留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星载二维转台结构设计及刚度分析

秦涛 郭骏立 张美丽 韩培仙 王进 亓波

秦涛, 郭骏立, 张美丽, 韩培仙, 王进, 亓波. 星载二维转台结构设计及刚度分析[J]. 红外与激光工程, 2022, 51(5): 20210364. doi: 10.3788/IRLA20210364
引用本文: 秦涛, 郭骏立, 张美丽, 韩培仙, 王进, 亓波. 星载二维转台结构设计及刚度分析[J]. 红外与激光工程, 2022, 51(5): 20210364. doi: 10.3788/IRLA20210364
Qin Tao, Guo Junli, Zhang Meili, Han Peixian, Wang Jin, Qi Bo. Structure design and stiffness analysis of spaceborne two-dimensional turntable[J]. Infrared and Laser Engineering, 2022, 51(5): 20210364. doi: 10.3788/IRLA20210364
Citation: Qin Tao, Guo Junli, Zhang Meili, Han Peixian, Wang Jin, Qi Bo. Structure design and stiffness analysis of spaceborne two-dimensional turntable[J]. Infrared and Laser Engineering, 2022, 51(5): 20210364. doi: 10.3788/IRLA20210364

星载二维转台结构设计及刚度分析

doi: 10.3788/IRLA20210364
基金项目: 中国科学院青年促进会基金(Y201866)
详细信息
    作者简介:

    秦涛,男,博士生,主要从事光机系统结构设计及优化方面的研究

  • 中图分类号: TN929.1

Structure design and stiffness analysis of spaceborne two-dimensional turntable

  • 摘要: 星载二维转台是激光通信指向结构的重要组成部分,也是影响星载设备性能的关键部件之一,需要对其进行合理的结构设计和正确的刚度分析,并通过对比试验结果与仿真结果验证设计分析的正确性。首先,介绍了星载二维转台结构形式,基于Isight集成优化方法对比分析了摆镜组件的两种结构形式,并对U形架和轴系结构进行了刚度设计;然后,对二维转台进行有限元建模并重点介绍了轴承的弹簧单元等效建模方式;最后,对星载二维转台进行了刚度分析和试验验证,二维转台在XYZ三个方向上仿真计算的固有频率与试验结果误差在6%以内,表明等效弹簧单元能准确模拟轴承结合部的力学特性。通过对星载二维转台的力学试验验证表明,在保证了二维转台的质量约束和刚度要求下,各部分组成部件结构刚度设计和刚度分析合理,二维转台抗力学性能满足激光通信的任务需求。
  • 图  1  二维转台结构形式

    Figure  1.  Structure form of two-dimensional turntable

    图  2  星载二维转台的总体结构

    Figure  2.  Overall structure of spaceborne two-dimensional turntable

    图  3  光机结构部分组件示意图

    Figure  3.  Schematic diagram of part components of the optical machine structure

    图  4  两种轻量化孔形式的摆镜组件模型

    Figure  4.  Two kinds of lightweight tip-tilt mirror assembly models

    图  5  两种背部轻量化形式摆镜的设计变量示意图

    Figure  5.  Schematic of design variables of two back lightweight form tip-tilt mirrors

    图  6  U形架轻量化结构

    Figure  6.  U-shaped frame lightweight structure

    图  7  U形架应力响应云图

    Figure  7.  Stress response nephogram of the U-shape structure

    图  8  轴系结构设计剖面

    Figure  8.  Shafting structure design section

    图  9  轴承等效模型的示意图

    Figure  9.  Schematic diagram of the bearing equivalent model

    图  10  角接触球轴承简化后的局部有限元模型

    Figure  10.  Simplified local finite element model of angular contact ball bearing

    图  11  二维转台有限元模型示意图

    Figure  11.  Finite element model of two-dimensional turntable

    图  12  二维转台振型图

    Figure  12.  Mode diagram of two-dimensional turntable

    图  13  二维转台模拟样机力学试验

    Figure  13.  Mechanics test of two-dimensional turntable

    图  14  X向特征扫频曲线

    Figure  14.  Sweep frequency curve of the direction of X

    表  1  二维转台设计需求

    Table  1.   Design requirements of two-dimensional turntable

    ParameterIndex
    Clear aperture/mm183×220
    Total weight/kg<12
    Resonant frequency/Hz>120
    Surface precision${\rm{{RMS }{_{G{{rav}}} } } } \leqslant \lambda /30$${{\rm{{RMS} }{_{Temp}}} } \leqslant \lambda /40$
    Horizontal tracking range/(°)$0-300$
    Vertical tracking range/(°)45±5
    Operating temperature/℃20±5
    下载: 导出CSV

