留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矢量光场激发三阶非线性光学效应的研究进展(特邀)

顾兵 胡月球 闻博

顾兵, 胡月球, 闻博. 矢量光场激发三阶非线性光学效应的研究进展(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201050. doi: 10.3788/IRLA20201050
引用本文: 顾兵, 胡月球, 闻博. 矢量光场激发三阶非线性光学效应的研究进展(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201050. doi: 10.3788/IRLA20201050
Gu Bing, Hu Yueqiu, Wen Bo. Research progress of third-order nonlinear optical effects excited by vectorial light fields (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201050. doi: 10.3788/IRLA20201050
Citation: Gu Bing, Hu Yueqiu, Wen Bo. Research progress of third-order nonlinear optical effects excited by vectorial light fields (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201050. doi: 10.3788/IRLA20201050

矢量光场激发三阶非线性光学效应的研究进展(特邀)

doi: 10.3788/IRLA20201050
基金项目: 国家自然科学基金(11774055)
详细信息
    作者简介:

    顾兵(1974-),男,教授,博士生导师,博士,主要从事非线性光学及其应用、光场调控和飞秒光镊技术等方面的研究。Email:gubing@seu.edu.cn

  • 中图分类号: O437

Research progress of third-order nonlinear optical effects excited by vectorial light fields (Invited

  • 摘要: 具有偏振结构分布的强激光与非线性光学材料相互作用导致了多种新颖的非线性光学效应,反映了材料的非线性光学特性,调制了光场的传播行为。笔者概述了矢量光场激发三阶非线性光学效应的研究进展。首先简要介绍了任意偏振光激发三阶非线性光学效应的理论,如非线性薛定谔方程、光束传播方程、各向同性和各向异性三阶非线性光学系数。也简要介绍了表征三阶非线性光学系数的 Z-扫描技术。在弱聚焦条件下,给出了诸如径向偏振光、杂化偏振光和柠檬型庞加莱光束这三种类型矢量光场的焦场表达式。其次,重点回顾了多种矢量光场激发的各向同性/各向异性三阶非线性光学效应,包括径向偏振光激发的各向异性非线性光学效应、杂化偏振光激发的各向同性和各向异性非线性光学效应、柠檬型庞加莱光束激发的各向同性/各向异性非线性光学效应。最后,简要讨论了矢量光场在非线性偏振旋转、光束整形、可控光场塌缩与成丝和光限幅方面的应用。
  • 图  1  线偏振光激发下ZnSe晶体中晶体取向角$\theta $依赖的双光子吸收系数$\alpha _{\rm{2}}^{{\rm{lin}}}$[32]

    Figure  1.  Dependence of $\alpha _{\rm{2}}^{{\rm{lin}}}$ on the crystal orientation angle $\theta $ for ZnSe crystal at $e = 0$[32]

    图  2  (a)径向偏振光;(b)杂化偏振光;(c)柠檬形庞加莱光束及其偏振态分布

    Figure  2.  (a) Radially polarized beam; (b) Hybridly polarized beam;(c) Lemon Poincaré beam with polarization distributions

    图  3  在不同$\sigma $$\Delta {\phi _0}$下,径向偏振光经过各向异性非线性克尔介质后远场的光强和偏振态分布[28]

    Figure  3.  Far-field intensity patterns with polarization distributions of radially polarized beams for anisotropic Kerr media with different values of $\sigma $ and $\Delta {\phi _0}$[28]

    图  4  在不同$B/A$$\Delta {\phi _0}$下,杂化偏振光经过各向同性非线性克尔介质后远场的光强和偏振态分布[27]

    Figure  4.  Far-field intensity patterns with polarization distributions of hybridly polarized beams for isotropic Kerr media with different values of $B/A$ and $\Delta {\phi _0}$[27]

    图  5  在不同晶体取向角$\theta $下,杂化偏振光经各向异性非线性克尔介质后远场光强分布、自旋角动量及偏振态分布[29]

    Figure  5.  Far-field intensity patterns and spin angular momentumdistributions with polarization distributions of hybridly polarized beams through anisotropic Kerr nonlinearities for different crystal orientation angles $\theta $[29]

    图  6  在各向同性(第一行)和各向异性(第二行)克尔非线性激发下,柠檬形庞加莱光束在不同位置处的光强和偏振态分布[42]

    Figure  6.  Polarization distributions superimposed on intensity patterns of lemon Poincaré beams at different positions for (the first row) isotropic and (the second row) anisotropic Kerr nonlinearities[42]

    图  7  径向变化的非线性偏振旋转效应示意图

    Figure  7.  Schematic diagram of radial-variant nonlinear ellipse rotation effect

    图  8  具有高斯形光强分布的矢量光场通过各向异性双光子吸收器后的(a)光场图样和偏振态分布,(b)光强沿光场径向分布[32]

    Figure  8.  (a) Intensity patterns superimposed with polarization distributions and (b) intensity profiles along the diameter of the vectorial light fields with Gaussian intensity distribution after passing through the anisotropic two-photon absorber[32]

    图  9  柠檬形和星形庞加莱光束通过自聚焦非线性介质后的光强和偏振分布[23]

    Figure  9.  Intensity and polarization distributions of lemon and star Poincaré beams after propagating through the self-focusing nonlinear medium[23]

    图  10  具有随机噪声的杂化偏振光(第一行)和径向偏振光(第二行)在各向同性克尔介质中的塌缩行为。这四列(从左到右)依次对应以衍射长度为单位的四个传播距离($\zeta = 0$, 0.12, 0.24, 和0.36)。第一列还给出了偏振态分布[45]

    Figure  10.  Collapsing behaviors of (the first row) hybrid polarized beam and (the second row) radially polarized beam with random noises propagating in isotropic Kerr media. The four columns (from left to right) correspond to four propagation distances in units of diffraction length ($\zeta = 0$, 0.12, 0.24, and 0.36). The distributions of state of polarization are also shown in the first column[45]

    图  11  径向偏振光(RPB)激发各向异性(σ=−1.5)和各向同性(σ=0)双光子吸收器、偏振方向沿[100]晶体轴的线偏振光(θ=0)激发双光子吸收器的光限幅效应[30]

    Figure  11.  Optical limiting effects of anisotropic (σ=−1.5) and isotropic (σ=0) two-photon absorbers using radially polarized beams, and of two-photon absorber using linearly polarized beams for its polarization direction along the [100] crystallographic axis (θ=0)[30]

