留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锗近红外光电探测器制备工艺研究进展

黄志伟 汪建元 黄巍 陈松岩 李成

黄志伟, 汪建元, 黄巍, 陈松岩, 李成. 锗近红外光电探测器制备工艺研究进展[J]. 红外与激光工程, 2020, 49(1): 0103004-0103004(8). doi: 10.3788/IRLA202049.0103004
引用本文: 黄志伟, 汪建元, 黄巍, 陈松岩, 李成. 锗近红外光电探测器制备工艺研究进展[J]. 红外与激光工程, 2020, 49(1): 0103004-0103004(8). doi: 10.3788/IRLA202049.0103004
Huang Zhiwei, Wang Jianyuan, Huang Wei, Chen Songyan, Li Cheng. Research progress of technologies for germanium near-infrared photodetectors[J]. Infrared and Laser Engineering, 2020, 49(1): 0103004-0103004(8). doi: 10.3788/IRLA202049.0103004
Citation: Huang Zhiwei, Wang Jianyuan, Huang Wei, Chen Songyan, Li Cheng. Research progress of technologies for germanium near-infrared photodetectors[J]. Infrared and Laser Engineering, 2020, 49(1): 0103004-0103004(8). doi: 10.3788/IRLA202049.0103004

锗近红外光电探测器制备工艺研究进展

doi: 10.3788/IRLA202049.0103004
基金项目: 

国家自然科学基金(61474094,61474081)

详细信息
    作者简介:

    黄志伟(1989-),男,讲师,博士,主要从事硅基光电探测器方面的研究。Email:252792371@qq.com

  • 中图分类号: TN215

Research progress of technologies for germanium near-infrared photodetectors

  • 摘要: Ge材料由于在近红外波段具有较大的吸收系数、高的载流子迁移率、以及与Si工艺相兼容等优势而被视为制备近红外光电探测器最理想的材料之一。针对Ge光电探测器制备过程中面临的挑战,文中综述了近年来笔者所在的课题组在Ge探测器材料、器件及工艺方面的研究进展。首先介绍了Si基Ge材料的制备工艺,利用低温缓冲层生长技术、Ge/Si键合技术、Ge浓缩技术等分别制备得到高晶体质量的Si基Ge材料。研究了Ge材料n型掺杂工艺,利用离子注入结合两步退火处理(低温预退火和激光退火)以及利用固态磷旋涂工艺等分别实现Ge材料n型高掺浅结制备。最后探究了金属/Ge接触势垒高度的调制方法,结合金属中间层和透明导电电极ITO制备得到性能良好的Ge肖特基光电探测器。
  • [1] Lin Y, Lee K H, Bao S, et al. High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform[J]. Photonics Research, 2017, 5(6):702-709.
    [2] Dushaq G, Nayfeh A, Rasras M. Metal-germanium-metal photodetector grown on silicon using low temperature RF-PECVD[J]. Optics Express, 2017, 25(25):32110-32119.
    [3] Luo G, Yang T H, Chang E Y, et al. Growth of high-quality Ge epitaxial layers on Si (100)[J]. Japanese Journal of Applied Physics, 2003, 42(5B):L517.
    [4] Wietler T F, Bugiel E, Hofmann K R. Surfactant-mediated epitaxy of relaxed low-doped Ge films on Si (001) with low defect densities[J]. Applied Physics Letters, 2005, 87(18):182102.
    [5] Park J S, Bai J, Curtin M, et al. Defect reduction of selective Ge epitaxy in trenches on Si (001) substrates using aspect ratio trapping[J]. Applied Physics Letters, 2007, 90(5):052113.
    [6] Chen D, Xue Z, Wei X, et al. Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (100) by RPCVD[J]. Applied Surface Science, 2014, 299:1-5
    [7] Huang Z, Mao Y, Yi X, et al. Impacts of excimer laser annealing on Ge epilayer on Si[J]. Applied Physics A, 2017, 123(2):148.
    [8] Ke S, Ye Y, Wu J, et al. Interface characteristics of different bonded structures fabricated by low-temperature a-Ge wafer bonding and the application of wafer-bonded Ge/Si photoelectric device[J]. Journal of Materials Science, 2019, 54(3):2406-2416.
    [9] Sett S, Ghatak A, Sharma D, et al. Broad Band Single Germanium Nanowire Photodetectors with Surface Oxide-Controlled High Optical Gain[J]. The Journal of Physical Chemistry C, 2018, 122(15):8564-8572.
    [10] Huang S, Lu W, Li C, et al. A CMOS-compatible approach to fabricate an ultra-thin germanium-on-insulator with large tensile strain for Si-based light emission[J]. Optics Express, 2013, 21(1):640-646.
    [11] Lin G, Liang D, Wang J, et al. Strain evolution in SiGe-on-insulator fabricated by a modified germanium condensation technique with gradually reduced condensation temperature[J]. Materials Science in Semiconductor Processing, 2019, 97:56-61.
    [12] Zhang L, Hong H, Wang Y, et al. Formation of high-Sn content polycrystalline GeSn films by pulsed laser annealing on co-sputtered amorphous GeSn on Ge substrate[J]. Chinese Physics B, 2017(11):60.
    [13] Wang Y, Zhang L, Huang Z, et al. Crystallization of GeSn thin films deposited on Ge (100) substrate by magnetron sputtering[J]. Materials Science in Semiconductor Processing, 2018, 88:28-34.
