留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯的红外探测机理与器件结构研究进展

杨旗 申钧 魏兴战 史浩飞

杨旗, 申钧, 魏兴战, 史浩飞. 基于石墨烯的红外探测机理与器件结构研究进展[J]. 红外与激光工程, 2020, 49(1): 0103003-0103003(23). doi: 10.3788/IRLA202049.0103003
引用本文: 杨旗, 申钧, 魏兴战, 史浩飞. 基于石墨烯的红外探测机理与器件结构研究进展[J]. 红外与激光工程, 2020, 49(1): 0103003-0103003(23). doi: 10.3788/IRLA202049.0103003
Yang Qi, Shen Jun, Wei Xingzhan, Shi Haofei. Recent progress on the mechanism and device structure of graphene-based infrared detectors[J]. Infrared and Laser Engineering, 2020, 49(1): 0103003-0103003(23). doi: 10.3788/IRLA202049.0103003
Citation: Yang Qi, Shen Jun, Wei Xingzhan, Shi Haofei. Recent progress on the mechanism and device structure of graphene-based infrared detectors[J]. Infrared and Laser Engineering, 2020, 49(1): 0103003-0103003(23). doi: 10.3788/IRLA202049.0103003

基于石墨烯的红外探测机理与器件结构研究进展

doi: 10.3788/IRLA202049.0103003
基金项目: 

国家自然科学基金(11574308);国家重点研发计划(2017YFE0131900)

详细信息
    作者简介:

    杨旗(1990-),男,博士生,主要从事石墨烯基红外探测器件的研究。Email:yangqi@cigit.ac.cn

  • 中图分类号: TN215

Recent progress on the mechanism and device structure of graphene-based infrared detectors

