留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺镱PCF的端面处理工艺及激光性能研究(特邀)

冯素雅 于春雷 王孟 王世凯 胡丽丽

冯素雅, 于春雷, 王孟, 王世凯, 胡丽丽. 掺镱PCF的端面处理工艺及激光性能研究(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201065. doi: 10.3788/IRLA20201065
引用本文: 冯素雅, 于春雷, 王孟, 王世凯, 胡丽丽. 掺镱PCF的端面处理工艺及激光性能研究(特邀)[J]. 红外与激光工程, 2020, 49(12): 20201065. doi: 10.3788/IRLA20201065
Feng Suya, Yu Chunlei, Wang Meng, Wang Shikai, Hu Lili. Study on end treatment process and laser performance of Yb doped PCF (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201065. doi: 10.3788/IRLA20201065
Citation: Feng Suya, Yu Chunlei, Wang Meng, Wang Shikai, Hu Lili. Study on end treatment process and laser performance of Yb doped PCF (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201065. doi: 10.3788/IRLA20201065

掺镱PCF的端面处理工艺及激光性能研究(特邀)

doi: 10.3788/IRLA20201065
基金项目: 国家自然科学基金(61775224)
详细信息
    作者简介:

    冯素雅(1983-),女,高级工程师,博士,主要从事大模场光纤激光应用研究。 Email:fsy@siom.ac.cn

    通讯作者: 于春雷(1980-),男,研究员,博士生导师,博士,主要从事特种光纤制备及应用研究。 Email:sdycllcy@163.com
  • 中图分类号: TN253

Study on end treatment process and laser performance of Yb doped PCF (Invited)

  • 摘要: 基于自制的掺镱大模场光子晶体光纤,探索出一种高效快速的光子晶体光纤端面处理工艺。使用二氧化碳激光熔接机对光子晶体光纤进行旋转加热处理,并配合大口径光纤切割刀对塌缩区域进行切割。通过对比光纤在不同激光加热功率和加热时间下的塌缩效果,确定了最佳的加热功率和时间。对端面处理后的光纤进行激光震荡实验,测试光纤的激光性能,与未进行端面处理时的激光实验结果相比较,端面塌缩处理没有对光纤的激光性能产生较大的影响。通过所述的实验方法,成功得到高质量光子晶体光纤塌缩端面,空气孔塌缩界面齐整,且没有对光纤本身的激光性能产生较大的影响。实验工艺周期短、成功率高,证明利用激光加热塌缩来处理光子晶体光纤端面是一种非常有效的方法,极大地拓展了光子晶体光纤的使用范围,具有很强的实用价值。
  • 图  1  熔接机内部结构示意图

    Figure  1.  Schematic diagram of internal structure of fusion splicer

    图  2  光纤在单次(a)和多次(b)激光加热时的塌缩结果

    Figure  2.  Collapsed results of optical fiber in single (a) and multiple (b) laser heating

    图  3  极差值小于10 μm的塌缩结果

    Figure  3.  Collapsed results of DSLC less than 10 μm

    图  4  塌缩时间固定在20000 ms时,极差值随激光功率变化的关系曲线

    Figure  4.  DSLC of the collapsed air holes as a function of the measure times with laser power as a parameter, the collapsed time is 20000 ms

    图  5  激光加热塌缩时间 20 000 ms、激光功率14.6 W时塌缩PCF的显微截面图

    Figure  5.  Micrograph cross section of collapsed PCF when the time and laser power are 20000 ms and 14.6 W

    图  6  激光功率为14.6 W和15.3 W时激光加热塌缩时间变化对塌缩极差值的影响

    Figure  6.  DSLC of the collapsed air holes as a function of the measure times with collapsed time as a parameter, the laser power are 14.6 W and 15.3 W

    图  7  光纤激光实验装置图

    Figure  7.  Schematic diagram of fiber laser experiment setup

    图  8  (a)激光光谱及(b)光纤的斜率效率(内嵌图为光纤塌缩切割后的端面图)

    Figure  8.  (a) Laser output spectrum and (b) laser output power versus absorbed pump power curves of PCF fibers (The inset is the fiber endface after the PCF collapse )