    表  2  摆镜组件结构材料属性

    Table  2.   Structural material properties of hole tip-tilt mirror assembly

    MaterialDensity/g·cm−3Young`s modulus/GPaPoisson`s ratio
    SiC3.214460.21
    Invar7.981410.3
    TC44.451170.33
    下载: 导出CSV

    表  3  设计变量及优化结果

    Table  3.   Design variables and optimal results

    VariablesDomainResult-ⅠResult-Ⅱ
    Ft [2,5] 2.1 2.0
    Ht [3,7] 5.5 6.9
    St [2,6] 3.2 2.3
    Rt1 [2,6] 5.9 5.4
    Rt2 [2,6] 2.6 3.8
    Rt3 [2,6] 4.0 2.1
    Rt4 [2,6] 3.4 2.2
    Rt5 [2,6] 3.4 -
    Rt6 [2,6] 3.2 -
    h1 [−7,−3] −2.1 −5
    h2 [−15,−8] −8.1 -
    h3 [−20,−10] −18.3 −10.4
    h4 [−28,−20] −26.7 −26.4
    Freq1 - 355 408
    RMSX - 1.793 0.175
    RMSY - 10.62 6.603
    RMST5 - 0.33 1.2
    Mass - 0.95 1.2
    下载: 导出CSV

    表  4  三种不同U形架材料分析结果

    Table  4.   Analysis results of three different U-shaped frame materials

    MaterialMass/kgModal
    1st2nd3rd
    LY12 1.598 446 696 806
    AZ41M 1.010 430 675 795
    TC4 2.628 439 689 798
    下载: 导出CSV

    表  5  角接触轴承和深沟球轴承刚度计算结果

    Table  5.   Angular contact bearing and deep groove ball bearing stiffness calculation results

    NameStiffness/N·mm−1
    KaKr
    71802 $4.579\;9 \times {10^4}$ $3.084\;4 \times {10^5}$
    61802 - $2.570\;7 \times {10^5}$
    71908 $2.367\;3 \times {10^5}$ $7.509\;3 \times {10^5}$
    61902 - $3.104\;3 \times {10^5}$
    下载: 导出CSV

    表  6  二维转台模态分析结果

    Table  6.   Modal analysis results of two-dimensional turntable

    OrientationFrequency/HzMode descriptionModal shape
    X 115.5 Vibration along X axis Fig.12(a)
    Y 235.8 Rotate around X axis Fig.12(b)
    Z 369.8 Rotate around Z-axis Fig.12(c)
    下载: 导出CSV

    表  7  二维转台模拟样机力学试验结果及仿真误差

    Table  7.   Mechanics test results and simulation errors of two-dimensional turntable