  • 摘要: 石墨烯具有超高载流子迁移率、零带隙、宽波段响应等性质,是具有潜力的红外光电探测材料。通过分析石墨烯基红外探测器的发展历程,综述了石墨烯红外光电响应的机理,对石墨烯基探测器的响应度、波段、速度等性能和器件结构进行了梳理,并围绕石墨烯基探测器在材料制备、工艺兼容性等方面的挑战进行了探讨和展望。
  • [1] Park J, Ahn Y H, Ruiz-Vargas C. Imaging of photocurrent generation and collection in single-layer graphene[J]. Nano Letters, 2009, 9(5):1742-1746.
    [2] Xia F N, Mueller T, Golizadeh-Mojarad R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor[J]. Nano Letters, 2009, 9(3):1039-1044.
    [3] Xia F, Mueller T, Lin Y M, et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12):839-843.
    [4] Ryzhii V, Ryzhii M. Graphene bilayer field-effect phototransistor for terahertz and infrared detection[J]. Physical Review B, 2009, 79(24):245311.
    [5] Bao W, Jing L, Velasco J, Jr, et al. Stacking-dependent band gap and quantum transport in trilayer graphene[J]. Nature Physics, 2011, 7(12):948-952.
    [6] Sonde S, Giannazzo F, Raineri V, et al. Electrical properties of the graphene/4H-SiC (0001) interface probed by scanning current spectroscopy[J]. Physical Review B, 2009, 80(24):241406.
    [7] Xie C, Wang Y, Zhang Z X, et al. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications[J]. Nano Today, 2018, 19:41-83.
    [8] Goossens S, Navickaite G, Monasterio C, et al. Broadband image sensor array based on graphene-CMOS integration[J]. Nature Photonics, 2017, 11(6):366-371.
    [9] Xia F, Mueller T, Golizadeh-Mojarad R, et al. Photocurrent imaging and efficient photon detection in a graphene transistor[J]. Nano Letters, 2009, 9(3):1039-1044.
    [10] Drain C M, Christensen B, Mauzerall D. Photogating of ionic currents across a lipid bilayer[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(18):6959-6962.
    [11] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6):363-368.
    [12] Fang H, Hu W. Photogating in low dimensional photodetectors[J]. Advanced Science, 2017, 4(12):1700323.
    [13] Guo X, Wang W, Nan H, et al. High-performance graphene photodetector using interfacial gating[J]. Optica, 2016, 3(10):1066-1070.
    [14] Lemme M C, Koppens F H L, Falk A L, et al. Gate-activated photoresponse in a graphene p-n junction[J]. Nano Letters, 2011, 11(10):4134-4137.
    [15] Xu X, Gabor N M, Alden J S, et al. Photo-thermoelectric effect at a graphene interface junction[J]. Nano Letters, 2010, 10(2):562-566.
    [16] Gabor N M, Song J C W, Ma Q, et al. Hot carrier-assisted intrinsic photoresponse in graphene[J]. Science, 2011, 334(6056):648-652.
    [17] Song J C W, Rudner M S, Marcus C M, et al. Hot carrier transport and photocurrent response in graphene[J]. Nano Letters, 2011, 11(11):4688-4692.
    [18] Sun D, Aivazian G, Jones A M, et al. Ultrafast hot-carrier-dominated photocurrent in graphene[J]. Nature Nanotechnology, 2012, 7(2):114-118.
    [19] Rogalski A, Kopytko M, Martyniuk P. Two-dimensional infrared and terahertz detectors:Outlook and status[J]. Applied Physics Reviews, 2019, 6(2):021316.
    [20] Piscanec S, Lazzeri M, Mauri F, et al. Kohn anomalies and electron-phonon interactions in graphite[J]. Physical Review Letters, 2004, 93(18):185503.
    [21] Lazzeri M, Piscanec S, Mauri F, et al. Electron transport and hot phonons in carbon nanotubes[J]. Physical Review Letters, 2005, 95(23):236802.
    [22] Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano, 2014, 8(2):1086-1101.
    [23] Bistritzer R, MacDonald A H. Electronic cooling in graphene[J]. Physical Review Letters, 2009, 102(20):206410.