  • [1] Russell P. Photonic crystal fibers [J]. Science, 2003, 299(5605): 358-362. doi:  10.1126/science.1079280
    [2] Russell P. Photonic crystal fibers [J]. Journal of Lightwave Technology, 2006, 24(12): 4729-4749. doi:  10.1109/JLT.2006.885258
    [3] Birks T A, Knight J C, Russell P. Endlessly single-mode photonic crystal fiber [J]. Optics Letters, 1997, 22(13): 961-963. doi:  10.1364/OL.22.000961
    [4] Knight J C, Arriaga J, Birks T A, et al. Anomalous dispersion in photonic crystal fiber [J]. Photonic Technology Letters, 2000, 12: 807-809. doi:  10.1109/68.853507
    [5] Knight J C. Photonic crystal fibers [J]. Nature, 2003, 424(6950): 847-851.
    [6] Blanch A O, Knight J C, Wadsworth W J, et al. Highly birefringent photonic crystal fiber [J]. Optics Letters, 2000, 25(18): 1325-1327. doi:  10.1364/OL.25.001325
    [7] Wadsworth W J, Ortigosa-Blanch A, Knight J C, et al. Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source [J]. J Opt Soc Am B, 2002, 19(9): 2148-2155. doi:  10.1364/JOSAB.19.002148
    [8] Leon-Saval S G, Birks T A, Wadsworth W J, et al. Supercontinuum generation in submicron fibre waveguides [J]. Opt Express, 2004, 12(13): 2864-2869. doi:  10.1364/OPEX.12.002864
    [9] Wadsworth W J, Witkowska A, Leon-Saval S G, et al. Hole inflation and tapering of stock photonic crystal fibres [J]. Opt Express, 2005, 13(17): 6541-6549. doi:  10.1364/OPEX.13.006541
    [10] Xiong C, Witkowska A, Leon-Saval S G, et al. Enhanced visible continuum generation from a microchip 1 064 nm laser [J]. Opt Express, 2006, 14(13): 6188-6193.
    [11] Witkowska A, Lai K, Leon-Saval S G, et al. All-fiber anamorphic core-shape transitions [J]. Opt Lett, 2006, 31(18): 2672-2674. doi:  10.1364/OL.31.002672
    [12] Chen Zilun, Hou Jing, Jiang Zongfu. Rost-processing techniques of photonics crystal fibers [J]. Laser & Optoelectronics Progress, 2010, 47(2): 020602. (in Chinese)
    [13] Chen Haihuan, Chen Zilun, Zhou Xuanfeng, et al. Research progress on supercontinuum generation in fiber tapers [J]. Laser & Optoelectronics Progress, 2012, 49(7): 070004. (in Chinese)
    [14] Shikai Wang, Zhilan Li, Chunlei Yu, et al. Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol–gel method [J]. Optical Materials, 2013, 35(9): 1752-1755.
