器的设计与实现 . 红外与激光工程, 2018, 47(6): 606003-0606003(6). doi: 10.3788/IRLA201847.0606003
    [8] 杨凌辉, 王丽君, 林嘉睿, 孟伟, 徐秋宇.  基于正交柱面成像相机空间后方交会的三维坐标测量方法 . 红外与激光工程, 2018, 47(3): 317001-0317001(7). doi: 10.3788/IRLA201847.0317001
    [9] 吉云飞, 姬占礼, 何小飞.  实现惯测坐标系正交同步的系统级标定技术 . 红外与激光工程, 2018, 47(1): 117002-0117002(7).
    [10] 刘海庆, 杨凌辉, 任永杰, 邾继贵.  基于正交柱面成像相机的大尺寸三维坐标测量 . 红外与激光工程, 2016, 45(11): 1117002-1117002(6). doi: 10.3788/IRLA201645.1117002
    [11] 潘卫军, 贺强民, 刘涛, 肖龙.  CCD信号自适应采样方法的研究和实现 . 红外与激光工程, 2016, 45(5): 526003-0526003(4). doi: 10.3788/IRLA201645.0526003
    [12] 孟祥涛, 向政, 郭景, 李美清.  非均匀采样条件下光纤陀螺微小角振动信号检测技术 . 红外与激光工程, 2016, 45(3): 322004-0322004(5). doi: 10.3788/IRLA201645.0322004
    [13] 史浩然, 李召龙, 沈同圣, 娄树理.  采样红外成像系统的混淆效应研究 . 红外与激光工程, 2016, 45(4): 404003-0404003(6). doi: 10.3788/IRLA201645.0404003
    [14] 范锦彪, 李玺, 徐鹏, 祖静.  g 值加速度校准激励脉冲的横向激光干涉测量方法 . 红外与激光工程, 2015, 44(2): 497-502.
    [15] 曾占魁, 谷蔷薇, 曹喜滨.  基于正交Procrustes分析的航天器单目视觉相对位姿确定方法 . 红外与激光工程, 2015, 44(S1): 113-118.
    [16] 孙文卿, 陈磊, 李金鹏, 乌兰图雅, 何勇.  非圆孔径离散采样点正交多项式波前拟合 . 红外与激光工程, 2015, 44(3): 1068-1072.
    [17] 潘雄, 张春生, 王夏霄, 王熙辰, 赵亚飞, 王定球.  反馈延迟对光纤陀螺振动误差特性的影响 . 红外与激光工程, 2014, 43(8): 2607-2612.
    [18] 童奇, 王超哲, 童中翔, 李建勋, 贾林通, 柴世杰.  红外干扰机对四元正交探测器的干扰效能 . 红外与激光工程, 2014, 43(8): 2496-2504.
    [19] 李海星, 丁亚林, 史磊, 宋玉龙.  两轴正交圆切口单轴柔性铰反射镜支撑结构 . 红外与激光工程, 2013, 42(7): 1765-1769.
    [20] 王心遥, 张珂殊.  基于欠采样的激光测距数字鉴相方法 . 红外与激光工程, 2013, 42(5): 1330-1337.
  • 加载中
图(11)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  24
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-20
  • 修回日期:  2021-01-14
  • 刊出日期:  2021-06-30

面向大振幅、长周期振动校准的零差正交激光干涉测振方法

doi: 10.3788/IRLA20200329
    作者简介:

    崔俊宁,男,教授,博士生导师,主要从事超精密测量技术与仪器工程等方面的研究

    通讯作者: 李伟,男,博士生,主要从事超低频振动校准等方面的研究。
基金项目:  国家自然科学基金(51675139,L1924059);中央高校基本科研业务费专项资金
  • 中图分类号: TN249