  • [1] Pohl D. Operation of a Ruby laser in the purely transverse electric mode TE01 [J]. Applied Physics Letters, 1972, 20(7): 266-267. doi:  10.1063/1.1654142
    [2] Jordan R H, Hall D G. Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution [J]. Optics Letters, 1994, 19(7): 427-429. doi:  10.1364/OL.19.000427
    [3] Hall D G. Vector-beam solutions of Maxwell’s wave equation [J]. Optics Letters, 1996, 21(1): 9-11. doi:  10.1364/OL.21.000009
    [4] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical vector beams [J]. Optics Express, 2000, 7(2): 77-87. doi:  10.1364/OE.7.000077
    [5] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam [J]. Physical Review Letters, 2003, 91(23): 233901. doi:  10.1103/PhysRevLett.91.233901
    [6] Zhan Qiwen. Cylindrical vector beams: From mathematical concepts to applications [J]. Advances in Optics and Photonics, 2009, 1(1): 1-57. doi:  10.1364/AOP.1.000001
    [7] Wang Xilin, Ding Jianping, Ni Weijiang, et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement [J]. Optics Letters, 2007, 32(24): 3549-3551. doi:  10.1364/OL.32.003549
    [8] Han Wei, Yang Yanfan, Cheng Wen, et al. Vectorial optical field generator for the creation of arbitrary complex fields [J]. Optics Express, 2013, 21(18): 20692-20706. doi:  10.1364/OE.21.020692
    [9] Liu Sheng, Qi Shuxia, Zhang Yi, et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude [J]. Photonics Research, 2018, 6(4): 228-233. doi:  10.1364/PRJ.6.000228
    [10] Lerman Gilad M, Stern Liron, Levy Uriel. Generation and tight focusing of hybridly polarized vector beams [J]. Optics Express, 2010, 18(26): 27650-27657. doi:  10.1364/OE.18.027650
    [11] Gu Bing, Wu Jialu, Pan Yang, et al. Achievement of needle-like focus by engineering radial-variant vector fields [J]. Optics Express, 2013, 21(25): 30444-30452. doi:  10.1364/OE.21.030444
    [12] Zhan Qiwen. Trapping metallic Rayleigh particles with radial polarization [J]. Optics Express, 2004, 12(15): 3377-3382. doi:  10.1364/OPEX.12.003377
    [13] Hnatovsky Cyril, Shvedov Vladlen, Krolikowski Wieslaw, et al. Revealing local field structure of focused ultrafast pulses [J]. Physical Review Letters, 2011, 106(12): 123901. doi:  10.1103/PhysRevLett.106.123901
    [14] Bautista Godofredo, Mäkitalo Jouni, Chen Ya, et al. Second-harmonic generation imaging of semiconductor nanowires with focused vector beams [J]. Nano Letters, 2015, 15(3): 1564-1569. doi:  10.1021/nl503984b
    [15] Maker P D, Terhune R W. Study of optical effects due to an induced polarization third order in the electric field strength [J]. Physical Review, 1965, 137(3A): A801-A818. doi:  10.1103/PhysRev.137.A801
    [16] Hutchings D C, Wherrett B S. Theory of anisotropy of two-photon absorption in zinc-blende semiconductors [J]. Physical Review B, 1994, 49(4): 2418-2426. doi:  10.1103/PhysRevB.49.2418
    [17] Dvorak M D, Schroeder W A, Andersen D R, et al. Measurement of the anisotropy of two-photon absorption coefficients in zincblende semiconductors [J]. IEEE Journal of Quantum Electronics, 1994, 30(2): 256-268. doi:  10.1109/3.283768
    [18] DeSalvo R, Sheik-Bahae M, Said A A, et al. Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals [J]. Optics Letters, 1993, 18(3): 194-196. doi:  10.1364/OL.18.000194
    [19] Dabbicco M, Catalano I M. Measurement of the anisotropy of the two-photon absorption coefficient in ZnSe near half the band gap [J]. Optics Communications, 2000, 178(1-3): 117-121. doi:  10.1016/S0030-4018(00)00618-0
    [20] Wang Kai, Zhou Jun, Yuan Longyan, et al. Anisotropic third-order optical nonlinearity of a single ZnO micro/nanowire [J]. Nano Letters, 2012, 12(2): 833-838. doi:  10.1021/nl203884j
    [21] Fang Yu, Zhou Feng, Yang Junyi, et al. Anisotropy of two-photon absorption and free carrier effect in nonpolar GaN [J]. Applied Physics Letters, 2015, 106(13): 131903. doi:  10.1063/1.4916829
    [22] Yang Tieshan, Abdelwahab Ibrahim, Lin Han, et al. Anisotropic third-order nonlinearity in pristine and lithium hydride intercalated black phosphorus [J]. ACS Photonics, 2018, 5(12): 4969-4977. doi:  10.1021/acsphotonics.8b01200
    [23] Bouchard Frederic, Larocque Hugo, Yao Alison M, et al. Polarization shaping for control of nonlinear propagation [J]. Physical Review Letters, 2016, 117(23): 233903.
    [24] Ishaaya Amiel A, Vuong Luat T, Grow Taylor D, et al. Self-focusing dynamics of polarization vortices in Kerr media [J]. Optics Letters, 2008, 33(1): 13-15. doi:  10.1364/OL.33.000013
    [25] Gu Bing, Ye Fan, Lou Kai, et al. Vectorial self-diffraction effect in optically Kerr medium [J]. Optics Express, 2012, 20(1): 149-157.
    [26] Gibson Christopher J, Bevington Patrick, Oppo Gian-Luca, et al. Control of polarization rotation in nonlinear propagation of fully structured light [J]. Physical Review A, 2018, 97(3): 033832. doi:  10.1103/PhysRevA.97.033832
    [27] Gu Bing, Wen Bo, Rui Guanghao, et al. Nonlinear polarization evolution of hybridly polarized vector beams through isotropic Kerr nonlinearities [J]. Optics Express, 2016, 24(22): 25867-25875. doi:  10.1364/OE.24.025867
    [28] Gu Bing, Wen Bo, Rui Guanghao, et al. Varying polarization and spin angular momentum flux of radially polarized beams by anisotropic Kerr media [J]. Optics Letters, 2016, 41(7): 1566-1569. doi:  10.1364/OL.41.001566
    [29] Wen Bo, Hu Yueqiu, Rui Guanghao, et al. Anisotropic nonlinear Kerr media: Z-scan characterization and interaction with hybridly polarized beams [J]. Optics Express, 2019, 27(10): 13845-13857. doi:  10.1364/OE.27.013845
    [30] Gu Bing, Rui Guanghao, Xue Yuxiong, et al. Large enhancement of optical limiting effects in anisotropic two-photon absorbers by radially polarized beams [J]. Journal of Optical Society of America B-Optical Physics, 2016, 33(12): 2512-2517. doi:  10.1364/JOSAB.33.002512
    [31] Wang Dan, Liu Guigeng, Lü Jiaqi, et al. Femtosecond polarization-structured optical field meets an anisotropic nonlinear medium [J]. Optics Express, 2018, 26(21): 27726-27747. doi:  10.1364/OE.26.027726
    [32] Hu Yueqiu, Gu Bing, Wen Bo, et al. Anisotropic two-photon absorbers measured by the Z-scan technique and its application in laser beam shaping [J]. Journal of Optical Society of America B-Optical Physics, 2020, 37(3): 756-761. doi:  10.1364/JOSAB.383899
    [33] Boyd R W. Nonlinear Optics[M]. 3rd ed. USA: Press Academic, 2008.
    [34] Yan Xiaoqing, Liu Zhibo, Zhang Xiaoliang, et al. Modified elliptically polarized light Z-scan method for studying third-order nonlinear susceptibility components [J]. Optics Express, 2010, 18(10): 10270-10281. doi:  10.1364/OE.18.010270
    [35] Yan Xiaoqing, Zhang Xiaoliang, Shi Shuo, et al. Third-order nonlinear susceptibility tensor elements of CS2 at femtosecond time scale [J]. Optics Express, 2011, 19(6): 5559-5564. doi:  10.1364/OE.19.005559
    [36] 鄢小卿. 各向同性介质中非线性光学的偏振特性[D]. 天津: 南开大学, 2011.
    [37] Krauss T D, Ranka J K, Wise F W, et al. Measurements of the tensor properties of third-order nonlinearities in wide-gap semiconductors [J]. Optics Letters, 1995, 20(10): 1110-1112. doi:  10.1364/OL.20.001110
    [38] Sheik-Bahae M, Said A A, Wei T H, et al. Sensitive measurement of optical nonlinearities using a single beam [J]. IEEE Journal of Quantum Electronics, 1990, 26(4): 760-769. doi:  10.1109/3.53394
    [39] Kotlyar Victor V, Kovalev Alexey A. Nonparaxial propagation of a Gaussian optical vortex with initial radial polarization [J]. Journal of Optical Society of America A-Optical Image Science and Vision, 2010, 27(3): 372-380. doi:  10.1364/JOSAA.27.000372
    [40] Gu Bing, Cui Yiping. Nonparaxial and paraxial focusing of azimuthal-variant vector beams [J]. Optics Express, 2012, 20(16): 17684-17694. doi:  10.1364/OE.20.017684
    [41] Beckley Amber M, Brown Thomas G, Alonso Miguel A. Full Poincaré beams [J]. Optics Express, 2010, 18(10): 10777-10785. doi:  10.1364/OE.18.010777
    [42] Wen Bo, Guanghao Rui, He Jun, et al. Polarization rotation and singularity evolution of fundamental Poincaré beams through anisotropic Kerr nonlinearities [J]. Journal of Optics, 2020, 22(8): 085501. doi:  10.1088/2040-8986/ab9aae
    [43] Haus Joseph W, Mozumder Zasim, Zhan Qiwen. Azimuthal modulation instability for a cylindrically polarized wave in a nonlinear Kerr medium [J]. Optics Express, 2006, 14(11): 4757-4764. doi:  10.1364/OE.14.004757
    [44] Yang Shuangyang, Zhan Qiwen. Third-harmonic generation microscopy with tightly focused radial polarization [J]. Journal of Optics A-Pure and Applied Optics, 2008, 19(12): 125103.
    [45] Li Simin, Li Yongnan, Wang Xilin, et al. Taming the collapse of optical fields [J]. Scientific Reports, 2012, 2: 1007. doi:  10.1038/srep01007
    [46] Maker P D, Terhune R W, Savage C W. Intensity-dependent changes in the refractive index of liquids [J]. Physical Review Letters, 1964, 12(18): 507-509. doi:  10.1103/PhysRevLett.12.507
    [47] Burgin J, Guillon C, Langot P. Femtosecond investigation of the non-instantaneous third-order nonlinear susceptibility in liquids and glasses [J]. Applied Physics Letters, 2005, 87(21): 211916. doi:  10.1063/1.2136413
    [48] Liu Zhibo, Yan Xiaoqing, Tian Jianguo, et al. Nonlinear ellipse rotation modified Z-scan measurements of third-order nonlinear susceptibility tensor [J]. Optics Express, 2007, 15(20): 13351-13359. doi:  10.1364/OE.15.013351
    [49] Lee Jonathan Y, Yin Lianghong, Agrawal Govind P, et al. Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides [J]. Optics Express, 2010, 18(11): 11514-11523. doi:  10.1364/OE.18.011514
    [50] Wen Bo, Xue Yuxiong, Gu Bing, et al. Radial-variant nonlinear ellipse rotation [J]. Optics Letters, 2017, 42(19): 3988-3991 (2017). doi:  10.1364/OL.42.003988
    [51] Lian Meng, Gu Bing, Zhang Yingdi, et al. Polarization rotation of hybridly polarized beams in a uniaxial crystal orthogonal to the optical axis: Theory and experiment [J]. Journal of Optical Society of America A-Optical Image Science and Vision, 2007, 34(1): 1-6.
    [52] Zhan Qiwen, Leger James R. Focus shaping using cylindrical vector beams [J]. Optics Express, 2002, 10(7): 324-331. doi:  10.1364/OE.10.000324
    [53] Chang Chenliang, Gao Yuan, Xia Jianpei, et al. Shaping of optical vector beams in three dimensions [J]. Optics Letters, 2017, 42(19): 3884-3887. doi:  10.1364/OL.42.003884
    [54] Lightman Shlomi, Gvishi Raz, Hurvitz Gilad, et al. Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals [J]. Optics Letters, 2015, 40(19): 4460-4463. doi:  10.1364/OL.40.004460
    [55] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media [J]. Physics Reports-Review Section of Physics Letters, 2007, 441(2-4): 47-189.
    [56] Ren Yu, Alshershby Mostafa, Hao Zuoqiang, et al. Microwave guiding along double femtosecond filaments in air [J]. Physical Review E, 2013, 88(1): 013104. doi:  10.1103/PhysRevE.88.013104
    [57] Camino Acner, Hao Zuoqiang, Liu Xu, et al. High spectral power femtosecond supercontinuum source by use of microlens array [J]. Optics Letters, 2014, 39(4): 747-750. doi:  10.1364/OL.39.000747
    [58] Zhao Jiayu, Guo Lanjun, Chu Wei, et al. Simple method to enhance terahertz radiation from femtosecond laser filament array with a step phase plate [J]. Optics Letters, 2015, 40(16): 3838-3841. doi:  10.1364/OL.40.003838
    [59] Grow T D, Gaeta A L. Dependence of multiple filamentation on beam ellipticity [J]. Optics Express, 2005, 13(12): 4594-4599. doi:  10.1364/OPEX.13.004594
    [60] Jin Z, Zhang J, Xu M H, et al. Control of filamentation induced by femtosecond laser pulses propagating in air [J]. Optics Express, 2005, 13(25): 10424-10430. doi:  10.1364/OPEX.13.010424
    [61] Pfeifer Thomas, Gallmann Lukas, Abel Mark J, et al. Circular phase mask for control and stabilization of single optical filaments [J]. Optics Letters, 2006, 31(15): 2326-2328. doi:  10.1364/OL.31.002326
    [62] Chen Ruipin, Chew Khian-Hooi, He Sailing. Dynamic control of collapse in a vortex Airy beam [J]. Scientific Reports, 2013, 3: 1406. doi:  10.1038/srep01406
    [63] Li Simin, Ren Zhicheng, Kong Lingjun, et al. Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization [J]. Photonics Research, 2016, 4(5): B29-B34. doi:  10.1364/PRJ.4.000B29
    [64] Wang Dan, Pan Yue, Lü Jiaqi, et al. Controlling optical field collapse by elliptical symmetry hybrid polarization structure [J]. Journal of Optical Society of America B-Optical Physics, 2018, 35(10): 2373-2381. doi:  10.1364/JOSAB.35.002373
    [65] Lü Jiaqi, Li Pingping, Wang Dan, et al. Control on helical filaments by twisted beams in a nonlinear CS2 medium [J]. Optics Express, 2018, 26(22): 29527-29538. doi:  10.1364/OE.26.029527
    [66] Wu Jialu, Gu Bing, Sheng Ning, et al. Enhanced optical limiting effects in a sandwich-type double-decker bis(phthalocyaninato) rare earth complex using radially polarized beams [J]. Applied Physics Letters, 2014, 105(17): 171113 (2014).
    [67] Yew E Y S, Sheppard C J R. Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams [J]. Optics Communications, 2007, 275(2): 453-457. doi:  10.1016/j.optcom.2007.03.065
    [68] Wang Xiao, Zhuang Xiujuan, Wackenhut Frank, et al. Power-and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses [J]. Laser & Photonics Reviews, 2016, 10(5): 835-842.
    [69] Kozawa Yuichi, Sato Shunichi. Observation of the longitudinal field of a focused laser beam by second-harmonic generation [J]. Journal of Optical Society of America B-Optical Physics, 2008, 25(2): 175-179. doi:  10.1364/JOSAB.25.000175
    [70] Penjweini Rojiar, Weber Markus, Sondermann Markus, et al. Nonlinear optics with full three-dimensional illumination [J]. Optica, 2019, 6(7): 878-883. doi:  10.1364/OPTICA.6.000878
    [71] Abouraddy A F, Toussaint K C. Three-dimensional polarization control in microscopy [J]. Physical Review Letters, 2006, 96(15): 153901. doi:  10.1103/PhysRevLett.96.153901
    [72] Li Jia, Chen Yanru, Cao Quanjun. Propagation properties of cylindrically polarized vector beam through uniaxial crystals along the optical axis [J]. Optics and Laser Technology, 2013, 45: 364-372. doi:  10.1016/j.optlastec.2012.06.022
    [73] Cheng Wen, Haus Joseph W, Zhan Qiwen. Propagation of vector vortex beams through a turbulent atmosphere [J]. Optics Express, 2009, 17(20): 17829-17836. doi:  10.1364/OE.17.017829
  • [1] 刘艺超, 周姚, 赵建行, 周见红, 宋瑛林.  表面增强硫系玻璃Ge28Sb12Se60薄膜非线性吸收(特邀) . 红外与激光工程, 2020, 49(12): 20201071-1-20201071-5. doi: 10.3788/IRLA20201071
    [2] 侯尚林, 雷景丽, 吴七灵, 王道斌, 李晓晓, 王慧琴, 曹明华.  高非线性光子晶体光纤中飞秒脉冲压缩(特邀) . 红外与激光工程, 2019, 48(1): 103004-0103004(6). doi: 10.3788/IRLA201948.0103004
    [3] 王维, 张力书, 李长富, 钦兰云, 杨光, 刘艳梅.  LDM-SLM复合成形Ti6Al4V钛合金的显微组织及力学性能 . 红外与激光工程, 2019, 48(S2): 7-15. doi: 10.3788/IRLA201948.S205002
    [4] 贺文俊, 贾文涛, 王祺, 陈柯含, 付跃刚.  径向矢量光场在双延迟器作用下的偏振演化 . 红外与激光工程, 2019, 48(5): 517006-0517006(6). doi: 10.3788/IRLA201948.0517006
    [5] 贺文俊, 贾文涛, 李亚红, 王祺, 付跃刚.  基于S波片和双延迟器的矢量光场偏振调控方法 . 红外与激光工程, 2018, 47(12): 1207001-1207001(8). doi: 10.3788/IRLA201847.1207001
    [6] 雷宇, 佟庆, 张新宇.  使用梯度折射率液晶微透镜阵列的光场成像 . 红外与激光工程, 2017, 46(2): 220002-0220002(7). doi: 10.3788/IRLA201746.0220002
    [7] 宋瑛林, 李中国.  硝基苯超快非线性折射效应及机理研究 . 红外与激光工程, 2017, 46(5): 502001-0502001(5). doi: 10.3788/IRLA201746.0502001
    [8] 刘鑫, 王玥, 张丽颖, 张颖, 王暄.  多壁碳纳米管薄膜在THz波段的传输与偏振特性 . 红外与激光工程, 2017, 46(12): 1221001-1221001(7). doi: 10.3788/IRLA201746.1221001
    [9] 柴志军, 高亚臣.  CdS0.2Se0.8纳米晶掺杂玻璃的超快非线性吸收特性 . 红外与激光工程, 2017, 46(3): 321004-0321004(5). doi: 10.3788/IRLA201746.0321004
    [10] 康子建, 谷一英, 朱文武, 范峰, 胡晶晶, 赵明山.  利用DFB激光器非线性的高线性射频光传输链路 . 红外与激光工程, 2016, 45(8): 806004-0806004(5). doi: 10.3788/IRLA201645.0806004
    [11] 杜静, 汪相如, 黄子强, 胡国媛, 吴亮.  液晶的介电各向异性分布对液晶微带线特性的影响 . 红外与激光工程, 2016, 45(8): 820001-0820001(6). doi: 10.3788/IRLA201645.0820001
    [12] 许文渊, 何韵, 李立京, 梁生.  基于高非线性Sagnac干涉仪的超高速全光NOT门可级联性研究 . 红外与激光工程, 2015, 44(1): 215-221.
    [13] 常青, 李亚蕾.  不同激光脉冲作用下ZnS晶体非线性光学特性 . 红外与激光工程, 2015, 44(5): 1534-1538.
    [14] 郭士亮, 黄惠, 童凯, 王志斌, 胡春海, 李志全.  高双折射双芯光子晶体光纤偏振分束器 . 红外与激光工程, 2014, 43(6): 1863-1868.
    [15] 吴幸智, 刘大军, 杨俊义, 宋瑛林.  新型金属铟酞菁酯的光学非线性和光限幅特性 . 红外与激光工程, 2014, 43(1): 108-112.
    [16] 卢礼萍, 魏良淑, 骆晓森, 倪晓武, 陆建.  基于Berreman矩阵研究一维掺有各向异性材料缺陷的光子晶体偏振特性 . 红外与激光工程, 2014, 43(3): 828-832.
    [17] 左娅妮, 李政勇, 杨峥, 刘未华, 陈长权, 吴家盛.  基于硅雪崩光电二极管的双光子吸收实验 . 红外与激光工程, 2014, 43(12): 3928-3931.
    [18] 陶世兴, 杨丽玲, 赵新才, 胡腾, 李建中, 彭其先.  双曲正割脉冲在光纤中传输的非线性效应 . 红外与激光工程, 2013, 42(10): 2669-2671.
    [19] 马依拉木·木斯得克, 姚建铨, 陆颖, 吴宝群, 郝丛静, 段亮成.  高双折射高非线性低损耗八边形光子晶体光纤特性 . 红外与激光工程, 2013, 42(12): 3373-3378.
    [20] 王新涛, 屈惠明, 曲红星, 龚靖棠, 王琳.  各向异性粗糙海面对掠入射激光的散射特性研究 . 红外与激光工程, 2013, 42(11): 2935-2939.
  • 加载中
图(11)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  8
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-20
  • 修回日期:  2020-09-25
  • 网络出版日期:  2021-01-14
  • 刊出日期:  2020-12-25

