留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紧凑型双视场可见光镜头设计

周恩源 曹月芹 施建萍 常波 张金辉 卢稳厚 张璋 邢美华 卢国俊

周恩源, 曹月芹, 施建萍, 常波, 张金辉, 卢稳厚, 张璋, 邢美华, 卢国俊. 紧凑型双视场可见光镜头设计[J]. 红外与激光工程, 2021, 50(8): 20210042. doi: 10.3788/IRLA20210042
引用本文: 周恩源, 曹月芹, 施建萍, 常波, 张金辉, 卢稳厚, 张璋, 邢美华, 卢国俊. 紧凑型双视场可见光镜头设计[J]. 红外与激光工程, 2021, 50(8): 20210042. doi: 10.3788/IRLA20210042
Zhou Enyuan, Cao Yueqin, Shi Jianping, Chang Bo, Zhang Jinhui, Lu Wenhou, Zhang Zhang, Xing Meihua, Lu Guojun. Design of compact dual-field lens for visible light[J]. Infrared and Laser Engineering, 2021, 50(8): 20210042. doi: 10.3788/IRLA20210042
Citation: Zhou Enyuan, Cao Yueqin, Shi Jianping, Chang Bo, Zhang Jinhui, Lu Wenhou, Zhang Zhang, Xing Meihua, Lu Guojun. Design of compact dual-field lens for visible light[J]. Infrared and Laser Engineering, 2021, 50(8): 20210042. doi: 10.3788/IRLA20210042

紧凑型双视场可见光镜头设计

doi: 10.3788/IRLA20210042
详细信息
    作者简介:

    周恩源,男,工程师,硕士,主要从事光学设计方面的研究工作

  • 中图分类号: TH703;TN202

Design of compact dual-field lens for visible light

  • 摘要: 为使观瞄系统以简单、紧凑结构实现探测、识别目标功能,选用光学补偿法设计紧凑型双视场可见光镜头。首先,根据视场、作用距离指标完成相机选型和焦距计算,依据已选相机像元尺寸和最低照度计算F数,并分析双视场光学系统的特点;其次,对比常规的光阑位置固定方案与光阑位置切换方案,得出后者在实现光学总长、最大通光孔径、变焦行程有效压缩的同时,可以实现更大的相对孔径和更好的像质;最终,选用光阑位置切换方案设计了由11片透镜构成,光学总长为150 mm,最大通光孔径为Φ42 mm,变焦行程为35.97 mm的紧凑型双视场可见光镜头。该镜头短焦焦距为32 mm,F数为2.3,满足水平视场角不小于12°、探测距离不小于5 km的要求;长焦焦距为126 mm,F数为3,满足水平视场角不小于3°、畸变小于0.5%、识别距离不小于5 km的要求。设计结果表明,对于焦距32 mm和焦距126 mm,全视场调制传递函数(MTF )均大于0.45,全视场点列图的均方根 (RMS)直径小于或接近4 μm,整体像质良好。公差分析结果表明,在135 cycles/mm处,全视场MTF大于0.3的概率达到90%以上。
  • 图  1  光阑位置固定方案焦距32 mm光学系统图

    Figure  1.  Diagram of 32 mm focal length optical system with fixed stop position scheme

    图  2  光阑位置固定方案焦距126 mm光学系统图

    Figure  2.  Diagram of 126 mm focal length optical system with fixed stop position scheme

    图  3  光阑位置切换方案焦距32 mm光学系统图

    Figure  3.  Diagram of 32 mm focal length optical system with switchable stop position scheme

    图  4  光阑位置切换方案焦距126 mm光学系统图

    Figure  4.  Diagram of 126 mm focal length optical system with switchable stop position scheme

    图  5  光阑位置固定方案焦距32 mm MTF曲线

    Figure  5.  MTF curves of 32 mm focal length with fixed stop position scheme

    图  6  光阑位置固定焦距126 mm MTF曲线

    Figure  6.  MTF curves of 126 mm focal length with fixed stop position scheme

    图  7  光阑位置切换方案焦距32 mm MTF曲线

    Figure  7.  MTF curves of 32 mm focal length with switchable stop position scheme

    图  8  光阑位置切换方案焦距126 mm MTF曲线

    Figure  8.  MTF curves of 126 mm focal length with switchable stop position scheme