    OrientationExperimentFEARelative error
    X111.9115.53.6%
    Y222.74235.85.9%
    Z351.3369.85.3%
    下载: 导出CSV
  • [1] Liu L R. Laser communications in space Ⅰ optical link and terminal technology [J]. Chinese Journal of Lasers, 2007, 34(1): 3-20. (in Chinese)
    [2] Dreischer T, Maerki A, Weigel T, et al. Operating in sub-arc seconds: High-precision laser terminals for intersatellite communications[C]//Optomechatronic Systems III. International Society for Optics and Photonics, 2002, 4902: 87-98.
    [3] Jiang M, Wang Y P, Fang W, et al. Design of guiding system for solar irradiance monitor [J]. Electronic Measurement Technology, 2013, 30(9): 84-88. (in Chinese)
    [4] Wang Z, Li Z H. Design of optical-mechanical structural for lunar-based extreme ultraviolet camera [J]. Optics and Precision Engineering, 2011, 19(10): 2427-2433. (in Chinese) doi:  10.3788/OPE.20111910.2427
    [5] Li Z H. Opto-mechanical design of lunar based EUV camera for imaging the earth [J]. Chinese Journal of Scientific Instrument, 2010, 31(10): 2352-2356. (in Chinese)
    [6] Xu H, Guan Y J. Structural design of large aperture SiC mirror subassembly [J]. Infrared and Laser Engineering, 2014, 43(S1): 83-88. (in Chinese)
    [7] Bao Q H, Sha W, Chen C Z, et al. Ultra-lightweight design of ϕ610 mm circular primary mirror supported in centre [J]. Acta Photonica Sinica, 2016, 45(9): 128-134. (in Chinese)
    [8] Zhang Y Q, Liu Z H, Li Z G, et al. Optimum structural design for collimation frame of space-based two-dimensional turntable [J]. Infrared and Laser Engineering, 2017, 46(S1): S113003. (in Chinese)
    [9] Yan Z X, Jia J J. Design of space-borne two-dimensional turntable of ATP against the environment of force and vibration [J]. Science Technology and Engineering, 2014, 14(19): 148-154. (in Chinese)
    [10] He S, Wang Z S. Modal analysis and experimental verification of two-dimensional turntable [J]. Manufacturing Automation, 2016, 38(5): 139-141, 146. (in Chinese)
    [11] Zheng Y. Research on dynamic modeling method of angular contact ball bearing joint[D]. Wuhan: Huazhong University of Science and Technology, 2015. (in Chinese)
    [12] Kang Y, Shen P C, Huang C C, et al. A modification of the Jones–Harris method for deep-groove ball bearings [J]. Tribology International, 2006, 39(11): 1413-1420. doi:  10.1016/j.triboint.2005.12.005
    [13] Tiwari M, Gupta K, Prakash O. Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor [J]. Journal of Sound and Vibration, 2000, 238(5): 723-756. doi:  10.1006/jsvi.1999.3109
    [14] Wang J, Lu E, Wang J Q, et al. A study on the simplifying method of ball bearing in structural analysis [J]. Optics and Precision Engineering, 1999, 7(2): 110-114. (in Chinese)
    [15] Wan C S. Analysis Method of Rolling Bearing[M]. Beijing: Machinery Industry Press, 1987. (in Chinese)
  • [1] 张雷, 邵梦旗, 薛志鹏, 丛杉珊, 刘江, 孙美娇, 郑晓峰, 刘金全.  微纳卫星高分辨视频相机光机结构设计与试验(特邀) . 红外与激光工程, 2021, 50(10): 20210477-1-20210477-7. doi: 10.3788/IRLA20210477
    [2] 耿靖童, 杨柳, 赵舒华, 张勇刚.  谐振式微光学陀螺仪谐振微腔的最新进展 . 红外与激光工程, 2021, 50(8): 20210044-1-20210044-7. doi: 10.3788/IRLA20210044
    [3] 张耀元, 王锐, 姜瑞韬, 杜坤阳, 李远洋.  硅基光学相控阵扇形天线优化设计 . 红外与激光工程, 2021, 50(7): 20210013-1-20210013-8. doi: 10.3788/IRLA20210013
    [4] 艾志伟, 嵇建波, 王鹏举, 李静, 周皓阳.  两轴柔性支承快速反射镜结构控制一体化设计 . 红外与激光工程, 2020, 49(7): 20190479-1-20190479-8. doi: 10.3788/IRLA20190479
    [5] 翟岩, 姜会林, 梅贵, 江帆.  大口径空间红外相机铍铝合金反射镜组件材料选择与设计 . 红外与激光工程, 2020, 49(6): 20190390-1-20190390-7. doi: 10.3788/IRLA20190390
    [6] 李晓静, 郑子云, 史戈平, 高永亮.  制备光学金刚石膜的微波谐振腔设计及优化 . 红外与激光工程, 2019, 48(S2): 156-163. doi: 10.3788/IRLA201948.S216001
    [7] 汪奎, 辛宏伟, 曹乃亮, 石震.  空间相机快速反射镜的两轴柔性支撑结构设计 . 红外与激光工程, 2019, 48(12): 1214005-1214005(8). doi: 10.3788/IRLA201948.1214005
    [8] 王克军, 董吉洪, 周平伟, 王晓宇, 姜萍.  空间遥感器反射镜背部支撑结构设计 . 红外与激光工程, 2019, 48(7): 718004-0718004(11). doi: 10.3788/IRLA201948.0718004
    [9] 张绍军, 高云国, 薛向尧.  新型光学检测靶标直线运动系统加强组件优化设计 . 红外与激光工程, 2018, 47(6): 617003-0617003(8). doi: 10.3788/IRLA201847.0617003
    [10] 谢文亮, 沈正祥, 余俊, 王占山, 黄帆, 陈昌亚, 范峰.  X射线聚焦望远镜的支撑结构设计与力学实验分析 . 红外与激光工程, 2018, 47(4): 418002-0418002(7). doi: 10.3788/IRLA201847.0418002
    [11] 张永强, 刘朝晖, 李治国, 谢友金.  空间二维转台照准架的结构优化设计 . 红外与激光工程, 2017, 46(S1): 104-109. doi: 10.3788/IRLA201746.S113003
    [12] 李响, 张立中, 姜会林.  星载激光通信载荷高体分SiC/Al主镜及支撑结构设计 . 红外与激光工程, 2017, 46(12): 1218003-1218003(7). doi: 10.3788/IRLA201746.1218003
    [13] 陈启梦, 张国玉, 王哲, 张健.  多轨道准直式红外地球模拟器结构设计 . 红外与激光工程, 2017, 46(12): 1204004-1204004(7). doi: 10.3788/IRLA201746.1204004
    [14] 刘百麟, 刘绍然, 周佐新, 于思源.  GEO星载激光通信终端二维转台伺服机构热设计 . 红外与激光工程, 2016, 45(9): 922003-0922003(6). doi: 10.3788/IRLA201645.0922003
    [15] 王克军, 宣明, 董吉洪, 李威, 张缓缓.  空间遥感器反射镜组件结构设计方法 . 红外与激光工程, 2016, 45(11): 1113001-1113001(11). doi: 10.3788/IRLA201645.1113001
    [16] 吴飞, 董杰, 田海霞, 蔡璐璐.  黑体腔高温传感器结构设计 . 红外与激光工程, 2015, 44(9): 2609-2614.
    [17] 杨利伟, 李志来, 辛宏伟, 徐宏, 樊延超.  小型红外相机结构设计与分析 . 红外与激光工程, 2015, 44(10): 3025-3031.
    [18] 谢晓光, 杨林.  对地观测敏捷小卫星星载一体化结构设计 . 红外与激光工程, 2014, 43(S1): 53-58.
    [19] 庄昕宇, 陈兆兵.  某测量吊舱运动框架结构设计与分析 . 红外与激光工程, 2014, 43(10): 3444-3450.
    [20] 周超.  低温红外系统光机结构设计 . 红外与激光工程, 2013, 42(8): 2092-2096.
  • 加载中
图(14) / 表(7)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  6
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-25
  • 修回日期:  2022-01-20
  • 刊出日期:  2022-06-08