  • [1] 侯尚林, 雷景丽, 吴七灵, 王道斌, 李晓晓, 王慧琴, 曹明华.  高非线性光子晶体光纤中飞秒脉冲压缩(特邀) . 红外与激光工程, 2019, 48(1): 103004-0103004(6). doi: 10.3788/IRLA201948.0103004
    [2] 白秀丽, 陈鹤鸣, 张凌菲.  轨道角动量模传输的圆环形光子晶体光纤 . 红外与激光工程, 2019, 48(2): 222002-0222002(8). doi: 10.3788/IRLA201948.0222002
    [3] 苗效方, 吴鹏, 赵保银.  梳状大模场光纤结构的优化设计 . 红外与激光工程, 2019, 48(9): 918005-0918005(6). doi: 10.3788/IRLA201948.0918005
    [4] 申艳, 解颐, 娄淑琴, 王鑫, 赵彤彤.  基于Contourlet变换和压缩感知的实际光子晶体光纤光 . 红外与激光工程, 2017, 46(3): 321001-0321001(7). doi: 10.3788/IRLA201746.0321001
    [5] 巩稼民, 孟令贺, 杨萌, 郭涛, 郭翠.  基于光子晶体光纤的受激拉曼散射全光波长转换研究 . 红外与激光工程, 2016, 45(12): 1206011-1206011(7). doi: 10.3788/IRLA201645.1206011
    [6] 武丽敏, 宋朋, 王静, 张海鹍, 周城, 陈涛, 张峰.  一种高双折射高负平坦色散压缩型光子晶体光纤 . 红外与激光工程, 2016, 45(S1): 183-187. doi: 10.3788/IRLA201645.S120001
    [7] 武丽敏, 宋朋, 王静, 张海鹍, 周城, 陈涛, 张峰.  具有压缩三角格子的高双折射色散补偿光子晶体光纤 . 红外与激光工程, 2015, 44(S1): 173-177.
    [8] 雷景丽, 晏祖勇, 李晓晓, 刘延君, 武刚, 侯尚林.  近零超平坦色散填充光子晶体光纤的温度特性 . 红外与激光工程, 2015, 44(12): 3740-3743.
    [9] 宋昭远, 刘晓东, 张思远, 黄金华, 张磊磊.  工作在1550nm的全固态光子晶体光纤的设计 . 红外与激光工程, 2015, 44(4): 1354-1358.
    [10] 何晓阳, 张屹遐, 杨春, 陈琦.  太赫兹光子晶体光纤与天线设计 . 红外与激光工程, 2015, 44(2): 534-538.
    [11] 曹凤珍, 张培晴, 戴世勋, 王训四, 徐铁峰, 聂秋华.  用于产生超连续谱的硫系光子晶体光纤的色散特性 . 红外与激光工程, 2014, 43(4): 1150-1155.
    [12] 宋昭远, 黄金华, 张磊磊.  近零平坦色散三包层光子晶体光纤的设计 . 红外与激光工程, 2014, 43(3): 823-827.
    [13] 郭士亮, 黄惠, 童凯, 王志斌, 胡春海, 李志全.  高双折射双芯光子晶体光纤偏振分束器 . 红外与激光工程, 2014, 43(6): 1863-1868.
    [14] 刘永兴, 张培晴, 戴世勋, 王训四, 林常规, 张巍, 聂秋华, 徐铁峰.  中红外硫系光子晶体光纤参量放大特性模拟研究 . 红外与激光工程, 2014, 43(2): 511-516.
    [15] 王玲玲, 郭艳艳, 谭芳, 卢敬娟, 韩科选, 于凤霞.  掺镱光子晶体光纤纤芯材料制备及光纤数值模拟 . 红外与激光工程, 2014, 43(11): 3718-3723.
    [16] 冯睿娟, 娄淑琴, 鹿文亮, 王鑫.  超短双芯光子晶体光纤偏光分束器 . 红外与激光工程, 2014, 43(2): 506-510.
    [17] 陈月娥, 邵秋峰, 王金生.  多芯光子晶体光纤的相干组束集成 . 红外与激光工程, 2014, 43(5): 1454-1457.
    [18] 宋民青, 侯尚林, 张保侠, 黎锁平, 刘延君.  光子晶体光纤布拉格光栅慢光的研究 . 红外与激光工程, 2013, 42(6): 1547-1552.
    [19] 李志全, 李莎, 郝锐, 李晓云, 郑文颖.  混合双包层高双折射光子晶体光纤的特性 . 红外与激光工程, 2013, 42(4): 1044-1049.
    [20] 黄民双, 黄军芬.  布里渊光子晶体光纤环形移频器 . 红外与激光工程, 2012, 41(8): 2125-2129.
  • 加载中
图(8)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-03
  • 修回日期:  2020-12-02
  • 网络出版日期:  2021-01-14
  • 刊出日期:  2020-12-25