摘要: 针对零差正交干涉测量应用于超低频超大振幅标准振动台性能测试时非正交相移误差补偿困难、所需采样率极高的问题,提出了一种欠采样零差正交激光干涉测振方法。在设计消偏振分光测量光路的基础上,提出波片偏航调整方法,进行非正交相移误差的硬件实时补偿;提出基于运动状态预估的卡尔曼正交信号解调算法,对深度欠采样的干涉条纹进行相位信号解调,以大幅降低所需的采样率及产生的数据量。实验和仿真结果表明,文中方法可大幅降低零差正交干涉的非正交相移误差及其对波片角度偏差的灵敏度,且在测量超低频振动时,卡尔曼正交信号解调算法所需的采样率和每通道数据采集点数降低至奈奎斯特采样定理的0.056%。文中提出的欠采样零差正交激光干涉测振方法较好地满足超低频超大振幅标准振动测试的需求。

English Abstract

    • 超低频振动校准技术在航空航天、精密制造、地震和海啸预警等领域具有重要意义[1-2]。超低频超大振幅标准振动台是进行超低频振动校准的关键装置。对振动台在超低频段的性能测试是一个难点,为了获得高精度的测试结果,多采用先进的多通道零差激光干涉方法对振动台不同频率的振动进行测量。对0.01 Hz的超低频振动而言,电磁振动台产生峰峰值为1 m的标准正弦位移波形时,最大运动速度可达几十毫米每秒,而其单周期运行时间长达100 s,且经常需要多周期测量。故被测标准振动信号高速、高精度、长时间的测量要求,对现有测量方法[3-4]提出了挑战。

      具体而言,零差激光干涉测量方法在超低频振动校准中的应用主要受两方面限制[5-9]

      首先,零差激光干涉的两路正交信号通常存在直流偏置、不等交流幅值和非正交相移误差,简称“三差”,给测量结果带来非线性误差。其中直流偏置、不等交流幅值误差可利用硬件电路或软件算法简易修正,而非正交相移误差的补偿比较困难,目前主要有两种方法,(1)通过软件算法补偿,采用海德曼修正时对参数的计算涉及由采样数据组成的矩阵变换,特别是矩阵求逆等操作,但过大的数据量组成的矩阵维度很大,将直接导致计算费时且困难等问题[7-10];(2)利用J. Ahn等人提出的基于波片轴线调整的硬件补偿方法[11],理论上可实现实时非正交相移误差计算,但由于偏振分光器偏振混叠和消偏振分光器相位漂移误差的存在,波片角度偏差的非正交相移误差灵敏度可高达3°/1°,即波片的安装角度偏差(装配误差、机械漂移等)会引入较大的非正交相移误差。

      其次,根据奈奎斯特定理,数据采样率须大于干涉条纹最大变化频率的2倍。使用波长为632.8 nm的激光光源搭建多通道零差正交激光干涉光路,测量频率为0.01 Hz、幅值为0.5 m的振动时,如采用传统的连续条纹相位解调算法[12],需要高达200 kHz的采样频率,多振动周期的测量时间长达数百秒。故高采样率、长测量时间以及随之产生的大量数据对激光干涉的硬件性能提出了更高要求。

      文中针对零差激光干涉在超低频振动台性能评价中非正交相移误差补偿困难,测量时采样率要求高,数据量庞大的问题,基于波片偏航相移误差补偿方法和卡尔曼正交信号解调算法,提出一种欠采样激光干涉测量方法,并通过仿真和实验进行性能验证。

    • 图1所示,在前期对零差正交干涉关键技术研究基础上[13],基于波片偏航非正交相移误差补偿方法和卡尔曼正交信号解调算法,提出一种欠采样零差正交激光干涉方法。为最大限度地减少偏振混叠及分光不平衡性,降低“三差”,基于消偏振分光原理进行光路设计。

      图  1  欠采样零差正交干涉测量方法原理示意图。LB-激光器;O-光学法拉第隔离器;N1-消偏振分光器 1;N2-消偏振分光器 2;Q1-1/4 波片 1;Q2-1/4 波片 2;W-渥拉斯特棱镜;H-半波片;R-参考镜;T-目标镜;PD-光电探测器;DA-差分放大器;KQSD-卡尔曼正交信号解调算法