    图  9  焦距32 mm畸变曲线

    Figure  9.  Distortion curve of 32 mm focal length

    图  10  焦距126 mm畸变曲线

    Figure  10.  Distortion curve of 126 mm focal length

    图  11  焦距32 mm点列图

    Figure  11.  Spot diagrams of 32 mm focal length

    图  12  焦距126 mm点列图

    Figure  12.  Spot diagrams of 126 mm focal length

    图  13  短焦公差分析曲线

    Figure  13.  Curves of tolerance analysis at short focal length

    图  14  长焦公差分析曲线

    Figure  14.  Curves of tolerance analysis at long focal length

    表  1  光电观瞄系统光学相关指标

    Table  1.   Related optical indicators of observing and sighting system

    ParametersSpecifications
    Horizontal field angle/(°)≥12(Detection)≥3(Recognition)
    Dimension of target/m4.6×2.3(Equivalent length: 3.3)
    Operating range/km≥5
    Atmospheric visibility/km≥10
    Ambient illuminance/lux≥300
    Distortion≤0.5%(Detection)
    下载: 导出CSV

    表  2  所选用CMOS相机的相关参数

    Table  2.   Related specifications of the CMOS image sensor used

    ParametersSpecifications
    Image sensor1/1.9 in CMOS image sensor
    Valid pixels1 920(H) ×1080(V)
    Pixel size3.75 μm(H)×3.75 μm(V)
    Minimal illumination0.1 lx
    下载: 导出CSV

    表  3  光阑位置固定方案光学系统具体参数

    Table  3.   Specific parameters of optical system with fixed stop position scheme

    ParametersShort focal lengthLong focal length
    Spectral range/nm486 - 656
    Effective focal length/mm32126
    F number3.5
    Object space angle/(°)12.96 × 7.223.24 × 1.82
    Total optical length/mm170
    Maximal effective aperture/mmΦ52
    Focal length of zoom group/mm-42.30
    Zoom stroke/mm62.60
    下载: 导出CSV

    表  4  光阑位置切换方案光学系统具体参数

    Table  4.   Specific parameters of optical system with switchable stop position scheme

    ParametersShort focal lengthLong focal length
    Spectral range/nm486 - 656
    Effective focal length/mm32126
    F number2.33
    Object space angle/(°)13.18 × 7.303.28 × 1.84
    Total optical length/mm150
    Maximal effective aperture/mmΦ42
    Focal length of zoom group/mm-24.29
    Zoom stroke/mm35.97
    下载: 导出CSV

    表  5  材料公差

    Table  5.   Material tolerances

    ItemsValue
    Refractive index/mm 1×10−4-5×10−4
    Abbe-number 0.3%-0.5%
    Homogeneity/mm 2×10−6-5×10−6
    下载: 导出CSV

    表  6  加工公差(λ=546.1 nm)

    Table  6.   Manufacturing tolerances(λ=546.1 nm)

    ItemsValue
    Fringe power/λ 1-2
    Surface irregularity/λ 0.2-0.5
    Central thickness/mm 0.02-0.05
    Wedge/mm 0.005-0.01
    下载: 导出CSV

    表  7  装调公差

    Table  7.   Alignment tolerances

    ItemsValue
    Airspace/mm0.02-0.05
    Tilt/rad0.0005-0.001
    Decenter & Roll/mm0.02-0.05
    下载: 导出CSV
  • [1] Fan Zheyuan, Cao Jianzhong, Qu Enshi, et al. Design of an 8 times ratio visible zoom optical system [J]. Acta Photonica Sinica, 2010, 39(1): 101-104. (in Chinese)
    [2] Tian Haixia, Yang Jianfeng, Ma Xiaolong. Design for visible video zoom optical system [J]. Acta Photonica Sinica, 2008, 37(9): 1797-1799. (in Chinese)
    [3] Qu Rui, Mei Chao, Yang Hongtao, et al. Design of compact high zoom ratio infrared optical system [J]. Infrared and Laser Engineering, 2017, 46(11): 1104002. (in Chinese)
    [4] 袁旭沧. 光学设计[M]. 北京: 北京理工大学出版社, 1988.

    Yuan Xucang. Optical Design[M]. Beijing: Beijing Institute of Technology Press, 1988. (in Chinese)
    [5] 李林. 现代光学设计方法[M]. 北京: 北京理工大学出版社, 2009.