掺镱PCF的端面处理工艺及激光性能研究(特邀)

doi: 10.3788/IRLA20201065
    作者简介:

    冯素雅(1983-),女,高级工程师,博士,主要从事大模场光纤激光应用研究。 Email:fsy@siom.ac.cn

    通讯作者: 于春雷(1980-),男,研究员,博士生导师,博士,主要从事特种光纤制备及应用研究。 Email:sdycllcy@163.com
基金项目:  国家自然科学基金(61775224)
  • 中图分类号: TN253

摘要: 基于自制的掺镱大模场光子晶体光纤,探索出一种高效快速的光子晶体光纤端面处理工艺。使用二氧化碳激光熔接机对光子晶体光纤进行旋转加热处理,并配合大口径光纤切割刀对塌缩区域进行切割。通过对比光纤在不同激光加热功率和加热时间下的塌缩效果,确定了最佳的加热功率和时间。对端面处理后的光纤进行激光震荡实验,测试光纤的激光性能,与未进行端面处理时的激光实验结果相比较,端面塌缩处理没有对光纤的激光性能产生较大的影响。通过所述的实验方法,成功得到高质量光子晶体光纤塌缩端面,空气孔塌缩界面齐整,且没有对光纤本身的激光性能产生较大的影响。实验工艺周期短、成功率高,证明利用激光加热塌缩来处理光子晶体光纤端面是一种非常有效的方法,极大地拓展了光子晶体光纤的使用范围,具有很强的实用价值。

English Abstract

    • 随着半导体激光器的发展,光纤激光器的能量逐渐变高时,传统的通信光纤制备方法和结构已经不能满足高亮度(高光束质量和高功率)光纤激光器对光纤的要求,这就要求研究出新型结构的光纤以及新的光纤制备工艺。目前,光纤激光器输出功率的提高主要受限于两个方面:(1)光纤端面的激光损伤,(2)光纤中的非线性效应。为了实现高光束质量的激光输出,并且尽可能克服端面激光损伤和非线性效应这两个因素对功率提高带来的限制,在设计和选用光纤时应尽量减小掺杂纤芯数值孔径(NA),并相应地增大纤芯直径,从而使得基横模LP01的模场直径变大。这种通过降低NA实现大纤芯直径光纤的技术被称为大模场面积光纤(LMAF)技术。近年出现的光子晶体光纤[1-2] (Photonic Crystal Fiber,PCF,又称微结构光纤),由于光纤截面有周期性的折射率分布,并且具有结构灵活性和折射率可调节性,目前被认为是实现大模场单模光纤最有效的方法,这种光纤也是激光光纤研究中最活跃的领域[3-6]。对于高峰值功率和高能量脉冲激光,采用PCF结构可以将纤芯做得很大,模场面积相应变大,更加适合高功率密度的脉冲激光。在这类光纤的研究方面,德国Jena大学、NKT公司等已推出了几种类型的空气孔光子晶体光纤产品。国内在有源光子晶体光纤制备方面的研究较少,主要是以华中科技大学、武汉烽火 通信科技股份有限公司以及中国科学院上海光学精密机械研究所等单位先后开展了掺镱大模场光子晶体光纤的研制工作,并应用于纳秒和皮秒的脉冲放大器中。然而,该种光纤由于存在大量的空气孔结构,使其在实际应用中面临切割、研磨困难以及无法全光纤化等不利情况,严重制约了大模场光纤晶体光纤的应用拓展。在实际应用时,必须采用特殊工艺对PCF端面进行处理,诸如熔接端帽,一方面来改善高功率条件下端面由于温度上升所引起的污染和端面损伤;另一方面提高PCF端面的抗损伤阈值,也为PCF全光纤应用打下基础。PCF端面处理的关键技术是高温塌缩,其方法主要是基于光纤熔融拉锥的方法实现光纤的空气孔塌缩[7-11],由于PCF结构的特殊性,处理工艺难度大,花费高,国际上只有NKT等少数几家公司可以高质量地完成。国内在PCF端面处理方面与国际先进水平还有较大差距,目前仅有国防科技大学等单位有报道[12-13],其采用氢氧焰加热光纤实现了理想的塌缩。