矢量光场激发三阶非线性光学效应的研究进展(特邀)

doi: 10.3788/IRLA20201050
    作者简介:

    顾兵(1974-),男,教授,博士生导师,博士,主要从事非线性光学及其应用、光场调控和飞秒光镊技术等方面的研究。Email:gubing@seu.edu.cn

基金项目:  国家自然科学基金(11774055)
  • 中图分类号: O437

摘要: 具有偏振结构分布的强激光与非线性光学材料相互作用导致了多种新颖的非线性光学效应,反映了材料的非线性光学特性,调制了光场的传播行为。笔者概述了矢量光场激发三阶非线性光学效应的研究进展。首先简要介绍了任意偏振光激发三阶非线性光学效应的理论,如非线性薛定谔方程、光束传播方程、各向同性和各向异性三阶非线性光学系数。也简要介绍了表征三阶非线性光学系数的 Z-扫描技术。在弱聚焦条件下,给出了诸如径向偏振光、杂化偏振光和柠檬型庞加莱光束这三种类型矢量光场的焦场表达式。其次,重点回顾了多种矢量光场激发的各向同性/各向异性三阶非线性光学效应,包括径向偏振光激发的各向异性非线性光学效应、杂化偏振光激发的各向同性和各向异性非线性光学效应、柠檬型庞加莱光束激发的各向同性/各向异性非线性光学效应。最后,简要讨论了矢量光场在非线性偏振旋转、光束整形、可控光场塌缩与成丝和光限幅方面的应用。

English Abstract

    • 1972年Pohl在实验上生成了径向偏振光和角向偏振光[1]。1995年前后Hall小组报道了一系列矢量光场的理论研究工作[2-3]。2000年Brown小组研究了柱状矢量光场的紧聚焦特性,发现紧聚焦的径向偏振光产生了很强的纵向电场分量,而角向偏振光可以在焦场处获得纯的纵向磁场[4]。这些特性引起了研究者们的极大兴趣,然而这种由于光场空间特殊偏振态分布所导致的独特性质无法在标量光场中实现,所以矢量光场开始得到较多关注。2003年Quabis小组利用径向偏振光实验上获得了0.16λ2的聚焦斑,远小于相同条件下线偏振入射场的0.26λ2聚焦斑,更小聚焦斑具有的应用前景使得这一实验结果引起了研究者的广泛兴趣[5]。2009年Zhan对矢量光场从数学概念到应用进行了全面的综述[6]。至此,矢量光场及其应用进入了快速发展时期。人们提出了各种新型矢量光场的生成技术[7-9],研究了其焦场和传播特性[4, 10-11],开发了其在众多领域的应用[6, 12-14]