    Li Lin. Modern Optical Design[M]. Beijing: Beijing Institute of Technology Press, 2009. (in Chinese)
    [6] Fei Xinlin, Fu Yuegang, Liu Zhiying, et al. Optical design of dual field-of-view imaging spectrometer with filters [J]. Journal of Applied Optics, 2013, 34(6): 943-946. (in Chinese)
    [7] Bai Yu, Xing Tingwen, Jiang Yadong, et al. Design of infrared dual of view optical system with long focal length and high resolution [J]. Infrared and Laser Engineering, 2014, 43(8): 2589-2594. (in Chinese) doi:  10.3969/j.issn.1007-2276.2014.08.032
    [8] Daniel Kopp, Tamara Brender, Hans Zappe. All-liquid dual-lens optofluidic zoom system [J]. Applied Optics, 2017, 56: 3758-3763. doi:  10.1364/AO.56.003758
    [9] Sun-Hyung Jo, Sung-Chan Park. Design and analysis of an 8× four-group zoom system using focus tunable lenses [J]. Optics Express, 2018, 26: 13370-13382. doi:  10.1364/OE.26.013370
    [10] Song Yanfeng, Sun Weiping, Wang Guoli. One kind of high resolution TV guided optical zoom system [J]. Journal of Applied Optics, 2013, 34(2): 203-208. (in Chinese)
    [11] Bai Hubing, Miao Li. Design of large aperture and long focal length zoom optical system [J]. Journal of Applied Optics, 2018, 39(5): 644-649. (in Chinese)
    [12] 白廷柱. 光电成像原理与技术[M]. 北京: 北京理工大学出版社, 2006.

    Bai Tingzhu. Principle and Technology of Photoelectric Imaging[M]. Beijing: Beijing Institute of Technology Press, 2009. (in Chinese)
    [13] 李林. 应用光学[M]. 北京: 北京理工大学出版社, 2010.

    Li Lin. Applied Optics[M]. Beijing: Beijing Institute of Technology Press, 2010. (in Chinese)
    [14] Shi Xueshun, Liu Hongyuan. Discussion on the test method of the working distance for imaging tracking system [J]. Science & Technology Information, 2009, 29: 807, 845. (in Chinese)
    [15] Zhao Bailin, Zhang Pengfei, Gao Guoming. Characteristics of aerosol optical thickness in China [J]. Acta Meteorologica Sinica, 1986, 44(2): 235-241. (in Chinese)
    [16] 李士贤, 李林. 光学设计手册[M]. 北京: 北京理工大学出版社, 1996.

    Li Shixian, Li Lin. Handbook of Optical Design[M]. Beijing: Beijing Institute of Technology Press. (in Chinese)
    [17] 王之江. 实用光学技术手册[M]. 北京: 机械工业出版社, 2007.