      文中基于自研的掺镱空气孔大模场PCF,采用以往电弧、火焰不同的研究方法,即采用$ {{\rm{C}}{\rm{O}}}_{2} $激光对大模场光子晶体光纤进行塌缩处理,采用该方法的优越性在于:(1)石英光纤在10.6 μm处具有很高的吸收系数;(2)激光与PCF的相互作用与电弧熔接不同,不会在熔接处产生溅射碎片和残余污染;(3)比较容易控制激光的形状和能量。通过该方法实现了对大模场PCF的端面塌缩处理,进一步对塌缩区进光子晶体行切割,获得了端面平整的PCF端面,对比了端面处理前后的光纤的耦合特性及模式传输特性。

    • 实验所用的掺镱大模场光子晶体光纤(Large mode area of photonic crystal fiber, LMA-PCF)为笔者实验室自己拉制而成。光纤端面结构的基本参数为:纤芯直径110 μm,内包层区域直径430 μm,空气孔周期 ${{\varLambda }}=$ 24 μm,空气孔直径3 μm;外包层空气孔直径15 μm,外包层直径571 μm。

    • 主要实验平台为藤仓公司设计的LZM-100 $ {\rm{{CO}}}_{2} $激光熔接机、CT-106切割刀,LZM-100配备了一台功率为30 W的$ {\rm{{CO}}}_{2} $激光器。图1为熔接机的内部结构分布,激光束被分成两路并呈一定角度的光束来加热光纤,可以有效避免光束重合在一起。加热区域激光光斑直径在4 mm左右,可以很好地实现光纤均匀受热。

      图  1  熔接机内部结构示意图

      Figure 1.  Schematic diagram of internal structure of fusion splicer

      将实验所用的PCF表面用分析纯酒精擦拭处理后置于熔接机中,按照一定的转速和加热功率对PCF进行旋转加热,可以实现空气孔的均匀同步塌缩固化,即文中所述PCF中段塌缩技术,之后配合光纤切割刀进行端面切割,即可获得处理好的PCF端面。在高倍显微镜下观察测量光纤空气孔的塌缩结果,为方便分析,用极差值来表征光纤塌缩面的齐整度,极差值的定义为:光纤塌缩面的同一侧面最长和最短的空气孔的长度差(Length different between shortest and longest collapsed air holes,DSLC)。而为了保证塌缩面齐整度的精确性,需要在测量时对光纤多次旋转测量,测量次数至少在3次以上。

    • 图2(a)、(b)分别为光纤不旋转时受单次和多次激光加热时的塌缩结果(非均匀加热下)。可知在非均匀激光加热(即光纤在加热过程中不进行旋转)的情况下,无论是单次还是多次累计的激光加热都会出现塌缩面极不平整,极差值都大于20 μm。而实验中采用激光加热的同时光纤均匀高速旋转,光纤旋转速度为1 (°)/ms (保持不变),可以使得光纤均匀受热,实现空气孔同步固化塌缩,如图3所示,极大地改善了塌缩结果,塌缩面平整,极差值小于10 μm。

      图  2  光纤在单次(a)和多次(b)激光加热时的塌缩结果

      Figure 2.  Collapsed results of optical fiber in single (a) and multiple (b) laser heating

      图  3  极差值小于10 μm的塌缩结果

      Figure 3.  Collapsed results of DSLC less than 10 μm

    • 图4为激光加热塌缩时间t = 20000 ms,激光功率P 分别为14.3、14.6、15.3、15.6 W时的光纤塌缩面极差数值的变化情况,横坐标为光纤塌缩后在显微镜下的测量次数,纵坐标为极差值。可以明显看出,在功率过低(黑线表示的14.3 W)和功率过高(绿线表示的15.6 W)时极差数值都在11~20之间,极差数值和起伏范围都很大,在塌缩界面上表现为界面参差不齐。而图4中红线表示的14.6 W和蓝线表示的15.3 W的塌缩结果更佳,极差数值都小于10 μm且变化范围不超过2 μm。极差数值小且起伏小,表示塌缩界面平整。

      图  4  塌缩时间固定在20000 ms时,极差值随激光功率变化的关系曲线

      Figure 4.  DSLC of the collapsed air holes as a function of the measure times with laser power as a parameter, the collapsed time is 20000 ms