    [24] Tse W K, Das Sarma S. Energy relaxation of hot dirac fermions in graphene[J]. Physical Review B, 2009, 79(23):235406.
    [25] Song J C W, Reizer M Y, Levitov L S. Disorder-assisted electron-phonon scattering and cooling pathways in graphene[J]. Physical Review Letters, 2012, 109(10):106602.
    [26] Graham M W, Shi S F, Ralph D C, et al. Photocurrent measurements of supercollision cooling in graphene[J]. Nature Physics, 2013, 9(2):103-108.
    [27] Betz A C, Jhang S H, Pallecchi E, et al. Supercollision cooling in undoped graphene[J]. Nature Physics, 2013, 9(2):109-112.
    [28] Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1):109-162.
    [29] Koppens F H, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 2014, 9(10):780-793.
    [30] Xia F, Yan H, Avouris P. The interaction of light and graphene:Basics, devices, and applications[J]. Proceedings of the IEEE, 2013, 101(7):1717-1731.
    [31] Tissot J L, Trouilleau C, Fieque B, et al. Uncooled microbolometer detector:Recent developments at ulis[J]. Opto-Electronics Review, 2006, 14(1):25-32.
    [32] Soref R A. Silicon-based optoelectronics[J]. Proceedings of the IEEE, 1993, 81(12):1687-1706.
    [33] Richards P L. Bolometers for infrared and millimeter waves[J]. Journal of Applied Physics, 1994, 76(1):1-24.
    [34] Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photo-detectors[J]. Nature Photonics, 2013, 7(11):888-891.
    [35] Voisin C, Placais B. Hot carriers in graphene preface[J]. Journal of Physics-Condensed Matter, 2015, 27(16):160301.
    [36] Brida D, Tomadin A, Manzoni C, et al. Ultrafast collinear scattering and carrier multiplication in graphene[J]. Nature Communications, 2013, 4:1987.
    [37] Breusing M, Kuehn S, Winzer T, et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer[J]. Physical Review B, 2011, 83(15):153410.
    [38] Rodriguez-Nieva J F, Dresselhaus M S, Levitov L S. Thermionic emission and negative dI/dV in photoactive graphene heterostructures[J]. Nano Letters, 2015, 15(3):1451-1456.
    [39] Liang S J, Ang L K. Electron thermionic emission from graphene and a thermionic energy converter[J]. Physical Review Applied, 2015, 3(1):014002.
    [40] Massicotte M, Schmidt P, Vialla F, et al. Photo-thermionic effect in vertical graphene heterostructures[J]. Nature Communications, 2016, 7:12174.
    [41] Kim R, Perebeinos V, Avouris P. Relaxation of optically excited carriers in graphene[J]. Physical Review B, 2011, 84(7):075449.
    [42] Freitag M, Low T, Xia F, et al. Photoconductivity of biased graphene[J]. Nature Photonics, 2013, 7(1):53-59.
    [43] Freitag M, Low T, Avouris P. Increased responsivity of suspended graphene photodetectors[J]. Nano Letters, 2013, 13(4):1644-1648.
    [44] Yan J, Kim M H, Elle J A, et al. Dual-gated bilayer graphene hot-electron bolometer[J]. Nature Nanotechnology, 2012, 7(7):472-478.
    [45] Furchi M, Urich A, Pospischil A, et al. Microcavity-integrated graphene photodetector[J]. Nano Letters, 2012, 12(6):2773-2777.
    [46] Pospischil A, Humer M, Furchi M M, et al. CMOS-compatible graphene photodetector covering all optical communication bands[J]. Nature Photonics, 2013, 7(11):892-896.
    [47] Gan X, Shiue R J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 2013, 7(11):883-887.
    [48] Lee I H, Yoo D, Avouris P, et al. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy[J]. Nature Nanotechnology, 2019, 14(4):313-319.
    [49] Ni Z, Ma L, Du S, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors[J]. ACS Nano, 2017, 11(10):9854-9862.