    Wang Zhijiang. Handbook of Practical Optical Technology[M]. Beijing: China Machine Press, 2007. (in Chinese)
  • [1] 曲锐, 杨建峰, 曹剑中, 刘博.  水下大视场连续变焦光学系统设计 . 红外与激光工程, 2021, 50(7): 20200468-1-20200468-7. doi: 10.3788/IRLA20200468
    [2] 赵宇宸, 胡长虹, 吕恒毅, 孙铭, 李兆南.  紧凑型偏视场多光路耦合同轴四反光学系统设计 . 红外与激光工程, 2021, 50(3): 20200197-1-20200197-9. doi: 10.3788/IRLA20200197
    [3] 毛延凯, 赵振宇, 张国华, 时光煜.  红外双波段/双视场导引头的光学设计 . 红外与激光工程, 2020, 49(7): 20190490-1-20190490-5. doi: 10.3788/IRLA20190490
    [4] 陈建发, 潘枝峰, 王合龙.  超大视场红外光学镜头设计 . 红外与激光工程, 2020, 49(6): 20190443-1-20190443-6. doi: 10.3788/IRLA20190443
    [5] 杨洪涛, 杨晓帆, 梅超, 陈卫宁.  折衍混合红外双波段变焦光学系统设计 . 红外与激光工程, 2020, 49(10): 20200036-1-20200036-8. doi: 10.3788/IRLA20200036
    [6] 金哲彦, 徐之海, 冯华君, 李奇.  基于对焦清晰度的双分辨相机变焦算法研究 . 红外与激光工程, 2020, 49(5): 20190463-20190463-9. doi: 10.3788/IRLA20190463
    [7] 张雅鑫, 蒲明博, 郭迎辉, 靳金金, 李雄, 马晓亮, 罗先刚.  基于二次相位超表面的大视场紧凑型全Stokes偏振测量方法 . 红外与激光工程, 2020, 49(9): 20201030-1-20201030-8. doi: 10.3788/IRLA20201030
    [8] 尹骁, 李英超, 史浩东, 江伦, 王超, 刘壮, 李冠霖.  用于物证搜寻的大视场变焦偏振成像光学系统设计 . 红外与激光工程, 2019, 48(4): 418006-0418006(8). doi: 10.3788/IRLA201948.0418006
    [9] 赵宇宸, 何欣, 张凯, 刘强, 崔永鹏, 孟庆宇.  轻小型大视场自由曲面离轴光学系统设计 . 红外与激光工程, 2018, 47(12): 1218001-1218001(7). doi: 10.3788/IRLA201847.1218001
    [10] 赵宇宸, 何欣, 冯文田, 刘强, 付亮亮, 谭进国, 孟庆宇.  同轴偏视场共孔径面阵成像光学系统设计 . 红外与激光工程, 2018, 47(7): 718004-0718004(8). doi: 10.3788/IRLA201847.0718004
    [11] 袁立银, 谢佳楠, 侯佳, 吕刚, 何志平.  紧凑型红外成像光谱仪光学设计 . 红外与激光工程, 2018, 47(4): 418001-0418001(6). doi: 10.3788/IRLA201847.0418001
    [12] 曲锐, 梅超, 杨洪涛, 曹剑中, 赵延.  紧凑型大变倍比红外光学系统设计 . 红外与激光工程, 2017, 46(11): 1104002-1104002(5). doi: 10.3788/IRLA201746.1104002
    [13] 孟庆宇, 汪洪源, 王严, 纪振华, 王栋.  大线视场自由曲面离轴三反光学系统设计 . 红外与激光工程, 2016, 45(10): 1018002-1018002(8). doi: 10.3788/IRLA201645.1018002
    [14] 王蕴琦, 刘伟奇, 张大亮, 孟祥翔, 康玉思, 魏忠伦.  基于传递矩阵的宽视场离轴三反光学系统设计 . 红外与激光工程, 2016, 45(4): 418003-0418003(6). doi: 10.3788/IRLA201645.0418003
    [15] 张伟, 张合, 张祥金.  小型大瞬时视场光学探测系统优化设计 . 红外与激光工程, 2016, 45(5): 518002-0518002(6). doi: 10.3788/IRLA201645.0518002
    [16] 孟祥翔, 刘伟奇, 张大亮, 姜国华, 朱秀庆, 杨建明.  双自由曲面大视场头盔显示光学系统设计 . 红外与激光工程, 2016, 45(4): 418004-0418004(6). doi: 10.3788/IRLA201645.0418004
    [17] 米士隆, 牟达, 牟蒙.  紧凑型长波红外光学系统无热化设计 . 红外与激光工程, 2015, 44(10): 3032-3036.
    [18] 赵延, 邓键, 于德志, 马燕.  光学被动消热差的长波红外双视场光学系统设计 . 红外与激光工程, 2014, 43(5): 1545-1548.
    [19] 庞志海, 樊学武, 邹刚毅, 赵惠.  新型大视场无遮拦三反光学系统设计 . 红外与激光工程, 2013, 42(9): 2449-2452.
    [20] 赵坤, 李升辉.  双孔径红外变焦光学系统设计 . 红外与激光工程, 2013, 42(11): 2889-2893.
  • 加载中
图(14) / 表(7)
计量
  • 文章访问数:  478
  • HTML全文浏览量:  168
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-04
  • 修回日期:  2021-04-14
  • 刊出日期:  2021-08-25

紧凑型双视场可见光镜头设计

doi: 10.3788/IRLA20210042
    作者简介:

    周恩源,男,工程师,硕士,主要从事光学设计方面的研究工作

  • 中图分类号: TH703;TN202

摘要: 为使观瞄系统以简单、紧凑结构实现探测、识别目标功能,选用光学补偿法设计紧凑型双视场可见光镜头。首先,根据视场、作用距离指标完成相机选型和焦距计算,依据已选相机像元尺寸和最低照度计算F数,并分析双视场光学系统的特点;其次,对比常规的光阑位置固定方案与光阑位置切换方案,得出后者在实现光学总长、最大通光孔径、变焦行程有效压缩的同时,可以实现更大的相对孔径和更好的像质;最终,选用光阑位置切换方案设计了由11片透镜构成,光学总长为150 mm,最大通光孔径为Φ42 mm,变焦行程为35.97 mm的紧凑型双视场可见光镜头。该镜头短焦焦距为32 mm,F数为2.3,满足水平视场角不小于12°、探测距离不小于5 km的要求;长焦焦距为126 mm,F数为3,满足水平视场角不小于3°、畸变小于0.5%、识别距离不小于5 km的要求。设计结果表明,对于焦距32 mm和焦距126 mm,全视场调制传递函数(MTF )均大于0.45,全视场点列图的均方根 (RMS)直径小于或接近4 μm,整体像质良好。公差分析结果表明,在135 cycles/mm处,全视场MTF大于0.3的概率达到90%以上。