      近半个世纪以来,三阶非线性光学材料因其在非线性光子器件中的技术应用而受到广泛关注。大多数材料(如无序分子和纳米材料的分散液)呈现出三阶非线性光学效应的各向同性或宏观各向同性[15]。由于晶体的点群对称性和能带结构,晶体中的三阶非线性光学响应一般是各向异性的[16-17]。这种各向异性的三阶光学非线性强烈地依赖于入射光场的偏振和晶体的取向。在线偏振光的激发下,人们研究了诸如BaF2[18]、ZnSe[19]、单根ZnO纳米线[20]、非极性GaN[21]和黑磷[22]等材料的各向异性三阶非线性光学效应。

      由于偏振态的额外维度,近年来研究人员报道了矢量光场激发的多种各向同性三阶非线性光学效应,如可控的非线性传播[23]、自聚焦动力学[24]、矢量自衍射[25]和非线性偏振旋转[26-27]等。由于非线性极化与光场的偏振和晶体特性密切相关,通常三阶非线性光学效应是各向异性的。具有偏振结构的矢量光场与各向异性非线性光学材料相互作用产生了新颖的各向异性非线性光学效应和应用,包括自旋角动量的重新分配[28-29]、光限幅效应的增强[30]、可控场塌缩与成丝[31]、以及激光束整形[32]等。

      文中综述了近年来矢量光场激发各向同性和各向异性三阶非线性光学效应的研究进展,简要介绍了任意偏振光激发三阶非线性光学效应的基本理论,重点概述了三种矢量光场激发的各向同性/各向异性三阶非线性光学效应,最后简要讨论了它们在诸如非线性偏振旋转、光束整形和可控光场塌缩与成丝等方面的应用,展望了矢量光场激发三阶非线性光学效应的发展前景。

    • 由于晶体分为七大晶系32个点群,描述其三阶非线性极化率张量χ(3)比较复杂[33]。因此,绝大多数研究集中在最简单的各向同性和立方对称性晶体材料。此节将介绍任意偏振光场通过厚/薄的三阶非线性光学介质的传播方程,给出各向同性/各向异性非线性折射率和双光子吸收系数。

    • 对于任意偏振的光矢量,包括标量光场和矢量光场,都可以分解为左右旋圆偏振光线性叠加的形式:

      $$\vec E = \left( {\begin{array}{*{20}{c}} {{E_ + }{{\vec \sigma }_ + }} \\ {{E_ - }{{\vec \sigma }_ - }} \end{array}} \right)$$ (1)

      式中:${{\vec \sigma }_ + }$${{\vec \sigma }_ - } $分别为左旋和右旋圆偏振基矢。

      对于任意偏振光在三阶非线性光学介质中传播时,利用缓变包络近似,可以得到介质中两个圆偏振光的耦合非线性薛定谔方程为[34]

      $$\frac{1}{r}\frac{\partial }{{\partial r}}\left( {r\dfrac{{\partial {E_ \pm }}}{{\partial r}}} \right) - 2i{\kappa _ \pm }\dfrac{{\partial {E_ \pm }}}{{\partial {\textit{z}}}} - \kappa _ \pm ^2{E_ \pm } + \varepsilon _ \pm ^{{\rm{eff}}}{\kappa ^2}{E_ \pm } = 0$$ (2)

      式中:$\varepsilon _ \pm ^{{\rm{eff}}} = 1 + 4\pi {\chi ^{(1)}} + 4\pi \chi _ \pm ^{{\rm{NL}}}$为有效极化率,${\chi ^{(1)}}$为线性极化率,$\chi _{ \pm }^{{\rm{NL}}}$为三阶非线性极化率;${\kappa _ \pm } = {n_{0, \;\pm }}\kappa = {n_0}\omega /c$为两圆偏振分量的波矢,${n_0}$为线性折射率,$\omega $为光的圆频率,$c$为真空中的光速。

    • 假设非线性光学样品足够薄,使得样品内由于衍射或折射率改变对光束尺寸的影响可以忽略不计。在这种情况下,由公式(2)可得分别描述光强和相位的两个方程:

      $$\dfrac{{\partial I}}{{\partial {\textit{z}}}} = - {\alpha _0}I - {\alpha _2}{I^2}$$ (3)
      $$\dfrac{{\partial \Delta {\phi _ \pm }}}{{\partial {\textit{z}}}} = k{n_{2, \pm }}I$$ (4)

      式中:${\alpha _0}$为线性吸收系数;${\alpha _2}$为双光子吸收系数;${n_{2, \pm }}$为与左右旋圆偏振相关的非线性折射率;$k = 2\pi /\lambda $为波矢,$\lambda $为光的波长。

      需要强调的是公式(2)~(4)适用于描述各向同性和立方对称性晶体材料,也就是说样品具有各向同性的线性光学系数(${\alpha _0}$${n_0}$),而三阶非线性光学系数可以是各向同性的或者是各向异性的。${n_{2, \pm }}$${\alpha _2}$分别与三阶非线性极化率${\chi ^{(3)}}$的实部和虚部相关。

      通常,三阶非线性极化率系数$\chi _{ijkl}^{(3)}$是一个四阶张量,可以用81个张量元来描述。对于空间高度对称的晶体来说,这种独立张量元的数量将大幅减少。以下将分别介绍各向同性和各向异性三阶非线性光学系数。

    • 对于各向同性的三阶非线性光学介质,基于左右旋圆偏振正交基矢,可以获得与左右旋分量相关的各向同性非线性折射率$n_{{\rm{2,}} \pm }^{{\rm{iso}}}$[27]和各向同性双光子吸收系数$\alpha _{\rm{2}}^{{\rm{iso}}}$[35-36]分别为:

      $$n_{2, \pm }^{{\rm{iso}}} = \frac{3}{{{\varepsilon _0}cn_0^2}}\left[ {2{\rm{Re}} (A) + {\rm{Re}} (B)\frac{{{{(1 \mp e)}^2}}}{{1 + {e^2}}}} \right]$$ (5)
      $$\alpha _2^{{\rm{iso}}} = \frac{{12\pi }}{{{\varepsilon _0}cn_0^2\lambda }}\left[ {2{\rm{Im}} (A) + {\rm{Im}} (B){{\left( {\frac{{1 - {e^2}}}{{1 + {e^2}}}} \right)}^2}} \right]$$ (6)

      式中:${\varepsilon _0}$为真空中的介电常数;$e = (|{E_ + }| - |{E_ - }|)/ (|{E_ + }| + |{E_ - }|)$为偏振椭圆的椭偏率;$A = \chi _{{\rm{1122}}}^{{\rm{(3)}}}$$B = \chi _{{\rm{1221}}}^{{\rm{(3)}}}$为各向同性介质中三阶非线性极化率的两个独立张量元。对各向同性非线性,满足$\chi _{{\rm{1111}}}^{{\rm{(3)}}} = 2\chi _{{\rm{1122}}}^{{\rm{(3)}}} + \chi _{{\rm{1221}}}^{{\rm{(3)}}}$。根据产生光学非线性的物理机理不同,AB的相对大小也不尽相同。具体来说,在分子取向非线性时,$B/A = 6$;在非共振的电子非线性情况下,$B/A = 1$;在电致伸缩或热致非线性时,$B/A = 0$[33]

      可以看出,各向同性三阶非线性光学系数与光场的椭偏率$e$密切相关。公式(5)和(6)的特例如下:对圆偏振光($e = + 1$和−1分别对应左旋和右旋圆偏振光),非线性折射率和双光子吸收系数分别为$n_{2, \pm }^{{\rm{iso,cir}}} = 6{\rm{Re}} (A)/({\varepsilon _0}cn_0^2)$$\alpha _2^{{\rm{iso,cir}}} = 24\pi {\rm{Im}} (A)/\left({\varepsilon _0}cn_0^2\lambda \right )$;对$e = 0$ 的线偏振光,可得$n_2^{\rm{0}} = 3{\rm{Re}}\left [\chi _{1111}^{(3)}\right]/({\varepsilon _0}cn_0^2)$$\alpha _2^{\rm{0}} =12\pi {\rm{Im}}\left [\chi _{1111}^{(3)}\right] /({\varepsilon _0}cn_0^2\lambda )$

    • 为简化起见,以立方对称性晶体(例如BaF2和ZnSe)为例研究任意椭圆偏振光激发下的各向异性三阶非线性光学效应。此时三阶非线性极化率${\chi ^{(3)}}$只有三个独立分量$\chi _{{\rm{1111}}}^{{\rm{(3)}}}$$\chi _{{\rm{1122}}}^{{\rm{(3)}}}$$\chi _{{\rm{1221}}}^{{\rm{(3)}}}$。接下来,假定任意光束正入射至薄晶体表面,并且沿[001]晶轴传播,晶体的取向角$\theta $是偏振椭圆的长半轴与[100]晶轴之间的夹角。在这种特定的情况下,可得到与左旋和右旋相关的各向异性三阶非线性折射率为[29]

      $$n_{2, \pm }^{{\rm{ani}}} = n_2^0\left[ {1 \mp \frac{{2e\delta }}{{1 + {e^2}}} - \frac{\sigma }{2}{{\sin }^2}(2\theta )\frac{{{{(1 \mp e)}^2}}}{{1 + {e^2}}}} \right]$$ (7)

      各向异性双光子吸收系数为[32]

      $$\alpha _2^{{\rm{ani}}} = \alpha _2^0\left[ {1 - \frac{{4{e^2}}}{{{{(1 + {e^2})}^2}}}\delta - \frac{1}{2}\sigma {{\sin }^2}(2\theta ){{\left( {\frac{{1 - {e^2}}}{{1 + {e^2}}}} \right)}^2}} \right]$$ (8)