    [50] Sun T, Wang Y, Yu W, et al. Flexible broadband graphene photodetectors enhanced by plasmonic Cu3-xP colloidal nanocrystals[J]. Small, 2017, 13(42):UNSP 1701881.
    [51] Zhao B, Zhao J M, Zhang Z M. Enhancement of near-infrared absorption in graphene with metal gratings[J]. Applied Physics Letters, 2014, 105(3):031905.
    [52] Yao Y, Shankar R, Rauter P, et al. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection[J]. Nano Letters, 2014, 14(7):3749-3754.
    [53] Fang Z, Liu Z, Wang Y, et al. Graphene-antenna sandwich photodetector[J]. Nano Letters, 2012, 12(7):3808-3813.
    [54] Azar N S, Shrestha V R, Crozier K B. Bull's eye grating integrated with optical nanoantennas for plasmonic enhancement of graphene long-wave infrared photodetectors[J]. Applied Physics Letters, 2019, 114(9):091108.
    [55] Zhang Y, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 2013, 4:1811.
    [56] Liu Y, Gong T, Zheng Y, et al. Ultra-sensitive and plasmon-tunable graphene photodetectors for micro-spectrometry[J]. Nanoscale, 2018, 10(42):20013-20019.
    [57] Nikitskiy I, Goossens S, Kufer D, et al. Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor[J]. Nature Communications, 2016, 7:11954.
    [58] Chen Z, Li X, Wang J, et al. Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity[J]. ACS Nano, 2017, 11(1):430-437.
    [59] Sassi U, Parret R, Nanot S, et al. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance[J]. Nature Communications, 2017, 8:14311.
    [60] Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5):297-301.
    [61] Urich A, Unterrainer K, Mueller T. Intrinsic response time of graphene photodetectors[J]. Nano Letters, 2011, 11(7):2804-2808.
    [62] Schuler S, Schall D, Neumaier D, et al. Controlled generation of a p-n junction in a waveguide integrated graphene photodetector[J]. Nano Letters, 2016, 16(11):7107-7112.
    [63] Schall D, Porschatis C, Otto M, et al. Graphene photodetectors with a bandwidth >76 GHz fabricated in a 6″ wafer process line[J]. Journal of Physics D-Applied Physics, 2017, 50(12):124004.
    [64] Li Z Q, Henriksen E A, Jiang Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Physics, 2008, 4(7):532-535.
    [65] Liu C H, Chang Y C, Norris T B, et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature[J]. Nature Nanotechnology, 2014, 9(4):273-278.
    [66] Herring P K, Hsu A L, Gabor N M, et al. Photoresponse of an electrically tunable ambipolar graphene infrared thermocouple[J]. Nano Letters, 2014, 14(2):901-907.
    [67] Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6):363-368.
    [68] Roy K, Padmanabhan M, Goswami S, et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices[J]. Nature Nanotechnology, 2013, 8(11):826-830.
    [69] Guo N, Hu W, Jiang T, et al. High-quality infrared imaging with graphene photodetectors at room temperature[J]. Nanoscale, 2016, 8(35):16065-16072.
    [70] Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature Materials, 2012, 11(10):865-871.
    [71] Qin H, Sun J, Liang S, et al. Room-temperature, low-impedance and high-sensitivity terahertz direct detector based on bilayer graphene field-effect transistor[J]. Carbon, 2017, 116:760-765.
    [72] An X, Liu F, Jung Y J, et al. Tunable graphene-silicon heterojunctions for ultrasensitive photodetection[J]. Nano Letters, 2013, 13(3):909-916.
    [73] Spirito D, Coquillat D, De Bonis S L, et al. High performance bilayer-graphene terahertz detectors[J]. Applied Physics Letters, 2014, 104(6):061111.