星载二维转台结构设计及刚度分析

doi: 10.3788/IRLA20210364
    作者简介:

    秦涛,男,博士生,主要从事光机系统结构设计及优化方面的研究

基金项目:  中国科学院青年促进会基金(Y201866)
  • 中图分类号: TN929.1

摘要: 星载二维转台是激光通信指向结构的重要组成部分,也是影响星载设备性能的关键部件之一,需要对其进行合理的结构设计和正确的刚度分析,并通过对比试验结果与仿真结果验证设计分析的正确性。首先,介绍了星载二维转台结构形式,基于Isight集成优化方法对比分析了摆镜组件的两种结构形式,并对U形架和轴系结构进行了刚度设计;然后,对二维转台进行有限元建模并重点介绍了轴承的弹簧单元等效建模方式;最后,对星载二维转台进行了刚度分析和试验验证,二维转台在XYZ三个方向上仿真计算的固有频率与试验结果误差在6%以内,表明等效弹簧单元能准确模拟轴承结合部的力学特性。通过对星载二维转台的力学试验验证表明,在保证了二维转台的质量约束和刚度要求下,各部分组成部件结构刚度设计和刚度分析合理,二维转台抗力学性能满足激光通信的任务需求。

English Abstract

    • 在星地或星间光通信中,二维转台是星载ATP系统指向机构的重要组成部分,广泛应用于空间技术、船舶技术、国防建设等领域。如瑞士OPTEL高性能通信终端[1-2],美国天基空间目标监视系统[3],我国风云三号卫星上搭载的太阳辐射监视仪及嫦娥三号着陆器上搭载的极紫外相机等[4-5]。激光通信常见的指向结构形式有十字跟踪架结构,潜望式结构和摆镜式结构。图1(a)是十字跟踪架式二维转台,具有转动范围大,控制简单等特点,但因其负载为整个光学系统,故转动惯量和结构尺寸非常大。图1(b)是潜望式二维转台,采用两个万向节实现俯仰方位运动,回转半径大,光路经过两次反射,控制光路难度大。图1(c)是摆镜式二维转台,由于负载为反射镜,具有转动惯量小、运动部件质量轻和刚度高等特点,但缺点是俯仰方向调整能力有限,适用于低轨道与高轨道、高轨道对高轨道之间的激光通信。通过对三种转台结构形式的对比研究,根据系统的约束和应用背景,选用摆镜式二维转台结构作为激光通信的光机结构,将其应用在高轨上可避免俯仰方向调整限制的缺点。

      图  1  二维转台结构形式

      Figure 1.  Structure form of two-dimensional turntable

      星载二维转台随着卫星发射将经受许多恶劣的环境,在发射过程中二维转台要承受由于运载火箭的加速度而产生的过载以及振动、冲击等严酷的力学环境,需要转台机构具有足够高的刚度抵抗外界环境的干扰。此外,为了降低发射成本,星载二维转台需要轻量化设计,在保证抗力学特性的基础上,降低质量从而节约卫星资源。因此,在充分考虑卫星平台振动特性的基础上,合理设计二维转台整体结构的刚度,既能保证整机满足体积质量的严格限制,又具有抵抗复杂外界环境的抗力学特性。文中的主要工作是对星载二维转台结构设计,包括摆镜组件的高刚度轻量化的集成优化设计,U形架和轴系结构的刚度设计。然后,研究了二维转台进行了有限元建模,特别对影响刚度分析的轴承部件建立了改进的弹簧单元等效模型并推导了等效刚度计算公式。最后对整机结构进行了刚度特性分析和样机试验验证。