      其中,各向异性系数$\sigma $和二向色性系数$\delta $分别为:

      $$\sigma = \frac{{\chi _{1111}^{(3)} - \chi _{1122}^{(3)} - 2\chi _{1221}^{(3)}}}{{\chi _{1111}^{(3)}}}$$ (9)
      $$\delta = \frac{{\chi _{1111}^{(3)} + \chi _{1122}^{(3)} - 2\chi _{1221}^{(3)}}}{{2\chi _{1111}^{(3)}}}$$ (10)

      式中:$n_2^{\rm{0}}$$\alpha _2^{\rm{0}}$分别为线偏振光的电场矢量平行于[100]晶轴时的三阶非线性折射率和双光子吸收系数。

      有趣的是公式(7)和(8)有三种特殊情况:线偏振光($e = 0$)时,可得$n_{\rm{2}}^{{\rm{lin}}} = n_2^{\rm{0}}[1 - \sigma {\sin ^2}(2\theta )/2]$$\alpha _{\rm{2}}^{{\rm{lin}}} = \alpha _2^{\rm{0}}[1 - \sigma {\sin ^2}(2\theta )/2]$[18];圆偏振光(即$e = \pm 1$)时,可得$n_{\rm{2}}^{{\rm{cir}}} = n_2^{\rm{0}}(1 - \delta )$$\alpha _{\rm{2}}^{{\rm{cir}}} = \alpha _2^{\rm{0}}(1 - \delta )$[37];当材料具有各向同性的三阶非线性折射和双光子吸收(即$\sigma = 0$)时,公式(7)和(8)分别简化为公式(5)和(6)[35, 37]

    • 为了表征材料的三阶非线性光学系数,人们广泛采用单光束Z-扫描技术,该技术具有实验简单、测量灵敏度高、可同时测量$\chi _{1111}^{{\rm{(3)}}}$的大小和符号等优点[38]。在过去的近三十年里,传统Z-扫描技术得到了极大的改进,被用来表征三阶非线性极化率${\chi ^{(3)}}$的张量元[18, 29, 32, 37]。例如,通过对线偏振光Z-扫描信号与晶体取向之间的依赖关系,可以得到$\chi _{1111}^{{\rm{(3)}}}$和各向异性系数$\sigma $[18];分别用线性偏振光和圆偏振光进行Z-扫描测量,以确定各向同性和立方对称性晶体中${\chi ^{(3)}}$的独立张量元的大小和符号[37];用任意椭圆偏振光Z-扫描表征各向异性非线性光学介质中的三阶非线性极化率张量[29, 32]

      原理上,采用任意椭圆偏振光束在不同晶体取向角$\theta $下分别进行闭孔和开孔Z-扫描测量,可以获得各向异性非线性光学系数$n_2^0$$\alpha _2^0$$\sigma $$\delta $。也可以采用如下简单而有效的方案:首先,测量不同晶体取向角$\theta $下的线偏振光($e = 0$)闭孔和/或开孔Z-扫描曲线;其次,计算出不同$\theta $值下的非线性折射率$n_{\rm{2}}^{{\rm{lin}}}$和/或双光子吸收系数$\alpha _{\rm{2}}^{{\rm{lin}}}$;第三,用$n_{\rm{2}}^{{\rm{lin}}} = n_2^0[1 - \sigma {\sin ^2}(2\theta )/2]$$\alpha _{\rm{2}}^{{\rm{lin}}} = \alpha _2^0[1 - \sigma {\sin ^2}(2\theta )/2]$分别拟合$n_{\rm{2}}^{{\rm{lin}}} \sim \theta $$\alpha _{\rm{2}}^{{\rm{lin}}} \sim \theta $曲线(如图1所示),获得参数$n_2^0$$\alpha _2^0$$\sigma $;第四,开展圆偏振光Z-扫描测量并提取非线性折射率$n_{\rm{2}}^{{\rm{cir}}}$$\alpha _{\rm{2}}^{{\rm{cir}}}$;最后,借助于已知的$n_2^0$$\alpha _2^0$值,利用$n_{\rm{2}}^{{\rm{cir}}} = n_2^0(1 - \delta )$和/或$\alpha _{\rm{2}}^{{\rm{cir}}} = \alpha _2^0(1 - \delta )$可得出二向色性系数$\delta $

      图  1  线偏振光激发下ZnSe晶体中晶体取向角$\theta $依赖的双光子吸收系数$\alpha _{\rm{2}}^{{\rm{lin}}}$[32]

      Figure 1.  Dependence of $\alpha _{\rm{2}}^{{\rm{lin}}}$ on the crystal orientation angle $\theta $ for ZnSe crystal at $e = 0$[32]

    • 强激光束与物质相互作用导致了多种新颖的非线性光学效应。聚焦激光束提供了强光场。由于非线性光学效应与光场特性有关,因此,有必要首先对聚焦光束的焦场进行研究。此节介绍了径向偏振光、杂化偏振光和庞加莱光束的弱聚焦场,给出了任意矢量光场通过非线性克尔介质后的光场传播理论,讨论了三种矢量光场激发的各向同性/各向异性非线性折射效应。

    • 此节的目的是给出三种典型矢量光场(即,径向偏振光、杂化偏振光和庞加莱光束,其光强和偏振态分布如图2所示)通过薄透镜弱聚焦后的电场解析表达式,为理解光与物质的相互作用奠定基础。

      图  2  (a)径向偏振光;(b)杂化偏振光;(c)柠檬形庞加莱光束及其偏振态分布

      Figure 2.  (a) Radially polarized beam; (b) Hybridly polarized beam;(c) Lemon Poincaré beam with polarization distributions

      基于旁轴近似下的矢量瑞利-索墨菲公式,可得电场为[39]

      $$ \begin{split} \vec E(\rho ,\varphi ,{\textit{z}}) =& \left( {\begin{array}{*{20}{c}} {{E_ + }(\rho ,\varphi ,{\textit{z}}){{\vec \sigma }_ + }} \\ {{E_ - }(\rho ,\varphi ,{\textit{z}}){{\vec \sigma }_ - }} \end{array}} \right) = \dfrac{{ - {\rm{i}}k}}{{2\pi (f + {\textit{z}})}}{e^{ik(f + {\textit{z}})}}\cdot\\ & \displaystyle\int\limits_0^\infty {\int\limits_0^{2\pi } {\left( {\begin{array}{*{20}{c}} {{E_ + }(r,\phi ){{\vec \sigma }_ + }} \\ {{E_ - }(r,\phi ){{\vec \sigma }_ - }} \end{array}} \right)} } \times \exp \left( {\dfrac{{{\rm{i}}k{r^2}}}{{2(f + {\textit{z}})}}} \right)\cdot\\ & \exp \left( { - \dfrac{{{\rm{i}}k\rho r\cos (\phi - \varphi )}}{{f + {\textit{z}}}}} \right)r{\rm{d}}r{\rm{d}}\phi \\ \end{split} $$ (11)

      式中:${E_ \pm }(r,\phi )$为入射面电场的左右旋圆偏振分量。注意,坐标原点${\textit{z}} = 0$位于透镜的几何焦点处,而位置${\textit{z}} = - f$对应于透镜平面处。

      为了获得薄透镜对矢量光场聚焦的解析表达式,可以利用如下两个积分定理[4, 39]

      $$\int_0^{2\pi } {{e^{ \pm i(m\phi + {\varphi _0})}}\exp [{\rm{i}}x\cos (\phi - \theta )]} {\rm{d}}\phi = 2\pi {i^m}{J_m}(x){e^{ \pm i(m\theta + {\varphi _0})}}$$ (12)
      $$\int_0^\infty {{r^2}{e^{ \!- \!\beta {r^2}}}{J_m}(\gamma r){\rm{d}}r} \! =\! \dfrac{{\sqrt \pi }}{{4{\beta ^{3/2}}}}{e^{\! - \!t}}\left[ {2t{I_{(m \!-\! 2)/2}}(t)\!-\! (m \!- 1 + 2t){{\rm{I}}_{{\rm{m}}/2}}(t)} \right]$$ (13)

      式中:${J_m}( \cdot )$为第一类m阶贝塞尔函数;${\rm{Re}} [m] > - 1$${\rm{Re}} [\beta ] > 0$$\gamma > 0$$t = {\gamma ^2}/(8\beta )$${{\rm{I_m}}}( \cdot )$为修正的m阶贝塞尔函数。

    • 对于径向偏振光,其入射平面的电场可以写成[40]

      $$\vec E(r,\phi ) = \left( {\begin{array}{*{20}{c}} {{E_ + }(r,\phi ){{\vec \sigma }_ + }} \\ {{E_ - }(r,\phi ){{\vec \sigma }_ - }} \end{array}} \right) = \frac{{A(r)}}{{\sqrt 2 }}\left( {\begin{array}{*{20}{c}} {{e^{ - i\phi }}{{\vec \sigma }_ + }} \\ {{e^{ + i\phi }}{{\vec \sigma }_ - }} \end{array}} \right)$$ (14)

      式中:$A(r)$为径向依赖的矢量光场横截面的振幅分布。为简化起见,笔者把径向偏振光和杂化偏振光被薄透镜聚焦时的振幅取为最低阶拉盖尔-高斯光束$A(r) \propto r/w \cdot \exp [ - {r^2}/{w^2} - ik{r^2}/(2f)]$,其中,$w$为输入本征高斯光束的半径,$f$为薄透镜的焦距。

      将公式(14)代入到公式(11),利用公式(12)和(13)的积分定理,可得径向偏振光的焦场为[28, 40]

      $$\!\vec E(\rho ,\varphi ,{\textit{z}}) \!= \!\!\left( {\begin{array}{*{20}{c}} {{\!\!\!E_ + }{{\vec \sigma }_ + }}\!\!\! \\ {{\!\!\!E_ - }{{\vec \sigma }_ - }} \!\! \end{array}} \right) = \sqrt {\dfrac{{8\eta }}{\pi }} \dfrac{{{E_0}{g_1}f}}{{{{\text{μ}} ^{3/2}}{w^3}(f + {\textit{z}})}}{e^{ik(f + {\textit{z}}) - 2\eta }}\left( {\begin{array}{*{20}{c}} {{\!\!\!e^{ - i\varphi }}{{\vec \sigma }_ + }}\! \!\!\!\\ {{\!\!\!e^{ + i\varphi }}{{\vec \sigma }_ - }}\!\! \!\! \end{array}} \right)$$ (15)