English Abstract

    • 现代战争中,对远距离目标的探测和识别是实现精确打击的先决条件。通常,搜索、探测目标时观瞄系统处于短焦、宽视场状态,识别、跟踪目标时观瞄系统处于长焦、窄视场状态。定焦镜头无法同时满足上述两种需求,变焦镜头可通过短焦和长焦的切换实现探测功能和识别功能的切换[1-3]。变焦系统可分为机械补偿变焦系统和光学补偿变焦系统。机械补偿变焦系统一般由前固定组、变焦组、补偿组、后固定组组成,变焦过程变焦组作线性运动,补偿组作非线性运动,通过机械凸轮使像面在整个变焦过程中维持稳定,但这种系统结构复杂,空间尺寸较大,光轴一致性难以保证;和机械补偿变焦系统相比,光学补偿变焦系统只需变焦组轴向移动即可实现两档变焦,无需补偿组,具有结构简单、紧凑,光轴一致性容易控制的优势[4-7]。对于宽视场实现目标探测、窄视场实现目标识别的应用场景,双视场光学变焦系统优势明显。

      目前,国外变焦镜头设计的主要研究方向[8-9]是使用液体透镜、电动变焦透镜等改变光学系统局部光学元件的焦距以实现整个光学系统焦距的变化,从而避免元件的轴向移动,实现系统的紧凑化。但以上技术目前成熟度和可靠性不足,使用条件和范围受限;国内变焦镜头设计的研究[1-2, 6, 10-11]主要停留在针对720P及以下的标清相机,设计过程也很少论及作用距离与环境照度、能见度、相机最低工作照度等参数的关系。文中采用将短焦和长焦光阑设置在不同位置的光阑位置切换方案,针对1080P高清相机,根据设计指标,考虑最低环境照度下的正常使用,设计一款短焦焦距为32 mm、长焦焦距为126 mm的紧凑型双视场可见光镜头,分别用于搜索、探测和识别、跟踪目标。

    • 某光电观瞄系统的光学相关技术指标见表1

      表 1  光电观瞄系统光学相关指标

      Table 1.  Related optical indicators of observing and sighting system

      ParametersSpecifications
      Horizontal field angle/(°)≥12(Detection)≥3(Recognition)
      Dimension of target/m4.6×2.3(Equivalent length: 3.3)
      Operating range/km≥5
      Atmospheric visibility/km≥10
      Ambient illuminance/lux≥300
      Distortion≤0.5%(Detection)
    • 设所选相机有效像元数为MH)×NV),像元尺寸为a×a,单位为μm,短焦焦距为${f'_S}$,长焦焦距为${f'_L}$,单位为mm。短焦状态和长焦状态对5 km处目标成像所占像元数N1N2分别可以表示为:

      $${N_1} = \frac{{3.3{{f'}_S}}}{{5\;000a}}$$ (1)
      $${N_2} = \frac{{3.3{{f'}_L}}}{{5\;000a}}$$ (2)

      根据Johnson准则,以95%概率探测和识别目标时,所需条带周期数分别约为2和8[12],对应所需像素数分别为4和16,根据技术指标需满足:

      $${N_1} = \frac{{3.3{{f'}_S}}}{{5\;000a}} \geqslant 4$$ (3)
      $${N_2} = \frac{{3.3{{f'}_L}}}{{5\;000a}} \geqslant 16$$ (4)

      设短焦状态水平视场角为${\omega _{xS}}$,长焦状态水平视场角为${\omega _{xL}}$,根据技术指标需满足:

      $${\omega _{xS}} = 2\arctan \left( {\frac{{M \times a}}{{2{{f'}_S}}}} \right) \geqslant 12^\circ $$ (5)
      $${\omega _{xL}} = 2\arctan \left( {\frac{{M \times a}}{{2{{f'}_L}}}} \right) \geqslant 3^\circ $$ (6)

      将公式(3)~(4)分别代入公式(5)~(6)可知,M应满足不小于1274。720P相机水平方向有效像元数为1280,为预留足够的设计余量保证视场和作用距离都满足要求,在该设计中选用1080P相机,其具体参数如表2所示(1 in=2.54 cm)。

      表 2  所选用CMOS相机的相关参数

      Table 2.  Related specifications of the CMOS image sensor used

      ParametersSpecifications
      Image sensor1/1.9 in CMOS image sensor
      Valid pixels1 920(H) ×1080(V)
      Pixel size3.75 μm(H)×3.75 μm(V)
      Minimal illumination0.1 lx