    [14] Chen N, Lin G, Zhang L, et al. Low-temperature formation of GeSn nanocrystallite thin films by sputtering Ge on self-assembled Sn nanodots on SiO2/Si substrate[J]. Japanese Journal of Applied Physics, 2017, 56(5):050301.
    [15] Zhang L, Hong H, Li C, et al. High-Sn fraction GeSn quantum dots for Si-based light source at 1.55μm[J]. Applied Physics Express, 2019, 12(5):055504.
    [16] Wang C, Li C, Lin G, et al. Germanium n+/p shallow junction with record rectification ratio formed by low-temperature preannealing and excimer laser annealing[J]. IEEE Transactions on Electron Devices, 2014, 61(9):3060-3065.
    [17] Wang C, Li C, Wei J, et al. High-performance Ge pn photodiode achieved with preannealing and excimer laser annealing[J]. IEEE Photonics Technology Letters, 2015, 27(14):1485-1488.
    [18] Mathiot D, Lachiq A, Slaoui A, et al. Phosphorus diffusion from a spin-on doped glass (SOD) source during rapid thermal annealing[J]. Materials Science in Semiconductor Processing, 1998, 1(3-4):231-236.
    [19] Boldrini V, Carturan S, Maggioni G, et al. Optimal process parameters for phosphorus spin-on-doping of germanium[J]. Applied Surface Science, 2017, 392(1):1173-1180.
    [20] Liang D, Lin G, Huang D, et al. Spin-on doping of phosphorus on Ge with a 9 nm amorphous Si capping layer to achieve n+/p shallow junctions through rapid thermal annealing[J]. Journal of Physics D:Applied Physics, 2019, 52(19):195101.
    [21] Wu Z, Huang W, Li C, et al. Modulation of Schottky barrier height of metal/TaN/n-Ge junctions by varying TaN thickness[J]. IEEE Trans Electron Devices, 2012, 59(9):1328.
    [22] Wu H, Huang W, Lu W, et al. Ohmic contact to n-type Ge with compositional Ti nitride[J]. Applied Surface Science, 2013, 284:877-880.
    [23] Wu H, Wang C, Wei J, et al. Ohmic Contact to n-Type Ge with Compositional W Nitride[J]. IEEE Electron Device Letters, 2014, 35(12):1188-1190.
    [24] Liu H, Wang P, Qi D, et al. Ohmic contact formation of metal/amorphous-Ge/n-Ge junctions with an anomalous modulation of Schottky barrier height[J]. Applied Physics Letters, 2014, 105(19):192103.
    [25] Lai S, Mao D, Ruan Y, et al. Impact of nitrogen plasma passivation on the Al/n-Ge contact[J]. Materials Science and Engineering:B, 2016, 211:178-184.
    [26] Huang Z, Li C, Lin G, et al. Suppressing the formation of GeOx by doping Sn into Ge to modulate the Schottky barrier height of metal/n-Ge contact[J]. Applied Physics Express, 2016, 9(2):021301.
    [27] Huang Z, Mao Y, Lin G, et al. Impacts of ITO interlayer thickness on metal/n-Ge contacts[J]. Materials Science and Engineering:B, 2017, 224:103-109.
    [28] Huang Z, Mao Y, Chang A, et al. Low-dark-current, high-responsivity indium-doped tin oxide/Au/n-Ge Schottky photodetectors for broadband 800-1650 nm detection[J]. Applied Physics Express, 2018, 11(10):102203.
  • [1] 吴茴, 彭嘉隆, 江金豹, 李晗升, 徐威, 郭楚才, 张检发, 朱志宏.  等离子体增强型ZnO基纳米线异质结阵列光电探测器 . 红外与激光工程, 2024, 53(3): 20240006-1-20240006-9. doi: 10.3788/IRLA20240006