      式中:$\mu = 1/{w^2} + ik{\textit{z}}/[2f(f + {\textit{z}})]$$\eta = {k^2}{r^2}/[8 \mu {(f + {\textit{z}})^2}]$${E_0}$为矢量光场在焦点处的峰值电场振幅;${g_1} = 2.066\;37$为归一化常数。正如公式(15)所描述的,聚焦的径向偏振光具有局域线偏振,其光场分布在自由空间任意传播位置均保持初始偏振态分布。

      通过公式(15),聚焦的径向偏振光的光强可写为:

      $$I(\rho ,{\textit{z}}) = \dfrac{{8{I_0}g_1^2{f^2}\sqrt {\eta {\eta ^*}} }}{{\pi {{\left| \mu \right|}^3}{w^6}{{(f + {\textit{z}})}^2}}}{e^{ - 2\eta - 2{\eta ^*}}}$$ (16)

      式中:星号*为复数的复共轭;${I_0} = \varepsilon /(\sqrt \pi g_1^2\omega _0^2\tau )$为焦点处的峰值光强,其中,$\varepsilon $为入射的能量,$\tau $为激光脉冲持续时间内最大值${e^{ - 1}}$处的半宽度,${\omega _0} = \lambda f/(\pi w)$为聚焦的矢量光场的腰斑半径。相应地,聚焦光场的瑞利长度为${{\textit{z}}_0} = k\omega _0^2/2$

    • 杂化偏振光在${\textit{z}} = 0$平面上的电场分布可以表示为:

      $$\vec E(r,\phi ) = \left( {\begin{array}{*{20}{c}} {{E_ + }(r,\phi ){{\vec \sigma }_ + }} \\ {{E_ - }(r,\phi ){{\vec \sigma }_ - }} \end{array}} \right) = \frac{{A(r)}}{{\sqrt 2 }}\left( {\begin{array}{*{20}{c}} {({e^{i\phi }} - i{e^{ - i\phi }}){{\vec \sigma }_ + }} \\ {({e^{i\phi }} + i{e^{ - i\phi }}){{\vec \sigma }_ - }} \end{array}} \right)$$ (17)

      相应地,可得到沿$ + {\textit{z}}$方向传播的聚焦杂化偏振光的电场分布为[27]

      $$\begin{split} \vec E(\rho ,\varphi ,{\textit{z}}) =& \left( {\begin{array}{*{20}{c}} {{E_ + }{{\vec \sigma }_ + }} \\ {{E_ - }{{\vec \sigma }_ - }} \end{array}} \right) = \sqrt {\frac{{2\eta }}{\pi }} \frac{{{E_0}{g_1}f}}{{{{\text{μ}} ^{3/2}}{w^3}(f + {\textit{z}})}}{e^{ik(f + {\textit{z}}) - 2\eta }}\\ &\left( {\begin{array}{*{20}{c}} {({e^{i\varphi }} - i{e^{ - i\varphi }}){{\vec \sigma }_ + }} \\ {({e^{i\varphi }} + i{e^{ - i\varphi }}){{\vec \sigma }_ - }} \end{array}} \right) \end{split}$$ (18)
    • 对于柠檬形庞加莱光束,考虑到它是由相互正交的左旋高斯光束与右旋最低阶拉盖尔-高斯光束叠加而成,其横向电场表达式可写为[41]

      $$\vec E(r,\phi ) = \left( {\begin{array}{*{20}{c}} {{E_ + }(r,\phi ){{\vec \sigma }_ + }} \\ {{E_ - }(r,\phi ){{\vec \sigma }_ - }} \end{array}} \right) = {A_0}\exp \left( { - \frac{{{r^2}}}{{{w^2}}}} \right)\left( {\begin{array}{*{20}{c}} {{{\vec \sigma }_ + }} \\ {\dfrac{{\sqrt 2 r}}{w}{e^{i\phi }}{{\vec \sigma }_ - }} \end{array}} \right)$$ (19)

      式中:${A_0}$为光束的振幅。

      类似地,在坐标原点为焦平面的情况下,沿着$ + {\textit{z}}$方向传播的柠檬形庞加莱光束经过薄透镜聚焦后,其电场可表示为[42]

      $$\vec E(\rho ,\varphi ,{\textit{z}}) \!=\! \left( {\begin{array}{*{20}{c}} {{\!\!\!\!E_ + }{{\vec \sigma }_ + }}\!\!\!\! \\ {{\!\!\!\!E_ - }{{\vec \sigma }_ - }}\!\!\!\! \end{array}} \right) \!=\! \dfrac{{{E_0}f}}{{{w^2}\mu (f + {\textit{z}})}}{e^{ik(f + {\textit{z}}) - 2\eta }}\left( {\begin{array}{*{20}{c}} \!\!{{{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\vec \sigma }_ + }} \\ {\dfrac{{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! k\rho {e^{i(\varphi - \pi /2)}}}}{{\sqrt 2 w\mu (f + {\textit{z}})}}{{\vec \sigma }_ - \!\!\!\!}} \end{array}} \right)\!\!\!$$ (20)

      特别是,在焦平面(即${\textit{z}} = 0$)处,可得焦场的表达式为:

      $$\vec E(\rho ,\varphi ,0) = \left( {\begin{array}{*{20}{c}} \!\!{{E_ + }{{\vec \sigma }_ + }} \\ \!\!{{E_ - }{{\vec \sigma }_ - }} \end{array}} \right) \!=\! {E_0}{e^{ikf}}\exp \left( { - \frac{{{\rho ^2}}}{{\omega _0^2}}} \right)\left( {\begin{array}{*{20}{c}} {{{\!\!\!\!\!\vec \sigma }_ + }} \\ {\dfrac{{\!\!\!\!\!\!\sqrt 2 \rho {e^{i(\varphi - \pi /2)}}}}{{{\omega _0}}}{{\vec \sigma }_ - }}\!\!\!\! \end{array}} \right)$$ (21)

      此外,经透镜聚焦的庞加莱光束在传输到远场时,光束的束腰半径${\omega _{\textit{z}}}$随传输距离z的变化。因而,在任意平面处的束腰半径可表示为${\omega _{\textit{z}}} = {\omega _0}{(1 + {{\textit{z}}^2}/{\textit{z}}_0^2)^{1/2}}$

    • 假设具有任意偏振态分布的激光束在光学薄样品中沿$ + {\textit{z}}$轴传播,该样品的各向同性线性吸收系数为${\alpha _0}$,三阶非线性折射率为${n_{2, \pm }}$。在薄样品(即$L < < {{\textit{z}}_0}$,其中$L$是样品的厚度)近似下,根据样品入射面的电场${E_ \pm }(\rho ,\varphi ,{\textit{z}})$,可得样品出射面的复电场为:

      $${\vec E_e}(\rho ,\varphi ,{\textit{z}}) = \left( {\begin{array}{*{20}{c}} {E_ + ^e(\rho ,\varphi ,{\textit{z}}){{\vec \sigma }_ + }} \\ {E_ - ^e(\rho ,\varphi ,{\textit{z}}){{\vec \sigma }_ - }} \end{array}} \right) = {e^{ - {\alpha _0}L/2}}\left( {\begin{array}{*{20}{c}} {{E_ + }{e^{i\Delta {\phi _ + }}}{{\vec \sigma }_ + }} \\ {{E_ - }{e^{i\Delta {\phi _ - }}}{{\vec \sigma }_ - }} \end{array}} \right)$$ (22)

      式中:$\Delta {\phi _ \pm }(\rho ,\varphi ,{\textit{z}}) = k{n_{2, \pm }}I(\rho ,\varphi ,{\textit{z}}){L_{{\rm{eff}}}}$${L_{{\rm{eff}}}} = (1 - {e^{ - {\alpha _0}L}})/ {\alpha _0}$。此外,定义了焦点处的峰值非线性折射相移为${\varPhi _ \pm } = k{n_{2, \pm }}{I_0}{L_{{\rm{eff}}}}$$\Delta {\phi _0} = kn_2^0{I_0}{L_{{\rm{eff}}}}$。注意,对于各向同性和各向异性非线性折射,三阶非线性折射率${n_{2, \pm }}$分别用公式(5)和(7)表示。

      基于矢量瑞利-索墨菲公式,可得到通过非线性光学介质后的任意矢量光场传播到远场平面的电场表达式为:

      $$ \begin{split} {{\vec E}_a}({r_a},\vartheta ,{{d}}) =& \left( {\begin{array}{*{20}{c}} {E_ + ^a{{\vec \sigma }_ + }} \\ {E_ - ^a{{\vec \sigma }_ - }} \end{array}} \right) = - \frac{{ik{e^{ikD}}}}{{2\pi D}}\displaystyle\int\limits_0^\infty \int\limits_0^{2\pi } \left( {\begin{array}{*{20}{c}} {E_ + ^e{{\vec \sigma }_ + }} \\ {E_ - ^e{{\vec \sigma }_ - }} \end{array}} \right)\cdot \\ &\exp \left( {\frac{{{\rm{i}}k{\rho ^2}}}{{2D}}} \right) \exp \left( { - \frac{{{\rm{i}}k{r_a}\rho }}{D}\cos (\varphi - \vartheta )} \right)\rho {\rm{d}}\rho {\rm{d}}\varphi \\ \end{split} $$ (23)

      式中:$D = d - {\textit{z}}$$d$为焦平面到远场平面之间的距离。通过电场表达式(23),可以进一步研究非线性光学效应对矢量光场的光强分布、偏振态分布、自旋角动量分布和偏振畸点演化等的影响[27-29, 42]