      Figure 1.  Schematic diagram of undersampling homodyne quadrature interferometry measurement method. LB, Laser beam;O, Optical Faraday isolator;N1, Non-polarizing beam splitters 1;N2, Non-polarizing beam splitters 2;Q1, Quarter-wave plate 1;Q2, Quarter-wave plate 2;W, Wollaster prism;H, Half-wave plate;R, Reference mirror;T, Target mirror;PD, Photodetector;DA, Differential amplifier;KQSD, Kalman quadrature signal demodulation

      图1中,He-Ne激光器产生波长为632.8 nm的稳频线偏振激光束(LB)。采用光学法拉第隔离器O防止光束返回;消偏振分光器1(N1)的入射光束被平均分成测量光和参考光,它们的偏振方向正交,且在测量光两次通过半波片H,参考光两次通过1/4波片1(Q1)后,在N1处合光;通过固定参考镜R移动目标镜T,引入测量光的相位变化被由两个光电探测器PD组成的正交解调器测量,其中一个接收由测量光和参考光之间的1/4波片2(Q2)引起的90°相位差;从O输出的光偏振平面相对于平面xoz的夹角为45°,因此H、Q1和Q2的光轴相对于y轴的角度${\psi _i}$i=1、2、3)分别为0°、0°和45°,渥拉斯特棱镜W位于平面xoz上。

      差分放大器DA输出的正交信号为${I_x}$${I_y}$,经A/D转换器数字化后在计算机中进行处理。根据正交信号序列计算出第i个采样时刻的测量位移${d_i}$

      $${d_i} = \frac{\lambda }{{4\pi }}\left( {\arctan \frac{{{I_{xi}}}}{{{I_{yi}}}} + {k_i}\pi } \right)$$ (1)

      式中:$\lambda $为激光在空气中的波长;${k_i}$为条纹计数的整数部分。

      针对波片光轴与其理想装配角偏差引起非正交相移误差的问题,在基于消偏振分光的零差正交激光干涉测量光路中,采用波片偏航的方法补偿相移误差,并实现偏差的非正交相移误差灵敏度最小化,完成硬件实时补偿。

      设非正交相移误差为$\alpha $,理想情况下当波片安装角度${\psi _1}$=0°、${\psi _{\rm{2}}}$=0°、${\psi _{\rm{3}}}$=45°时,$\alpha $=0且${\rm d}\alpha /{\rm d}{\psi _i}$=0 (i=1,2,3)。由于非偏振分光镜的涂层和粘合剂的透射和反射,不可避免地会引入额外的相移误差和水平与垂直分量之间的分光比误差[14-15],从而增大相移误差及其对波片角度偏差的灵敏度,即$\alpha $>0且$({\rm d}\alpha /{\rm d}{\psi _i})$>0 (i =1,2,3)。在此实际工况下,由装配误差或机械漂移引起的波片光轴与其理想装配角的轻微偏差将引入显著的相移误差。

      图2(a)所示,当光束垂直入射到波片上时,由于消偏振分光镜不同入射面的透射和反射,将会在测量光、参考光电场矢量${E_{\rm m}}$${E_{\rm r}}$上产生附加相移${M_1}$${R_1}$${M_2}$${R_2}$。如图2(b)所示,为了消除附加相移对非正交相移误差灵敏度的影响,在测量臂和参考臂上对波片进行微小偏航。根据折射定律,随着偏航角的增大,波片的相位延迟也随之增大。故存在一组偏航角度,使半波片和1/4波片1的相位延迟增量满足${M'_1} - $$ {R'_1} = 0$${M'_2} = 0$${R'_2} = 0$