      $M = 1\;920$$N = 1\;080$$a = 3.75$ μm代入公式(3)~(6)可得:

      $$22.73\; {\rm{mm}} \leqslant {f'_S} \leqslant 34.25\; {\rm{mm}}$$ (7)
      $$ 90.91\;{\rm{mm}} \leqslant {f'_L} \leqslant 137.48\; {\rm{mm}}$$ (8)

      光学系统的变倍比应介于2.7~6之间,为保证足够设计余量,取中间值较为合适。

    • F数是光学系统的重要指标之一,其数值大小与理论分辨率、像面照度密切相关。F数越小,光学系统的理论分辨率越高,像面照度越强,但作为F数倒数的相对孔径会增大,从而提升设计难度。以下分别根据相机像元尺寸和相机最低工作照度计算F数的取值范围。

      通常,艾里斑半径和直径的倒数分别被认为是光学系统的截止频率和中间频率。在确定F数时,艾里斑直径所占像元数为1~2个[10]。在空气中,物镜的艾里斑直径可以表示为[13]

      $$D = 2.44\lambda F$$ (9)

      艾里斑占1个像素时,可得:

      $$F = \frac{a}{{2.44\lambda }}$$ (10)

      将D光波长0.5893 μm代入公式(10)可得$F = $$ 2.61$。同理,当艾里斑占2个像素时,计算可得$F = $$ 5.22$。因此,F数取值不宜大于5.22,且越小越好。

      光学系统像面照度EI可以表示为[14]

      $${E_{\rm I}} = \frac{{{E_{\rm T}}\gamma {T_0}{{\rm{e}}^{{\rm{ - }}\alpha R}}}}{{4{F^2}}} $$ (11)

      式中:ET表示观察目标附近的环境照度,单位为lx;γ表示目标表面对可见光的反射率;T0表示光学系统的透过率;α表示大气衰减系数,单位为km−1R表示目标与光学系统的距离,单位为km。在该设计中,ET为300 lx,γ取0.2,T0取0.8,R为5 km。α可以表示为[15]

      $$\alpha {\rm{ = }}\frac{{3.912}}{V}$$ (12)

      式中:V为大气能见度,在该设计中为10 km,可求得α为0.3912 km−1。已知所选相机的最低工作照度Ed为0.1 lx,因此必须满足:

      $${E_{\rm I}} = \frac{{{E_{\rm T}}\gamma {T_0}{{\rm{e}}^{{\rm{ - }}\alpha R}}}}{{4{F^2}}} = \frac{{300 \times 0.2 \times 0.8{{\rm{e}}^{ - 0.391\;2 \times 5}} }}{{4{F^2}}} \geqslant {E_{\rm d}} = 0.1$$ (13)

      可求得$F \leqslant 4.12$

      综合考虑相机像元尺寸和最低照度,F数要满足不大于4.12。

    • 对于双视场光学系统,变焦组轴向移动实现长焦状态和短焦状态切换,满足物像交换原则[5],以下分析前固定组和变焦组。设M为变倍比,短焦状态变焦组对前固定组的轴向放大率${\;\beta _{2S}}$可以表示为:

      $${\beta _{2S}}{\rm{ = }} - \frac{1}{{\sqrt M }}$$ (14)

      长焦状态变焦组对前固定组的轴向放大率${\;\beta _{2L}}$可以表示为:

      $${\beta _{2L}} = - \sqrt M $$ (15)

      设变焦组的焦距为${f_2}^\prime $,根据高斯公式可得:

      $$l = \frac{{\left( {1 - \beta } \right){f_2}^\prime}}{\beta }$$ (16)

      焦距切换时,变焦组的移动量可以表示为:

      $$\Delta {\rm{ = }}\left[ {\frac{{\left( {1{\rm{ - }}{\beta _{2S}}} \right)}}{{{\beta _{2S}}}} - \frac{{\left( {1 - {\beta _{2L}}} \right)}}{{{\beta _{2L}}}}} \right]{f_2}^\prime = \left(\frac{1}{{\sqrt M }} - \sqrt M \right){f_2}^\prime $$ (17)

      分析公式(17)可知,当变倍比恒定时,$\Delta $${f_2}^\prime $的绝对值成正比,为缩短切换时间,${f_2}^\prime $$ {f}_{2}' $的绝对值要尽量小。

    • 依据以上计算、分析,取光学系统的变倍比为4,运用高斯公式计算光学系统的初始结构,并在光学设计软件Code V中用理想透镜进行模拟,参考光学设计手册和相关专著[16-17]对光学系统进行复杂化设计,同时约束光学总长、最大通光孔径、变焦组焦距等参数,并选用CDGM玻璃库提供的普通光学材料。优化过程首先采用常规的光阑位置固定方案,得到光学总长为170 mm,最大通光孔径为Φ52 mm,变焦行程为62.60 mm的双视场光学系统,图1图2分别为焦距32 mm、焦距126 mm光学系统图,表3为具体参数。