    • 径向偏振光经各向异性非线性克尔介质后,远场平面的光强和偏振态分布随非线性相移$\Delta {\phi _0}$和各向异性系数$\sigma $的变化如图3所示[28]。在各向同性克尔非线性($\sigma = 0$)的情况下,远场的光强图样呈现出多环结构,并且仍然维持着局域线偏振分布。存在各向异性非线性($\sigma \ne 0$)时,远场的光强图样由原来圆对称的多环结构逐渐变化为具有四重旋转对称性的花瓣结构。这一现象可以解释如下。径向偏振光与具有各向异性的非线性克尔介质相互作用的过程中,产生了具有四重旋转对称性的额外相移,即$\Delta \phi \propto [1 - \sigma {\sin ^2}(2\theta )/ 2]$。这种额外的非线性相移影响着光场的传播行为,最终使得远场的衍射图样由圆对称的多环结构过渡到具有四重旋转对称性的方形结构。通过计算电场的斯托克斯参量,可图示出远场观测面的偏振态分布。可以看出,由各向异性非线性导致的自衍射光强图样,在光场横截面上存在丰富的偏振态(包括线偏振、左旋椭圆偏振以及右旋椭圆偏振),这与各向同性非线性光学效应导致的光强图样中仅仅存在局域线偏振分布完全不同[25]。此外,内环的偏振态分布几乎为线偏振,而外环却呈现杂化偏振分布。总之,利用各向异性折射非线性,可以改变径向偏振光的偏振态和自旋角动量分布[28]

      图  3  在不同$\sigma $$\Delta {\phi _0}$下,径向偏振光经过各向异性非线性克尔介质后远场的光强和偏振态分布[28]

      Figure 3.  Far-field intensity patterns with polarization distributions of radially polarized beams for anisotropic Kerr media with different values of $\sigma $ and $\Delta {\phi _0}$[28]

    • 杂化偏振光经各向同性非线性克尔介质调制后,在不同取值下的$B/A$$\Delta {\phi _0}$下,远场的光强和偏振态分布如图4所示[27]。对于$B/A = 0$的情况,正如公式(5)所描述的,非线性折射率的左右旋部分与椭偏率无关,也就是说,杂化偏振光入射到各向同性非线性克尔介质后,非线性光学效应不影响入射光的偏振态分布,从而,在传输的过程中,透射光仍然保持着起初的偏振态分布。此外,远场的强度分布呈现为圆对称的多环结构。对于$B/A \ne 0$的情况,远场光强不再为圆对称的多环结构,而是呈现类似方形结构,并且存在四重旋转对称性,这种旋转对称是由杂化偏振光的偏振态分布的对称性引起的(见图2(b))。当$B/A = 1$时,随着相移$\Delta {\phi _0}$的增加,更多的光场能量衍射到外环。然而,当$B/A = 6$时,除了衍射光的边缘外,远场的光强分布几乎与$\Delta {\phi _0}$无关。在固定$\Delta {\phi _0}$为某一定值的情况下,随着$B/A$的比值从0逐渐增加到6,更多的光场能量衍射到内环,这与在整个非线性过程中,B的相对贡献量增加有关。远场的空间自相位调制效应可以理解为:具有偏振态结构分布的光场,通过各向同性非线性光学效应后,杂化偏振光会产生如公式(5)所描述的结构相位,这种结构相位对光束的传输行为起到调制作用,从而导致具有结构的远场强度分布。此外,空间局域偏振椭圆的取向角和椭偏率均随着$\Delta {\phi _0}$的变化而改变[27]

      图  4  在不同$B/A$$\Delta {\phi _0}$下,杂化偏振光经过各向同性非线性克尔介质后远场的光强和偏振态分布[27]

      Figure 4.  Far-field intensity patterns with polarization distributions of hybridly polarized beams for isotropic Kerr media with different values of $B/A$ and $\Delta {\phi _0}$[27]

    • 图5给出了各向异性非线性克尔介质位于透镜焦平面处时,在不同晶体取向角$\theta $情况下,远场观测平面上杂化偏振光的光强图样、偏振态分布和自旋角动量分布[29]。由于光学非线性引起的折射率变化,远场光强图样呈现一个中心暗斑,周围环绕着同心环结构。如图5的第一行所示,由于随方位角变化的椭偏率的杂化偏振光激发各向异性克尔非线性,使得光强具有四重旋转对称的正方形分布。有趣的是,当晶体相对于光场旋转时,即[100]晶轴从平行变为垂直于光场的x轴,更多的光能量被衍射到外环。与远场光强分布类似,远场观测平面上的偏振态分布和自旋角动量分布具有二重旋转对称性。对于$\theta = 0^\circ $$\theta = 45^\circ $的特殊情况,在相对于x轴为$\varphi = m \cdot 45^\circ $ ($m = 0, 1, \cdot \cdot \cdot 7$)的方位角方向上存在三个非线性本征偏振(即线偏振、左旋圆偏振和右旋圆偏振)。当各向异性非线性克尔介质的[100]晶轴平行或者垂直于光场的$x$轴时,这些杂化偏振光的局域本征偏振态不会发生变化,并且出射场的偏振态以及自旋角动量与入射光场存在很大的相似性。对于任意的晶体取向(例如$\theta = {30^\circ}$),远场的偏振态分布与未激发光学非线性时相比完全不同。这种具有偏振结构的光场与各向异性非线性介质相互作用,由于增加了晶体取向角这一新维度,对远场观测面的杂化偏振光的偏振态以及自旋角动量分布的调控将更加灵活。

      图  5  在不同晶体取向角$\theta $下,杂化偏振光经各向异性非线性克尔介质后远场光强分布、自旋角动量及偏振态分布[29]

      Figure 5.  Far-field intensity patterns and spin angular momentumdistributions with polarization distributions of hybridly polarized beams through anisotropic Kerr nonlinearities for different crystal orientation angles $\theta $[29]

    • 聚焦的柠檬形庞加莱光束通过各向同性或各向异性非线性克尔介质后,传输到三个典型位置处的光强和偏振态分布如图6所示[42]。其中,非线性克尔介质放置在焦平面${\textit{z}} = 0$处,三个典型的位置分别为$d = {{\textit{z}}_0}$$2{{\textit{z}}_0}$$20{{\textit{z}}_0}$。当介质无光学非线性时,庞加莱光束在传输过程中光强分布几乎保持不变,只发生整体的偏振旋转[41]。柠檬形庞加莱光束通过各向同性非线性克尔介质以后,如图6第一行所显示的,由于非线性衍射,在传输以及扩张的过程中,叠加有偏振分布的强度图样仍然保持着最初的圆对称性,其原因是这种结构的光束在各向同性自聚焦非线性介质中能稳定传输[23]。有趣的是,由于各向异性克尔非线性,柠檬形庞加莱光束传输到远场,光强图样由中心亮斑围绕的衍射环变成椭圆结构伴随着两段衍射环(如图6第二行所示)。这种由各向异性光学非线性引起的特殊的光强图样以及偏振态分布可以理解如下。柠檬形偏振结构光场通过各向异性折射非线性,导致了柠檬形庞加莱光束具有空间结构的非线性相移(见公式(7))。这种额外的相移来自于两个幅度不相等的左旋和右旋部分,分别为$\Delta {\phi _ + }$$\Delta {\phi _ - }$。当光束传输到远场平面时,这种$\Delta {\phi _ + }$$\Delta {\phi _ - }$之间的相位差值变得越来越大,导致了合成后的庞加莱光束横截面上的每个点都发生了非线性偏振旋转。此外,由于具有各向异性的光学非线性,引起了远场光强图样和偏振分布出现了对称性破缺。

      图  6  在各向同性(第一行)和各向异性(第二行)克尔非线性激发下,柠檬形庞加莱光束在不同位置处的光强和偏振态分布[42]

      Figure 6.  Polarization distributions superimposed on intensity patterns of lemon Poincaré beams at different positions for (the first row) isotropic and (the second row) anisotropic Kerr nonlinearities[42]

    • 具有偏振结构的矢量光场与各向同性/各向异性三阶非线性光学介质相互作用,导致了多种新颖的效应和应用,如调制不稳定性[43]、自聚焦动力学[24]、三次谐波产生[44]、矢量自衍射[25]、可控光场塌缩与成丝[45]、非线性光学传输[23]和光限幅[30]等。此节将介绍矢量光场在非线性偏振旋转、光束整形、可控光场塌缩与成丝和光限幅器中的应用。

    • 对于各向同性的非线性光学介质,三阶极化率张量有两个独立的分量$\chi _{1122}^{(3)}$$\chi _{1221}^{(3)}$。与各向同性非线性介质中$\chi _{1221}^{(3)}$有关的一个有趣的效应是非线性椭圆旋转,其历史可以追溯到1964年Terhune等人所做的经典工作[46]。对于椭圆偏振光,当$\chi _{1221}^{(3)}$的虚部为零时,只有偏振椭圆的取向角发生变化。利用非线性椭圆旋转效应可以判别光学非线性的来源[47]、表征三阶非线性极化率张量[48]、开发非线性偏振开关[49]等。

      大多数关于非线性偏振旋转的研究都是由均匀偏振的标量光场(即椭圆偏振光)激发的。利用椭圆偏振矢量光场激发各向同性克尔非线性,笔者报道了径向变化的非线性偏振旋转效应,其原理示意图如图7所示[50]。光学克尔非线性引起的远场光强分布图案呈现出多个同心环结构,这是由光学非线性感应折射率变化引起的。另一方面,偏振态分布也呈现出圆对称的同心环结构。在光场横截面固定半径处,不同取向的局域偏振椭圆具有相同的椭圆率。图7的结果可以做如下解释。聚焦的椭圆偏振矢量光场具有圆对称的光强分布。介质通过各向同性非线性光学效应产生了一个圆对称的附加相位。这个额外的相移影响了光场本身的传播行为。由此产生的现象反映了圆对称远场衍射图样的变化。应该强调的是,椭圆偏振矢量光场的圆对称性不仅在各向同性非线性介质中,而且在任何传播位置都保持不变。由于椭圆偏振矢量光场与各向同性非线性介质的相互作用,远场观测平面上光场横截面上的偏振态分布呈现多个圆形对称的同心环结构,导致远场平面上的径向变化的偏振旋转分布。

      图  7  径向变化的非线性偏振旋转效应示意图

      Figure 7.  Schematic diagram of radial-variant nonlinear ellipse rotation effect

      具有空间偏振结构分布的矢量光场通过各向同性非线性克尔介质后,导致了新颖的非线性偏振旋转效应。例如,利用偏振结构光场在各向同性自聚焦介质中的非线性传播来控制偏振旋转[26];杂化偏振矢量光场通过各向同性非线性克尔介质后,产生了具有四重旋转对称性的非线性偏振旋转效应[27]