    • 考虑到二维转台的力学环境及轻量化需求,为了星载二维转台顺利完成光通信的科学目标,表1详细提出了对星载二维转台结构的设计指标。

      表 1  二维转台设计需求

      Table 1.  Design requirements of two-dimensional turntable

      ParameterIndex
      Clear aperture/mm183×220
      Total weight/kg<12
      Resonant frequency/Hz>120
      Surface precision${\rm{{RMS }{_{G{{rav}}} } } } \leqslant \lambda /30$${{\rm{{RMS} }{_{Temp}}} } \leqslant \lambda /40$
      Horizontal tracking range/(°)$0-300$
      Vertical tracking range/(°)45±5
      Operating temperature/℃20±5
    • 星载二维转台主要包括方位轴及其驱动组件,俯仰轴系及其驱动组件、U形架与摆镜组件等,星载二维转台总体结构如图2所示。U形架作为连接俯仰轴系和方位轴系的主体,它既是俯仰轴系的支撑结构,又固连于方位轴系;摆镜组件通过转接件与俯仰轴相连接,且由俯仰轴系两端的轴承承载。俯仰轴一端为固定端,轴承选用一对背靠背安装的角接触球轴承(71802AC),采用压圈和端盖压紧轴承内外圈,同时承受径向和轴向两个方向的轴向负载;另一端为固定端,采用深沟球轴承(61802),可以承受径向负载,轴向少量游动可以补偿温度变化造成的影响。方位轴系也是采用一对角接触球轴承(71908AC)来承担双向轴向和径向负载,底端的深沟球轴承(61902)能降低方位轴的径向跳动。

      图  2  星载二维转台的总体结构

      Figure 2.  Overall structure of spaceborne two-dimensional turntable

    • 不同于传统椭圆形结构的摆镜,如图3所示,摆镜的外形包络是根据由缩束主镜和粗相机的通光口径在45°平面确定了两个椭圆,并且对摆镜结构进行了上下对称处理,故而摆镜外形包络呈现图3中的结构形式。该摆镜作为系统的粗跟踪机构使用,而系统采用粗精共光轴的设计,摆镜反射镜光束同时一部分进入粗探测,一部分进入精探测,从光路上需要覆盖粗探测和精探测。摆镜材料的选择主要从材料的力学性能和热性能两个方面重点考虑,在众多制造摆镜材料中,碳化硅(SiC)因其比刚度高,光学加工后可以获得较高的光学表面质量,所以SiC作为摆镜的首先材料。在空间摆镜支撑方式中,对于小口径的摆镜,中心支撑结构简单,质量轻,刚度好,并且对摆镜优化设计后可以获得很高的面形精度[6]。轻量化孔形式决定摆镜组件的刚度和重量,因此,针对背部开放式的三角形孔和矩形孔两种结构形式进行优化设计及对比分析。

      图  3  光机结构部分组件示意图

      Figure 3.  Schematic diagram of part components of the optical machine structure

      图4所示为设计的摆镜组件,摆镜与嵌套胶接,柔性支撑螺接嵌套和支撑板,支撑板最终与二维转台俯仰轴系相连,从而实现摆镜的支撑固定,其中嵌套材料为殷刚,柔性支撑材料和支撑板都为钛合金材料(TC4),各结构材料性能见表2

      表 2  摆镜组件结构材料属性

      Table 2.  Structural material properties of hole tip-tilt mirror assembly

      MaterialDensity/g·cm−3Young`s modulus/GPaPoisson`s ratio
      SiC3.214460.21
      Invar7.981410.3
      TC44.451170.33

      图  4  两种轻量化孔形式的摆镜组件模型

      Figure 4.  Two kinds of lightweight tip-tilt mirror assembly models

    • 为了对两种结构形式的摆镜进行准确的分析比较,利用集成优化方法对其结构参数进行优化设计后,通过对比刚度、质量和面形精度等评价指标对比两种摆镜的结构性能。摆镜优化问题的设计变量包括,镜面厚度(Ft),支撑孔壁厚(Ht),侧壁厚(St),轻量化筋厚(Rti, i=1,2,3,4,5,6)以及轻量化背部形状控制变量(hj, j=1,2,3,4),如图5所示。集成优化中以质量(Mass)和Y向重力工况下面型精度(RMSY)最小为优化目标,以一阶固有频率Freq1,摆镜X向重力工况下面形精度(RMSX)和温升5 ℃的面形精度(RMST5)为约束条件,优化问题描述为:

      图  5  两种背部轻量化形式摆镜的设计变量示意图

      Figure 5.  Schematic of design variables of two back lightweight form tip-tilt mirrors

      $$\left\{ {\begin{array}{*{20}{l}} {\min \,F = f({\rm{RMS}}{_Y},{\rm{Mass}})} \\ \begin{array}{l} {\rm{ s.t}}.\;\;2 \leqslant {F_{{t}}} \leqslant 5,3 \leqslant {H_{{t}}} \leqslant 7,2 \leqslant {S_{\rm{t}}},{R_{{{ti}}}} \leqslant 6, \\ \;\;\;\; - 7 \leqslant {h_1} \leqslant - 3, - 15 \leqslant {h_2} \leqslant - 8, - 20 \leqslant {h_3} \leqslant - 10, \\ \;\;\;\;\; - 28 \leqslant {h_4} \leqslant - 20,{\rm{RMS}}{_X},{\rm{RMS}}_{T5} \leqslant 3,Fre{q_1} \geqslant 120 \end{array} \end{array}} \right.$$ (1)

      基于Isight[7]的摆镜集成优化优化结果如表3所示。Result-Ⅰ是矩形轻量化孔的优化结果,Result-Ⅱ是三角形轻量化孔的优化结果。集成优化结果表明,尽管矩形孔式的温升变化下的面形精度RMST5和重量Mass略优于三角形孔式摆镜,但重点关注的结构刚度Freq1Y向重力工况下的面型精度RMSY却远远不如三角形轻量化形式的优化结果。综上所述,提出的三角形轻量化孔的摆镜结构具有高刚度,高轻量化率和高面形精度。

      表 3  设计变量及优化结果

      Table 3.  Design variables and optimal results

      VariablesDomainResult-ⅠResult-Ⅱ
      Ft [2,5] 2.1 2.0
      Ht [3,7] 5.5 6.9
      St [2,6] 3.2 2.3
      Rt1 [2,6] 5.9 5.4
      Rt2 [2,6] 2.6 3.8
      Rt3 [2,6] 4.0 2.1
      Rt4 [2,6] 3.4 2.2
      Rt5 [2,6] 3.4 -
      Rt6 [2,6] 3.2 -
      h1 [−7,−3] −2.1 −5
      h2 [−15,−8] −8.1 -
      h3 [−20,−10] −18.3 −10.4
      h4 [−28,−20] −26.7 −26.4
      Freq1 - 355 408
      RMSX - 1.793 0.175
      RMSY - 10.62 6.603
      RMST5 - 0.33 1.2
      Mass - 0.95 1.2
    • U形架作为连接俯仰轴系和方位轴系的主体,它的结构刚度和应力变形有着较高的要求。U形架在二维转台整机中质量相对较大,合理的轻量化设计,使其高刚度与低质量两种性能兼备,足以抵御外界复杂的力学环境[8]。首先,二维转台对于质量和体积约束有着很严格的要求,U形架的结构形式为轻量化孔与加强筋相结合,如图6所示,根据对U形架有限元分析,对其轻量化孔区域,加强筋的布置及厚度进行了设计。其次,材料选择方面,由于航天材料选用范围、可靠性和整机质量的限制,在载荷的阻尼设计上受到很多限制[9]。故选用了铸造铝基复合材料(LY12)作为二维转台主支撑结构(U形架、光学主体框架、轴系基座)的加工基材。这种材料具有很高的比模量,而且材料阻尼系数也较一般镁合金(AZ41M)和钛合金(TC4)高。表4对比了这三种不同U形架材料的质量和模态。

      表 4  三种不同U形架材料分析结果

      Table 4.  Analysis results of three different U-shaped frame materials

      MaterialMass/kgModal
      1st2nd3rd
      LY12 1.598 446 696 806
      AZ41M 1.010 430 675 795
      TC4 2.628 439 689 798

      图  6  U形架轻量化结构

      Figure 6.  U-shaped frame lightweight structure

      表4可以看出,镁合金(AZ41M)材料相比于其他两种材料质量最轻,为1.010 kg,但是对应的前三阶模态也是最低,一阶模态为430 Hz;铝合金(LY12)材料刚度最高,一阶模态为446 Hz,并且重量在许可范围内,为1.598 kg;钛合金(TC4)材料不仅质量大,而且固有频率也相比较低。如图7所示,更近一步,对铝合金材料U形架应力分析,在沿着发射方向Y向重力加速度过载9 g作用下,最大应力在U形架底部,为13.3 MPa。铝合金材料的屈服极限为420 MPa,结构应力远小于其屈服极限,U形架结构强度满足设计需求。