      图  1  光阑位置固定方案焦距32 mm光学系统图

      Figure 1.  Diagram of 32 mm focal length optical system with fixed stop position scheme

      图  2  光阑位置固定方案焦距126 mm光学系统图

      Figure 2.  Diagram of 126 mm focal length optical system with fixed stop position scheme

      表 3  光阑位置固定方案光学系统具体参数

      Table 3.  Specific parameters of optical system with fixed stop position scheme

      ParametersShort focal lengthLong focal length
      Spectral range/nm486 - 656
      Effective focal length/mm32126
      F number3.5
      Object space angle/(°)12.96 × 7.223.24 × 1.82
      Total optical length/mm170
      Maximal effective aperture/mmΦ52
      Focal length of zoom group/mm-42.30
      Zoom stroke/mm62.60

      为压缩轴向尺寸、径向尺寸及变焦行程,尝试将短焦光阑、长焦光阑设置于不同位置,此时短焦状态和长焦状态的F数不再相同。为保证光阑设置有效,短焦状态在长焦光阑位置的通光孔径不应大于长焦状态的光阑孔径;同理,长焦状态在短焦光阑位置的通光孔径不应大于短焦状态的光阑孔径。根据相对孔径的定义,将长焦光阑设置于第1片透镜前,使得光学系统的最大通光孔径为长焦焦距与对应的F数的比值,将短焦光阑设置于其他位置以提升像质和压缩轴向尺寸。除两个光阑位置外,所有透镜的通光孔径选取长焦状态和短焦状态的最大值以保证无拦光。优化过程控制短焦焦距、长焦焦距与光阑位置固定方案一致,得到光学总长为150 mm,最大通光孔径为Φ42 mm,变焦行程为35.97 mm的双视场可见光镜头,图3图4分别为焦距32 mm、焦距126 mm光学系统图,表4为具体参数。焦距32 mm对应的水平视场角13.18°,焦距126 mm对应的水平视场角3.28°,满足指标要求。

      图  3  光阑位置切换方案焦距32 mm光学系统图

      Figure 3.  Diagram of 32 mm focal length optical system with switchable stop position scheme

      图  4  光阑位置切换方案焦距126 mm光学系统图

      Figure 4.  Diagram of 126 mm focal length optical system with switchable stop position scheme

      表 4  光阑位置切换方案光学系统具体参数

      Table 4.  Specific parameters of optical system with switchable stop position scheme

      ParametersShort focal lengthLong focal length
      Spectral range/nm486 - 656
      Effective focal length/mm32126
      F number2.33
      Object space angle/(°)13.18 × 7.303.28 × 1.84
      Total optical length/mm150
      Maximal effective aperture/mmΦ42
      Focal length of zoom group/mm-24.29
      Zoom stroke/mm35.97

      与常规的光阑位置固定方案对比,光阑位置切换方案实现光学总长12%、最大通光孔径19%、变焦行程43%的压缩和相对孔径34%、14%的提升。

      光阑位置切换方案选用的材料为:H-ZLaF4LA、H-ZPK1A、H-ZPK5、H-ZLaF53B、H-ZLaF90、H-ZF7LA、H-FK61和H-LaK52。第1~3片透镜构成前固定组,整体具有正光焦度;第4~6片透镜构成变焦组,整体具有负光焦度,通过其轴向位置切换实现短焦状态和长焦状态的切换;第7~11片透镜构成后固定组,整体具有正光焦度,选用P值相近而$\nu $值不等的H-FK61和H-LaK52胶合实现复消色差。短焦光阑位于第7片透镜前,长焦光阑位于第1片透镜前。光阑位置切换方案可与光阑位置固定方案采用相同的机械切换方式,即电机驱动丝杠,带动变焦组轴向移动实现焦距切换,光电码编码器记录位置。

    • MTF是目前公认的最能充分反映光学系统实际成像质量的评价指标[5],以下对比光阑位置固定方案和光阑位置切换方案的MTF曲线,并选取$\dfrac{1}{{2a}} \approx $$ 135\; {\rm{cycles}}/{\rm{mm}}$作为特征频率。

      图5图6分别为光阑位置固定方案焦距32 mm、焦距126 mm MTF曲线,最上方虚线表示衍射极限。从图中可以看出,为保证焦距126 mm各视场MTF均大于0.45,焦距32 mm子午方向边缘视场MTF已经降至0.3以下。图7图8分别为光阑位置切换方案焦距32 mm、焦距126 mm MTF曲线。从图中可以看出,除子午方向边缘视场外,各视场MTF曲线均较为平滑,且全视场MTF均大于0.45,像质良好。