    [2] 宋林伟, 孔金丞, 赵鹏, 姜军, 李雄军, 方东, 杨超伟, 舒畅.  Au掺杂碲镉汞长波探测器技术研究 . 红外与激光工程, 2023, 52(4): 20220655-1-20220655-8. doi: 10.3788/IRLA20220655
    [3] 王雨童, 韩春蕊, 柯常军, 范元媛, 周翊.  激光诱导氮掺杂石墨烯宽光谱光电探测器 . 红外与激光工程, 2023, 52(11): 20230140-1-20230140-10. doi: 10.3788/IRLA20230140
    [4] 刘宁, 周谷禹, 杨夕, 徐纪鹏, 洪琦琳, 黄先燕, 张检发, 刘肯, 朱志宏.  Si3N4/WS2/Al2O3三明治型纳米激光器结构参数优化 . 红外与激光工程, 2023, 52(6): 20230196-1-20230196-7. doi: 10.3788/IRLA20230196
    [5] 暴丽霞, 李江存, 贾启才.  炭基/锌掺杂铁磁体复合材料制备及其消光性能研究 . 红外与激光工程, 2022, 51(4): 20210378-1-20210378-8. doi: 10.3788/IRLA20210378
    [6] 余晨辉, 沈倪明, 周勇, 成田恬, 秦嘉怡, 罗曼.  铁电局域场增强低维材料光电探测器研究进展(特邀) . 红外与激光工程, 2022, 51(7): 20220288-1-20220288-10. doi: 10.3788/IRLA20220288
    [7] 许云飞, 刘子宁, 王鹏.  PbS量子点同质P-N结光电探测器 . 红外与激光工程, 2022, 51(10): 20220053-1-20220053-7. doi: 10.3788/IRLA20220053
    [8] 曹嘉晟, 李淘, 王红真, 于春蕾, 杨波, 马英杰, 邵秀梅, 李雪, 龚海梅.  非故意掺杂吸收层InP/InGaAs异质结探测器研究 . 红外与激光工程, 2021, 50(11): 20210073-1-20210073-8. doi: 10.3788/IRLA20210073
    [9] 贾甜甜, 董海亮, 贾志刚, 张爱琴, 梁建, 许并社.  n波导层铟组分对GaN基绿光激光二极管光电性能的影响 . 红外与激光工程, 2021, 50(10): 20200489-1-20200489-10. doi: 10.3788/IRLA20200489
    [10] 魏彦锋, 孙权志, 张娟, 孙瑞赟.  Au掺杂HgCdTe材料的光电特性 . 红外与激光工程, 2021, 50(4): 20200231-1-20200231-7. doi: 10.3788/IRLA20200231
    [11] 陈红富, 罗曼, 沈倪明, 徐腾飞, 秦嘉怡, 胡伟达, 陈效双, 余晨辉.  二维层状材料异质结光电探测器研究进展(特邀) . 红外与激光工程, 2021, 50(1): 20211018-1-20211018-11. doi: 10.3788/IRLA20211018
    [12] 程海娟, 于晓辉, 彭浪, 普群雁, 蔡毅, 李茂忠, 杨伟声, 白玉琢, 赵劲松, 王岭雪.  Ge基底LaF3-ZnS-Ge高耐用中波红外增透膜 . 红外与激光工程, 2019, 48(11): 1117001-1117001(7). doi: 10.3788/IRLA201948.1117001
    [13] 王琦龙, 李裕培, 翟雨生, 计吉焘, 邹海洋, 陈广甸.  等离激元增强金硅肖特基结近红外光电探测器进展 . 红外与激光工程, 2019, 48(2): 203002-0203002(14). doi: 10.3788/IRLA201948.0203002
    [14] 马丁, 刘福浩, 李向阳, 张燕.  GaN基紫外探测器读出电路注入效率 . 红外与激光工程, 2017, 46(11): 1120001-1120001(6). doi: 10.3788/IRLA201746.1120001
    [15] 胡小英, 刘卫国, 段存丽, 蔡长龙, 牛小玲.  势垒高度对GaAs/AlxGa1-xAs QWIP光谱特性的影响 . 红外与激光工程, 2015, 44(10): 2995-2999.
    [16] 王巍, 颜琳淑, 王川, 杜超雨, 王婷, 王冠宇, 袁军, 王振.  Ge/Si SACM-APD器件分析 . 红外与激光工程, 2015, 44(4): 1349-1353.
    [17] 华桦, 何凯, 周松敏, 胡晓宁.  利用MATLAB 进行焦平面探测器的In 柱高度自动统计 . 红外与激光工程, 2014, 43(7): 2148-2151.
    [18] 王文娟, 王少伟, 陆卫, 陈飞良, 张英, 孙晓岚, 李宁, 李志锋, 李雪.  激光选择聚焦的响应增强型光电探测器 . 红外与激光工程, 2014, 43(5): 1416-1420.
    [19] 王雯, 张小雷, 吕衍秋, 司俊杰.  Si基InSb红外焦平面阵列探测器的研究 . 红外与激光工程, 2014, 43(5): 1359-1363.
    [20] 王晓勇, 种明, 赵德刚, 苏艳梅.  283 nm背照射p-i-n型AlGaN日盲紫外探测器 . 红外与激光工程, 2013, 42(4): 1011-1014.
  • 加载中
计量
  • 文章访问数:  1213
  • HTML全文浏览量:  270
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-30
  • 修回日期:  2019-11-21
  • 刊出日期:  2020-01-28

锗近红外光电探测器制备工艺研究进展

doi: 10.3788/IRLA202049.0103004
    作者简介:

    黄志伟(1989-),男,讲师,博士,主要从事硅基光电探测器方面的研究。Email:252792371@qq.com

基金项目:

国家自然科学基金(61474094,61474081)

  • 中图分类号: TN215

摘要: Ge材料由于在近红外波段具有较大的吸收系数、高的载流子迁移率、以及与Si工艺相兼容等优势而被视为制备近红外光电探测器最理想的材料之一。针对Ge光电探测器制备过程中面临的挑战,文中综述了近年来笔者所在的课题组在Ge探测器材料、器件及工艺方面的研究进展。首先介绍了Si基Ge材料的制备工艺,利用低温缓冲层生长技术、Ge/Si键合技术、Ge浓缩技术等分别制备得到高晶体质量的Si基Ge材料。研究了Ge材料n型掺杂工艺,利用离子注入结合两步退火处理(低温预退火和激光退火)以及利用固态磷旋涂工艺等分别实现Ge材料n型高掺浅结制备。最后探究了金属/Ge接触势垒高度的调制方法,结合金属中间层和透明导电电极ITO制备得到性能良好的Ge肖特基光电探测器。

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回