      图5图4中红线表示的14.6 W的塌缩界面图。塌缩界面平整,实验结果最佳。由以上测试结果可知:最佳塌缩功率的变化范围很小,以图4为例,变化范围在0.7 W以内(14.6 W~15.3 W)。过低和过高的功率都不利于光纤的塌缩效果,易导致断面平整度降低。

      图  5  激光加热塌缩时间 20 000 ms、激光功率14.6 W时塌缩PCF的显微截面图

      Figure 5.  Micrograph cross section of collapsed PCF when the time and laser power are 20000 ms and 14.6 W

    • 基于上述研究,分别采用14.6 W和15.3 W功率进行塌缩,对比研究了不同激光加热塌缩时间对PCF塌缩性能的影响。图6为激光功率P 为14.6 、15.3 W,激光加热塌缩时间t 为10000 、20000 ms时光纤塌缩面极差数值的变化情况。

      图  6  激光功率为14.6 W和15.3 W时激光加热塌缩时间变化对塌缩极差值的影响

      Figure 6.  DSLC of the collapsed air holes as a function of the measure times with collapsed time as a parameter, the laser power are 14.6 W and 15.3 W

      图6可知,采用14.6 W功率塌缩时,在t =10000 ms时,极差曲线没有发生太大的变化,极差数值均小于10 μm且起伏小。而当塌缩功率为15.3 W时,由于塌缩时间的变化极差曲线出现大幅度的改变。交叉对比则可以得出在低功率的条件下塌缩时间对实验结果的影响要小于激光功率较高时的结果。

      通过以上分析可知,光纤塌缩的实验结果受激光加热功率和旋转加热时间的双重影响,实验最终得出最佳的加热塌缩功率为14.6 W附近,t 为10000~20000 ms,该条件下PCF断面塌缩极差值在10 μm以内,塌缩效果最好。

    • 图7为激光测试装置示意图。用中心波长为980 nm的半导体激光器作泵浦源,泵浦光经过两透镜准直聚焦在光纤输入端面上,在输入端放置二向色分光棱镜,其在980 nm有高透过率,在1000 nm具有高反射率(>99.9%)。在光纤输出端放置泵浦光滤波片,最后放置功率计和光谱仪用于测量激光功率和1 μm激光光谱。

      图  7  光纤激光实验装置图

      Figure 7.  Schematic diagram of fiber laser experiment setup

      取一长度为2 m的自制掺Yb:PCF进行激光测试,根据前面的实验结果和分析,将光纤两端在激光功率为14.6 W、时间为10000 ms进行塌缩,配合CT-106光纤切割刀进行端面切割,获得平整的光纤端面后进行激光测试,激光测试结果如图8所示。泵浦光为100 W时光纤输出端1 μm激光最高功率为24 W,斜率效率为48%,这一结果与参考文献[14]中掺Yb:PCF光纤的测试结果相一致。对比光纤塌缩前后的激光性能变化,发现塌缩端面处理没有对光纤本身的激光性能产生较大的影响,说明文中所述的PCF端面处理工艺具有较强的实用价值。测试结果斜率效率较低,一方面原因是由于光纤纤芯是采用非MCVD的粉体烧结工艺引起的损耗较高所致,另一方面,塌缩光纤的长度对泵浦光的端面耦合存在影响,这一特性有待后续工作中深入研究。

      图  8  (a)激光光谱及(b)光纤的斜率效率(内嵌图为光纤塌缩切割后的端面图)

      Figure 8.  (a) Laser output spectrum and (b) laser output power versus absorbed pump power curves of PCF fibers (The inset is the fiber endface after the PCF collapse )

    • 采用二氧化碳激光器对大模场PCF进行端面塌缩处理,在直径为570 μm的自制掺Yb:PCF上通过中段塌缩切割技术获得了平整的塌缩端面。采用长度为2 m的掺Yb:PCF开展激光震荡实验,当泵浦光为100 W时光纤输出端最高激光功率为24 W,斜率效率为48%。采用该塌缩工艺处理PCF,可较为方便地开展光纤切割和激光实验研究,且未对光纤激光性能产生很大的影响,具有较强的实用价值。

参考文献 (14)

目录

    /

    返回文章
    返回