      在线性光学范围内,来源于旋光性、法拉第效应或者双折射的偏振旋转是线偏振光在通过某些材料时偏振平面的旋转。矢量光场,例如杂化偏振矢量光场,通过单轴晶体后发生了偏振旋转效应[51]。类似的,具有偏振结构的光场与各向异性克尔非线性介质相互作用将会产生新颖的非线性偏振旋转效应。例如,最近笔者报道了柠檬形庞加莱光束在各向异性非线性克尔介质中的非线性偏振旋转效应[42]。结果表明,光学非线性增强了聚焦光束在传输过程中的偏振旋转。此外,光学非线性的各向异性导致了偏振分布的对称性破缺。

    • 通过调控光场的偏振态分布来整形光场,在光学领域取得了重大进展。例如,Zhan等人提出了采用广义柱状矢量光束的聚焦场整形技术,通过调整广义柱状矢量光场的初始旋转角,获得的平顶形焦场分布[52];Chang等人报道了一种三维矢量光场的整形方法,设计的矢量光场具有预设的光强分布和可控的偏振态沿三维任意曲线的变化[53]。在过去的十几年里,平顶光束由于其在材料加工、光刻和激光打印等方面的广泛应用而备受关注。人们提出了采用相位衍射光学元件、光阑和空间光调制器等各种各样的整形技术,将激光束从高斯形光强分布转换成了平顶形状。通常,光束整形是利用光学元件或者调控光场的振幅、相位和/或偏振来完成的。但是,非线性光学方法偶尔用于光束整形[54]

      最近,笔者提出了利用各向异性双光子吸收效应,将高斯形光强分布的矢量光场整形为平顶光束[32]。如公式(8)所描述的,各向异性双光子吸收系数强烈依赖于晶体取向角和光场的椭偏率,通过同时调控矢量光场的偏振取向和椭偏率,如图8(a)所示,用这种偏振态分布的矢量光场激发各向异性双光子吸收效应,就可以将高斯形光强分布的矢量光场整形为平顶型光强分布。这种各向异性双光子吸收为操控偏振结构光场的光强分布提供了一条新途径,在光束整形、光限幅和光探测等领域有着广阔的应用前景。

      图  8  具有高斯形光强分布的矢量光场通过各向异性双光子吸收器后的(a)光场图样和偏振态分布,(b)光强沿光场径向分布[32]

      Figure 8.  (a) Intensity patterns superimposed with polarization distributions and (b) intensity profiles along the diameter of the vectorial light fields with Gaussian intensity distribution after passing through the anisotropic two-photon absorber[32]

      Bouchard等提出了控制非线性传播的偏振整形[23]图9为柠檬形和星形庞加莱光束通过自聚焦非线性介质后的光强和偏振态分布。不同于拉盖尔-高斯和其他快速经历不稳定性的光束,这两种庞加莱光束的传输不以光束破裂为标志,同时仍表现出非线性约束和自聚焦等特性。结果表明,通过调整偏振的空间结构,可以有效地控制非线性传播的影响。这些发现为高功率光束在非线性光学介质中的传输提供了一种新的途径,使其空间结构和偏振特性具有可控的畸变。

      图  9  柠檬形和星形庞加莱光束通过自聚焦非线性介质后的光强和偏振分布[23]

      Figure 9.  Intensity and polarization distributions of lemon and star Poincaré beams after propagating through the self-focusing nonlinear medium[23]

    • 当输入功率超过一定临界功率时,强光束会在自聚焦介质中发生塌缩。随着塌缩的加剧,高光强会引起其他的非线性光学效应,从而抵消自聚焦效应,最终导致光束成丝。通常,由随机噪声引起的克尔感应调制不稳定性,使得光场塌缩和后续成丝难以控制[55]。然而,由于其在引导微波辐射[56]、毫焦耳级飞秒超连续谱源的产生[57]和太赫兹辐射的增强[58]等方面的学术价值和实际应用,许多研究关注可控光场塌缩及其成丝。

      为了实现光场的可控成丝,人们提出了多种方法,主要是通过整形光场分布[59]、控制输入功率和发散角[60]、采用振幅/相位掩模[61]和利用涡旋光束[62]等来操纵标量光束的振幅和/或相位。

      近年来通过调控光场的偏振态分布,人们报道了各种矢量光场在各向同性克尔介质中的光场塌缩与成丝动力学。首先,柱状矢量光束通过非线性克尔介质导致角向调制不稳定性[43],分裂成不同的塌缩成丝[24]。然而,这些具有随机噪声的径向偏振光产生的光场塌缩与成丝具有不确定性(见图10的第二行)。通过设计光场的杂化偏振态分布,证明了光场塌缩和后续成丝是可控的和可设计的[45]。如图10第一行所示,杂化偏振光导致轴对称破缺。随后,光场发生坍缩,汇聚成确定性的丝状体。此外,在各向同性克尔介质中,杂化偏振光的塌缩成丝对噪声不敏感。这种可控的光场塌缩成丝的机理如下[63]:对称性破缺应该是主动可控的,然后能够有效地抑制随机噪声。牢固的多丝是不可分割的,因为多丝之间的相位总是锁定的。相反,不可控的多丝通常伴随着相位的丢失,即多丝之间变得彼此不相干。

      图  10  具有随机噪声的杂化偏振光(第一行)和径向偏振光(第二行)在各向同性克尔介质中的塌缩行为。这四列(从左到右)依次对应以衍射长度为单位的四个传播距离($\zeta = 0$, 0.12, 0.24, 和0.36)。第一列还给出了偏振态分布[45]

      Figure 10.  Collapsing behaviors of (the first row) hybrid polarized beam and (the second row) radially polarized beam with random noises propagating in isotropic Kerr media. The four columns (from left to right) correspond to four propagation distances in units of diffraction length ($\zeta = 0$, 0.12, 0.24, and 0.36). The distributions of state of polarization are also shown in the first column[45]

      最近,利用杂化偏振态及其空间对称性[64]、结合非线性光学材料的各向异性和矢量光场的偏振结构[31]、或构造扭曲光束[65]等,研究人员已经实现了对随机噪声不敏感的可控塌缩成丝。

    • 作为双光子吸收材料的一个重要应用,光功率限幅技术已被用于保护敏感光学元件或人眼免受强激光损伤。理想的光学限幅器对于低光强或低通量的激光输入具有较高的透过率,而对于高光强或高通量的激光输入则具有较低的透过率。为了增强材料的光限幅效应(也就是降低限幅阈值),人们设计了诸如有机分子材料、量子点和二维材料等性能优良的光限幅材料。另一方面,光限幅效应的增强可以通过开发各种光限幅机制来实现,包括双光子吸收、反饱和吸收和非线性光散射等。值得注意的是,大多数光限幅的研究都是在线偏振激光脉冲下进行的。

      通过调控光场的偏振态分布,笔者从理论和实验上论证了在各向同性双光子吸收器中使用径向偏振光的光限幅效应比使用高斯分布的线偏振光的光限幅效应提高了30%左右[66]。2016年笔者提出了利用径向偏振光增强各向异性双光子吸收器的光限幅效应[30]。通过分析偏振取向依赖的双光子吸收系数,研究了脉冲的径向偏振光激发下的各向异性双光子吸收器的光限幅行为。如图11所示,用径向偏振光激发各向异性双光子吸收器的光限幅效应(σ=−1.5)比使用各向同性双光子吸收器(σ=0)和使用线偏振光的各向异性双光子吸收器的光限幅效应有很大的提高。与偏振方向沿[100]晶体轴的线偏振光相比,径向偏振光激发各向异性双光子吸收器的限幅阈值降低了50%以上。这项工作为偏振依赖的非线性光学效应的增强开辟了新的途径。

      图  11  径向偏振光(RPB)激发各向异性(σ=−1.5)和各向同性(σ=0)双光子吸收器、偏振方向沿[100]晶体轴的线偏振光(θ=0)激发双光子吸收器的光限幅效应[30]

      Figure 11.  Optical limiting effects of anisotropic (σ=−1.5) and isotropic (σ=0) two-photon absorbers using radially polarized beams, and of two-photon absorber using linearly polarized beams for its polarization direction along the [100] crystallographic axis (θ=0)[30]

    • 偏振作为光的内在的和基本的矢量特性,在光与物质相互作用过程中起着举足轻重的作用。通过操控光场的偏振态分布,可以定制任意复杂偏振态分布的矢量光场。将传统非线性光学效应及其应用与光场调控技术相结合,文中主要对矢量光场激发下的新颖三阶非线性光学效应及其应用进行了总结。

      现有的非线性光学研究绝大多数都是用旁轴聚焦激光束进行的。只有少量的激发光学非线性过程的聚焦光束不满足旁轴近似的实验报道,如在界面上处理二次谐波生成[67]或测量纳米粒子的非线性光学响应[68]。另一方面,紧聚焦径向偏振光产生了很强的纵向电场分量[4],为三维光场激发非线性光学效应注入了新的活力。人们报道了有纵向电场参与的二次谐波产生[69],实验观察到了由沿着纳米线方向的纵向电场驱动的二次谐波产生[14]。最近,实验报道了用三维电场激发各向同性均匀介质中的三次谐波产生[70]。通过调控矢量光场的偏振态分布,可以实现紧聚焦三维电场中偏振态的三维控制[71]。可以预见,具有偏振态分布可控的三维电场与三阶非线性光学材料相互作用,必将导致诸多新现象、新效应和新应用。

      目前,大多数研究关注的是矢量光场与各向同性非线性光学材料相互作用产生的三阶非线性光学效应及其应用。在线性光学领域,利用晶体的各向异性光学性质,已经揭示了多种矢量光场在晶体中传播后的光强分布[72]、偏振度[73]和偏振旋转[51]等。类似地,非线性光学材料的各向异性为操纵光场本身提供了额外的自由度,为非线性光子学增加了一个新的维度。借助各向异性光学非线性,例如,可以控制光场的坍缩与成丝[31]、操纵自旋角动量[28]、增强光限幅效应[30]、调控非线性偏振旋转效应[42]等。可以有把握地得出结论:具有偏振结构分布的矢量光场与各向异性光学非线性介质相互作用研究,这与学术兴趣和技术应用直接相关,将是今后一段时间内一个令人兴奋和光明的研究领域。

参考文献 (73)

目录

    /

    返回文章
    返回