      图  2  (a)入射光垂直波片;(b) 通过波片偏转补偿非正交误差

      Figure 2.  (a) Normal beam incident to wave plates; (b) Non quadrature phase error compensation by yawing wave plates

      补偿后波片的非正交相移误差与波片安装角度的关系可表示为:

      $$\left\{ \begin{array}{l} \alpha \left( {{\psi _1},{\psi _2} = {0^ \circ },{\psi _3} = {{45}^ \circ }} \right) = 0 \\ \alpha \left( {{\psi _1} = {0^ \circ },{\psi _2},{\psi _3} = {{45}^ \circ }} \right) = 0 \\ \alpha \left( {{\psi _1} = {0^ \circ },{\psi _2} = {0^ \circ },{\psi _3}} \right) = \arctan \dfrac{{1 + \cos 4{\psi _3}}}{{2\sin 2{\psi _3}}} \\ \end{array} \right.$$ (2)

      非正交相移误差对波片角度偏差的灵敏度为:

      $$ {\rm d}\alpha /{\rm d}{\psi _i}\left( {{\psi _1},{\psi _2} = 0,{\psi _3} = {{45}^ \circ }} \right) = 0,i = 1,2,3 $$ (3)

      同时考虑水平分量和垂直分量的相移误差和分光比误差,应用Jones算法,从理论上分析非正交相移误差及其对波片角度偏差的灵敏度,以验证文中所提出方法的正确性。分析过程中,消偏振分光镜(Thorlabs,BS013,50%:50%)的透射和反射Jones矩阵需要实验确定。

      图3图4所示,在应用波片偏航非正交相移误差补偿方法前,当${\psi _1}$=0°、${\psi _2}$=0°、${\psi _3}$=45°时,Q1的非正交相移误差为2°,灵敏度为1.4°/1°,虽然旋转它可以抑制其相移误差,但灵敏度保持不变。相移误差主要来源于消偏振分光镜,采用文中方法后被抑制到零,其对波片角度偏差的灵敏度也显著降低,理论上当波片按理想角度装配时为零。

      图  3  波片角度偏差引入的非正交相移误差仿真结果

      Figure 3.  Simulation results of non quadrature phase error introduced by angle deviations of wave plates

      图  4  波片角度偏差的非正交相移误差灵敏度仿真结果

      Figure 4.  Simulation results of non quadrature phase error sensitivities to angle deviations of wave plates

      针对测量数据量庞大,难以快速处理的问题,提出一种基于运动状态预估的卡尔曼正交信号解调算法[16-19],可对深度欠采样数据的条纹相位信号进行解调,以实现降低所需采样率和采样数据量的效果,从而满足超低频超大振幅标准振动测试所提出的高速、长时、高精度的需求。

      卡尔曼正交信号解调算法的基本思路是先估计当前的位移,即当前估计的相位整数和小数,然后通过比较估计和实际相位小数来确认实际的相位整数,最后实现欠采样数据的相位解调。该算法可表示为:

      $$\varphi \left( {{I_x},{I_y}} \right) = \left\{ \begin{array}{l} \arctan \left( {{I_x}/{I_y}} \right)\quad {\rm{if}}\;{I_x}\;{\rm{and}}\;{I_y} \geqslant 0 \\ \arctan \left( {{I_x}/{I_y}} \right) + \pi \quad {\rm{if}}\;{I_x}\;{\rm{and}}\;{I_y} < 0 \\ \arctan \left( {{I_x}/{I_y}} \right) + 2\pi \quad {\rm{if}}\;{I_x}\;×\;{I_y} < 0 \\ \end{array} \right.$$ (4)
      $$\left\{ \begin{array}{l} {d_1} = \dfrac{\lambda }{{4\pi }}{\varphi _1} \\ {d_2} = \left\{ \begin{array}{l} \dfrac{\lambda }{{4\pi }}{\varphi _2},\quad {\rm{if}}\;\left| {{\varphi _1} - {\varphi _2}} \right| \leqslant \pi \\ \dfrac{\lambda }{{4\pi }}\left( {{\varphi _2} + 2\pi } \right),\quad {\rm{if}}\;\left| {{\varphi _1} - {\varphi _2}} \right| > \pi \\ \dfrac{\lambda }{{4\pi }}\left( {{\varphi _2} - 2\pi } \right),\quad {\rm{if}}\;\left| {{\varphi _1} - {\varphi _2}} \right| < - \pi \\ \end{array} \right. \\ \end{array} \right.$$ (5)
      $$\left\{ \begin{array}{l} {{\tilde v}_{i - 1}} = \dfrac{{{d_{i - 1}} - {d_{i - 2}}}}{{\Delta T}},\;{{\tilde d}_i} = {d_{i - 1}} + {{\tilde v}_{i - 1}}×\Delta T \\ {{\tilde k}_i} = round\left( {\dfrac{{{{\tilde d}_i}}}{{\lambda /2}}} \right),\;{{\tilde \varphi }_i} = rem\left( {\dfrac{{4\pi {{\tilde d}_i}}}{\lambda },2\pi } \right),i = {\rm{ }}3,{\rm{ }}4,{\rm{ }} \ldots \\ \end{array} \right.$$ (6)
      $$\left\{ \begin{array}{l} {k_i} = \left\{ \begin{array}{l} {{\tilde k}_i},\quad {\rm{if}}\;\left| {{\varphi _i} - {{\tilde \varphi }_i}} \right| \leqslant \pi \\ {{\tilde k}_i} - 1,\quad {\rm{if}}\;\left( {{\varphi _i} - {{\tilde \varphi }_i}} \right) > \pi \\ {{\tilde k}_i} + 1,\quad {\rm{if}}\;\left( {{\varphi _i} - {{\tilde \varphi }_i}} \right) < - \pi \\ \end{array} \right. \\ {d_i} = \dfrac{\lambda }{{4\pi }}\left( {{\varphi _i} + 2\pi {k_i}} \right) \\ \end{array} \right.$$ (7)

      式中:${\varphi}$$\tilde v$$\tilde d$$\tilde k$$\tilde \varphi $分别为相位序列、速度、位移、相位整数和相位分数部分的预估结果;$\Delta T$为采样时间间隔;$round\left( x \right)$为取整;$rem\left( {x,y} \right)$为取余,即$rem\left( {x,y} \right) = $$ x - ny$,其中$n = round\left( {x/y} \right)$

      假设位移是时间的连续函数,且在时间上可微,则其二阶泰勒展开式为:

      $$ {d_i} = {d_{i - 1}} + {v_{i - 1}}\Delta T + \frac{1}{2}{a_{i - 1}}\Delta {T^2} $$ (8)

      式中:${v_{}}$$a$分别为速度和加速度。与公式(6)相比,位移预估值的最大误差${d_{\rm error}}$为:

      $$ {d_{\rm error}} = {a_{\rm peak}}\Delta {T^2} $$ (9)

      为避免位移预估值的不连续,${d_{\rm error}}$应小于$\lambda /4 - $$ 2erro{r_{\operatorname{PV} }}$,其中$erro{r_{\operatorname{PV} }}$为残余非线性误差的峰峰值。因此,采样率fs应满足:

      $$ {f_{\rm s}} \geqslant \sqrt {\frac{{{a_{{\rm peak}}}}}{{\lambda /4 - 2erro{r_{\operatorname{PV} }}}}} $$ (10)

      卡尔曼正交信号解调算法所需的最小采样率取决于峰值加速度${a_{\rm peak}}$,而不是现有采用连续条纹相位解调算法的峰值速度[12]。因此,该方法可实现信号的深度欠采样和数据量的大幅减少,可解决超低频振动台性能评价过程中所需采样率高、数据量大的问题。