      图  7  U形架应力响应云图

      Figure 7.  Stress response nephogram of the U-shape structure

    • 俯仰轴系和方位轴系的刚度决定了整个转台的谐振频率,要求二维转台机构能抵抗发射,振动和在轨运行等复杂的空间环境的影响[10]。如图8所示,轴系配置分固定端和游动端两部分,俯仰方位轴系均采用“一端背对背角接触球轴承,一端为深沟球轴承”的配置方式。固定端靠近负载面安装,支撑轴承采用一对背对背角接触球轴承同时实现轴向与径向支撑,通过选择不同的轴承型号和接触角来调整和分配轴向、径向的支撑刚度。游动端用于轴向温升卸载和降低尾部轴系跳动,对轴向支撑不起作用,故游动端轴承常采用深沟球轴承。

      图  8  轴系结构设计剖面

      Figure 8.  Shafting structure design section

      俯仰/方位-角接触轴承公称内径$\phi 17\;{\rm{mm}}$$\phi 35\;{\rm{mm}}$,采用背对背安装方式,轴与轴承外圈、轴承与轴套、轴套与U形架立柱间均采用过盈配合,过盈量在0.001~0.003 mm范围内;俯仰/方位-深沟球轴承公称内径$\phi 15\;{\rm{mm}}$,轴与轴承间、轴承与轴套间采用过盈配合,深沟球轴承外圈通过轴用压圈固定,内圈不做定位。俯仰/方位轴承固定端采用接触角为$25^\circ $的P4精度角接触球轴承,俯仰/方位轴承游动端采用P5精度的深沟球轴承。轴承装配时需要锁紧,通过调整隔圈的厚度来控制轴向预紧量。轴承各部件装配完成时,要求不存在轴向跳动,满足俯仰轴的轴系晃动量小于$ 5''$,方位轴的轴系晃动量小于$ 10''$。根据如上的设计轴系结构具有很高的轴向和径向刚度,能够满足力学环境试验的技术指标要求。

    • 轴系结构是二维转台中的重要部件,它的刚度特性直接影响整个转台的力学性能。由于轴承的结构较为复杂,包含了滚动体与内外滚道的结合部、轴承外圈与轴承座的结合部及轴承内圈与主轴结合部。如果对每一部分精细建模,建立模型就很复杂并且不可避免的建模误差,所以对轴承准确的力学等效建模是非常必要的[11]。为了刚度分析的方便,往往将轴承的结构视为一个整体,这样就只需要考虑轴承表现出的综合力学参数。根据转轴的受力和运动方式,可以将轴承等效为上下左右均匀布置的四组弹簧阻尼单元[12-14]。尽管这种等效方式涉及参数和自由度较少,但为了能更精细的反应轴承内部的力学模型,采取将轴承中每一个滚珠等效为一组弹簧单元,将所有弹簧单元均匀布置于轴径的圆周方向上,如图9所示。

      图  9  轴承等效模型的示意图

      Figure 9.  Schematic diagram of the bearing equivalent model

      基于Hertz点接触理论[15],对于轴承中的单个的滚动体,定义单个滚动体与两个滚道之间的法向趋近量$\delta $,轴承接触角为α,滚珠与内圈滚道接触的曲率和函数$\displaystyle\sum {\rho _i^{1/3}} $和滚珠与外圈滚道接触的曲率和函数$\displaystyle\sum {\rho _{{e}}^{1/3}}$,则可推导出仅受单一径向或轴向载荷时,刚度系数$K$、径向刚度${K_r}$和轴向刚度${K_a}$

      $$ K{\rm{ = }}2.134\;3 \times {10^5}{\left( {{\delta _i}^*\sum {\rho _i^{1/3} + \delta _{{i}}^*\sum {\rho _e^{1/3}} } } \right)^{ - 1.5}} $$ (2)
      $$ {K_a}{\rm{ = }}1.5K{\delta ^{0.5}}{\left( {\sin \alpha } \right)^{2.5}} $$ (3)
      $$ {K_r}{\rm{ = }}1.5K{\delta ^{0.5}}{\left( {\cos \alpha } \right)^{2.5}} $$ (4)

      图9所示每组弹簧单元处分别设置一个轴向弹簧和径向弹簧,设$K_{{x}}^i$$K_{{y}}^i$$K_z^i$分别代表第i个弹簧单元的XYZ三个方向的等效刚度,滚轴数目为n。在圆周方向上任意位置取一组弹簧单元,设其与X方向夹角为${\theta _i}$(i=1···n),则满足如下关系式:

      $$K_z^i{\rm{ = }}{K_a}$$ (5)
      $$K_x^i = {K_r}\cos {\theta _i},\;K_y^i = {K_r}\sin {\theta _i}$$ (6)