    [74] Mittendorff M, Winnerl S, Kamann J, et al. Ultrafast graphene-based broadband THz detector[J]. Applied Physics Letters, 2013, 103(2):021113.
    [75] Vabbina P, Choudhary N, Chowdhury A A, et al. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene schottky junction[J]. ACS Applied Materials & Interfaces, 2015, 7(28):15206-15213.
    [76] Long M, Liu E, Wang P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters, 2016, 16(4):2254-2259.
    [77] Zomer P J, Dash S P, Tombros N, et al. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride[J]. Applied Physics Letters, 2011, 99(23):232104.
    [78] Gammelgaard L, Caridad J M, Cagliani A, et al. Graphene transport properties upon exposure to PMMA processing and heat treatments[J]. 2D Materials, 2014, 1(3):035005.
  • [1] 许航瑀, 王鹏, 陈效双, 胡伟达.  二维半导体红外光电探测器研究进展(特邀) . 红外与激光工程, 2021, 50(1): 20211017-1-20211017-14. doi: 10.3788/IRLA20211017
    [2] 吴峰, 戴江南, 陈长清, 许金通, 胡伟达.  GaN基多量子阱红外探测器研究进展(特邀) . 红外与激光工程, 2021, 50(1): 20211020-1-20211020-15. doi: 10.3788/IRLA20211020
    [3] 黄一彬, 王英, 朱颖峰, 魏超群, 孙鸿生, 董黎.  红外探测器杜瓦封装多余物的衍射分析及控制 . 红外与激光工程, 2021, 50(3): 20200177-1-20200177-6. doi: 10.3788/IRLA20200177
    [4] 余黎静, 唐利斌, 杨文运, 郝群.  非制冷红外探测器研究进展(特邀) . 红外与激光工程, 2021, 50(1): 20211013-1-20211013-15. doi: 10.3788/IRLA20211013
    [5] 李凯, 王玄玉, 高艳卿, 董文杰.  石墨烯红外波段复折射率及消光性能研究 . 红外与激光工程, 2021, 50(4): 20200246-1-20200246-7. doi: 10.3788/IRLA20200246
    [6] 朱旭波, 彭震宇, 曹先存, 何英杰, 姚官生, 陶飞, 张利学, 丁嘉欣, 李墨, 张亮, 王雯, 吕衍秋.  InAs/GaSb二类超晶格中/短波双色红外焦平面探测器 . 红外与激光工程, 2019, 48(11): 1104001-1104001(6). doi: 10.3788/IRLA201948.1104001
    [7] 戴子杰, 杨晶, 龚诚, 张楠, 孙陆, 刘伟伟.  基于石墨烯的光控太赫兹调制器 . 红外与激光工程, 2019, 48(1): 125001-0125001(6). doi: 10.3788/IRLA201948.0125001
    [8] 钟燕平, 袁红辉, 鞠国豪.  非均匀性校正的长波光导探测器读出电路设计 . 红外与激光工程, 2018, 47(1): 104001-0104001(6). doi: 10.3788/IRLA201847.0104001
    [9] 李国元, 唐新明, 樊文锋, 窦显辉, 马跃.  基于地面红外探测器的星载激光测高仪在轨几何定标 . 红外与激光工程, 2017, 46(11): 1117004-1117004(7). doi: 10.3788/IRLA201746.1117004
    [10] 陈刚, 李墨, 吕衍秋, 朱旭波, 曹先存.  分子束外延InAlSb红外探测器光电性能的温度效应 . 红外与激光工程, 2017, 46(12): 1204003-1204003(5). doi: 10.3788/IRLA201746.1204003
    [11] 李强, 陈立恒.  复杂外热流条件下红外探测器组件热设计 . 红外与激光工程, 2016, 45(9): 904002-0904002(7). doi: 10.3788/IRLA201645.0904002
    [12] 汪洋, 刘大福, 徐勤飞, 王妮丽, 李雪, 龚海梅.  不同结构红外光导探测器组件光串分析 . 红外与激光工程, 2016, 45(4): 404001-0404001(5). doi: 10.3788/IRLA201645.0404001
    [13] 曹岚, 邓若汉, 龚海梅.  红外探测器寿命试验自动化真空系统设计 . 红外与激光工程, 2015, 44(6): 1712-1715.
    [14] 刘家琛, 唐鑫, 巨永林.  微型红外探测器组件快速冷却过程数值模拟分析 . 红外与激光工程, 2015, 44(3): 816-820.
    [15] 孙志远, 常松涛, 朱玮.  中波红外探测器辐射定标的简化方法 . 红外与激光工程, 2014, 43(7): 2132-2137.
    [16] 刘炜.  两种氧化方法对InSb探测器钝化效果的研究 . 红外与激光工程, 2013, 42(7): 1815-1818.
    [17] 骆守俊, 彭晴晴, 郭亮.  红外探测器内部颗粒物对图像的影响 . 红外与激光工程, 2013, 42(3): 590-594.
    [18] 吴思捷, 赵晓蓓, 杨东升, 闫杰.  激光辐照对红外探测器的损伤 . 红外与激光工程, 2013, 42(5): 1184-1188.
    [19] 徐庆庆, 陈建新, 周易, 李天兴, 金巨鹏, 林春, 何力.  InAs/GaSb II类超晶格中波红外探测器 . 红外与激光工程, 2012, 41(1): 7-9.
    [20] 曹家强, 吴传贵, 彭强祥, 罗文博, 张万里, 王书安.  硅基PZT 热释电厚膜红外探测器的研制 . 红外与激光工程, 2011, 40(12): 2323-2327.
  • 加载中
计量
  • 文章访问数:  1083
  • HTML全文浏览量:  271
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-11
  • 修回日期:  2019-11-21

基于石墨烯的红外探测机理与器件结构研究进展

doi: 10.3788/IRLA202049.0103003
    作者简介:

    杨旗(1990-),男,博士生,主要从事石墨烯基红外探测器件的研究。Email:yangqi@cigit.ac.cn

基金项目:

国家自然科学基金(11574308);国家重点研发计划(2017YFE0131900)

  • 中图分类号: TN215

摘要: 石墨烯具有超高载流子迁移率、零带隙、宽波段响应等性质,是具有潜力的红外光电探测材料。通过分析石墨烯基红外探测器的发展历程,综述了石墨烯红外光电响应的机理,对石墨烯基探测器的响应度、波段、速度等性能和器件结构进行了梳理,并围绕石墨烯基探测器在材料制备、工艺兼容性等方面的挑战进行了探讨和展望。

English Abstract

参考文献 (78)

目录

    /

    返回文章
    返回