    • 搭建如图5所示的欠采样零差正交干涉测量实验装置。波片安装在可旋转支架上以方便调整光轴;正交信号由数据采集卡进行等间隔采样。实验装置搭设在自动调平光学隔振平台上,实验在洁净室中进行,以减少环境影响。

      图  5  欠采样零差正交激光干涉测量方法的实验装置

      Figure 5.  Experimental setup of undersampling homodyne quadrature interferometry measurement method

      首先,进行欠采样零差正交干涉的硬件非正交相移误差补偿实验,实验结果如图6图7所示,虽然波片偏航角度存在一定的安装误差,结果无法与理论完全相同,但也能够将非正交相移误差基本调整为0,半波片、1/4波片1、1/4波片2的非正交相移误差对角度偏差的灵敏度分别降低至0、0.05°/1°和0,非线性误差减小至近似为0。

      图  6  正交相移误差随波片光轴角度变化的实验结果

      Figure 6.  Experimental results of quadrature phase error vs. optical axis angles of wave plate

      图  7  非线性误差随波片安装角度变化的实验结果

      Figure 7.  Experimental results of nonlinear error varying with the assembling angle of wave plate

      由稳态正弦振动发生标准装置的实际特性可知其振动频率与最大加速度的关系曲线如图8所示。根据该曲线模拟振动台波形测量实验,验证卡尔曼正交信号解调算法的欠采样性能,同时假设欠采样零差正交干涉测量产生的非正交相移误差为0.07°。连续条纹相位解调算法和卡尔曼正交信号解调算法的最小采样率要求以及10个振动周期存储容量需求如图9图10所示,0.01 Hz振动频率下因非正交相移误差产生的剩余误差如图11所示。

      图  8  最大加速度与振动频率关系曲线

      Figure 8.  Relation curve between amax and vibration frequency

      图  9  采样率与振动频率关系示意图

      Figure 9.  Sampling rate vs. vibration frequency

      图  10  低频干涉条纹采样点数与振动频率之间的关系

      Figure 10.  The sampling numbers of interference fringe as a function of vibration frequency in low frequency vibration

      图  11  0.01 Hz解调振动信号与标准正弦振动信号的剩余误差

      Figure 11.  Residual error between demodulation vibration signal and the standard sinusoidal vibration for 0.01 Hz

      图9图10可知,在(0.01~0.1) Hz频段,根据奈奎斯特采样定理,采样率需高达200 kHz (${f_{\rm s}} = $$ {{4{v_{\max }}} / \lambda }$,其中vmax为被测物运动的最大速度[12, 20]),且在不断增大,数据采集点数高达200 M/通道(每10个振动周期),对数据采集处理系统提出了更高要求;卡尔曼正交信号解调算法所需的采样率为112 Hz,每通道数据采集点数最大只有0.112 M/通道(每10个振动周期),均降低至奈奎斯特采样定理的0.056%。由图11可知,由非正交相移误差引起的剩余误差峰峰值约为0.063 nm,因此,所提出的欠采样零差正交干涉测振方法在保持激光干涉纳米测量精度的前提下,实现了深度欠采样,大幅降低了采样率和采样数据量,可满足超低频标准振动台高精度性能测试的需求。

    • 文中提出了一种欠采样零差正交激光干涉测振方法,解决了在超低频超大振幅标准振动台性能评价中应用激光干涉方法的困难。搭建了基于消偏振分光原理和波片偏航法的硬件光路,将正交激光干涉测量方法的非正交相移误差以及其对波片角度偏差的灵敏度减小至0;在测量(0.01~0.1) Hz频段振动时,卡尔曼正交信号解调算法的采样率和每通道数据采集点数均降低至奈奎斯特采样定理的0.056%。因此,文中提出的欠采样零差正交干涉测振系统可有效评价超低频超大振幅标准振动台的性能,且同样普适于其他超低频振动校准系统,是一种高速、高精度、长时间校准超低频振动的较理想解决方法。

参考文献 (20)

目录

    /

    返回文章
    返回