      以方位轴-角接触球轴承为例阐述建模方法,其他轴承的等效建模不再赘述。图10所示为方位轴系中的角接触球轴承简化后的局部有限元模型,轴径上布置了16组弹簧单元,根据有限元网格划分情况,在轴径圆周方向均匀布置。由表5得到的计算结果和公式(5)~(6)对简化模型中处于任意位置的弹簧单元刚度进行求解,由于弹簧单元数目较多,其具体计算结果数据不予以列出。在Hypermesh中用Cbush单元模拟的弹簧,并在Property的Pbush单元属性中赋予计算的刚度值,忽略阻尼、摩擦等非线性因素。结合已划分好网格的其他部件,建立了二维转台轴承的等效有限元建模。

      表 5  角接触轴承和深沟球轴承刚度计算结果

      Table 5.  Angular contact bearing and deep groove ball bearing stiffness calculation results

      NameStiffness/N·mm−1
      KaKr
      71802 $4.579\;9 \times {10^4}$ $3.084\;4 \times {10^5}$
      61802 - $2.570\;7 \times {10^5}$
      71908 $2.367\;3 \times {10^5}$ $7.509\;3 \times {10^5}$
      61902 - $3.104\;3 \times {10^5}$

      图  10  角接触球轴承简化后的局部有限元模型

      Figure 10.  Simplified local finite element model of angular contact ball bearing

    • 对二维转台模型经过简化处理,将不必要的倒圆角,孔及曲面特征删除。方位轴系及俯仰轴系使用4.1节中轴承的等效建模方法应用在二维转台的整机有限元建模中,有限元建模选用实体单元Hex6作为网格单元,共有网格单元420556,有限元模型如图11所示。二维转台在XYZ方向的固有频率及振型如表6所示。

      表 6  二维转台模态分析结果

      Table 6.  Modal analysis results of two-dimensional turntable

      OrientationFrequency/HzMode descriptionModal shape
      X 115.5 Vibration along X axis Fig.12(a)
      Y 235.8 Rotate around X axis Fig.12(b)
      Z 369.8 Rotate around Z-axis Fig.12(c)

      图  11  二维转台有限元模型示意图

      Figure 11.  Finite element model of two-dimensional turntable

      二维转台仿真分析计算得到三个方向的模态,分别为X向115.5 Hz、Y向235.8 Hz、Z向369.8 Hz。模态分析结果见表6。三个方向XYZ一阶频率振型见图12

      图  12  二维转台振型图

      Figure 12.  Mode diagram of two-dimensional turntable

    • 图13是样机力学试验现场,为了验证二维转台的结构设计合理性和刚度分析的正确性,采用了与二维转台设计模型结构1∶1的试验样机进行了三个方向的0.2 g的特征试验,正弦振动和随机振动试验,表7给出了特征扫频试验的结果及仿真误差。

      图  13  二维转台模拟样机力学试验

      Figure 13.  Mechanics test of two-dimensional turntable

      二维转台模拟样机力学试验结果与有限元分析结果一致性良好,相对误差在6%以内,满足有限元分析误差范围内。表明有限元仿真分析结果比较准确,改进的弹簧单元模拟的轴承能有效应用在二维转台的工程分析之中。图14是沿X向特征扫频响应曲线。

      表 7  二维转台模拟样机力学试验结果及仿真误差

      Table 7.  Mechanics test results and simulation errors of two-dimensional turntable

      OrientationExperimentFEARelative error
      X111.9115.53.6%
      Y222.74235.85.9%
      Z351.3369.85.3%

      图  14  X向特征扫频曲线

      Figure 14.  Sweep frequency curve of the direction of X

    • 根据星载小型二维转台的结构需求,主要从整机的刚度及轻量化等方面对二维转台结构进行了详细设计和刚度分析,包括对摆镜组件的轻量化设计、U形架的刚度设计,轴系结构的刚度设计和等效建模及整机结构的刚度分析。二维转台的有限元分析及力学试验验证表明,转台的俯仰轴系、方位轴系刚度设计良好,高轻量化高刚度的摆镜组件和U形架满足具有较高的刚度和强度。二维转台在XYZ三个方向刚度分析的固有频率与力学试验验证结果误差在6%以内,说明轴承的等效建模方式能够准确的模拟轴承的刚度特性,适用于二维转台的刚度分析。通过对星载二维转台的动力学试验表明,在保证了二维转台的质量约束和刚度需求,各部分组成部件结构刚度设计合理。

参考文献 (15)

目录

    /

    返回文章
    返回