      图  5  光阑位置固定方案焦距32 mm MTF曲线

      Figure 5.  MTF curves of 32 mm focal length with fixed stop position scheme

      图  6  光阑位置固定焦距126 mm MTF曲线

      Figure 6.  MTF curves of 126 mm focal length with fixed stop position scheme

      图  7  光阑位置切换方案焦距32 mm MTF曲线

      Figure 7.  MTF curves of 32 mm focal length with switchable stop position scheme

      图  8  光阑位置切换方案焦距126 mm MTF曲线

      Figure 8.  MTF curves of 126 mm focal length with switchable stop position scheme

      与光阑位置固定方案相比,光阑位置切换方案不仅可以实现结构紧凑,变焦行程更短,相对孔径更大,综合像质也能够明显提升,故最终选用光阑位置切换方案。以下分析光阑位置切换方案的畸变曲线和点列图。

      图9图10分别为光学系统焦距32 mm、焦距126 mm畸变曲线。从图中可以看出,焦距32 mm边缘视场畸变最大,约为−3.4%,焦距126 mm边缘视场畸变最大,约为−0.26%,满足指标要求。

      图  9  焦距32 mm畸变曲线

      Figure 9.  Distortion curve of 32 mm focal length

      图  10  焦距126 mm畸变曲线

      Figure 10.  Distortion curve of 126 mm focal length

      图11图12分别为光学系统焦距32 mm、焦距126 mm点列图。从图中可以看出,焦距32 mm边缘视场点列图的RMS直径为3.85 μm,焦距126 mm边缘视场点列图的RMS直径为4.01 μm,略大于相机像元尺寸。其余视场点列图的RMS直径均小于相机像元尺寸,整体像质良好。图中100%表示光线追迹所得实际光斑尺寸。

      图  11  焦距32 mm点列图

      Figure 11.  Spot diagrams of 32 mm focal length

      图  12  焦距126 mm点列图

      Figure 12.  Spot diagrams of 126 mm focal length

    • 光学系统中材料的特性误差、元件的加工和装配误差会导致性能下降。该设计中,按照目前国内工艺水平拟定初始公差范围,设置变焦组和像面的轴向移动作为补偿器。选用复色MTF作为评价指标,利用反转灵敏度分析生成具体公差,要求在$135\;{\rm{cycles}}/{\rm{mm}}$处全视场MTF大于0.3的概率达到90%以上。表5表6表7所示为材料公差、加工公差、装调公差,公差分析曲线如图13图14所示,满足设计要求。

      表 5  材料公差

      Table 5.  Material tolerances

      ItemsValue
      Refractive index/mm 1×10−4-5×10−4
      Abbe-number 0.3%-0.5%
      Homogeneity/mm 2×10−6-5×10−6

      表 6  加工公差(λ=546.1 nm)

      Table 6.  Manufacturing tolerances(λ=546.1 nm)

      ItemsValue
      Fringe power/λ 1-2
      Surface irregularity/λ 0.2-0.5
      Central thickness/mm 0.02-0.05
      Wedge/mm 0.005-0.01

      表 7  装调公差

      Table 7.  Alignment tolerances

      ItemsValue
      Airspace/mm0.02-0.05
      Tilt/rad0.0005-0.001
      Decenter & Roll/mm0.02-0.05

      图  13  短焦公差分析曲线

      Figure 13.  Curves of tolerance analysis at short focal length

      图  14  长焦公差分析曲线

      Figure 14.  Curves of tolerance analysis at long focal length

    • 采用光阑位置切换方案,针对1080P高清相机,考虑低照度环境的正常使用,设计了一套光学总长为150 mm,最大通光孔径为Φ42 mm,变焦行程为35.97 mm,短焦焦距为32 mm,对应F数为2.3,长焦焦距为126 mm,对应F数为3的双视场可见光镜头。与常规的光阑位置固定方案相比,光阑位置切换方案能够实现轴向尺寸12%、最大通光孔径19%、变焦行程43%的有效压缩和相对孔径34%、14%的提升;在特征频率135 cycles/mm处,全视场MTF均在0.45以上,明显优于光阑位置固定方案。公差分析结果表明,在$135\;{\rm{cycles}}/{\rm{mm}}$处,全视场MTF大于0.3的概率达到90%以上。光阑位置切换方案为匹配高清相机、大相对孔径的双视场镜头的紧凑化设计提供了新思路。

参考文献 (17)

目录

    /

    返回文章
    返回