留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近红外光谱吸收技术的无线电子鼻设计

史屹君 武鸿涛 刘文皓 苏子博 刘洋

史屹君, 武鸿涛, 刘文皓, 苏子博, 刘洋. 近红外光谱吸收技术的无线电子鼻设计[J]. 红外与激光工程, 2022, 51(5): 20210374. doi: 10.3788/IRLA20210374
引用本文: 史屹君, 武鸿涛, 刘文皓, 苏子博, 刘洋. 近红外光谱吸收技术的无线电子鼻设计[J]. 红外与激光工程, 2022, 51(5): 20210374. doi: 10.3788/IRLA20210374
Shi Yijun, Wu Hongtao, Liu Wenhao, Su Zibo, Liu Yang. Design of wireless electronic nose based on near infrared spectral absorption technology[J]. Infrared and Laser Engineering, 2022, 51(5): 20210374. doi: 10.3788/IRLA20210374
Citation: Shi Yijun, Wu Hongtao, Liu Wenhao, Su Zibo, Liu Yang. Design of wireless electronic nose based on near infrared spectral absorption technology[J]. Infrared and Laser Engineering, 2022, 51(5): 20210374. doi: 10.3788/IRLA20210374

近红外光谱吸收技术的无线电子鼻设计

doi: 10.3788/IRLA20210374
详细信息
    作者简介:

    史屹君,男,正高级工程师,主要从事光电信号探测技和工程光学计量测试技术方面的研究

  • 中图分类号: TP212.6

Design of wireless electronic nose based on near infrared spectral absorption technology

图(7)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  9
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 修回日期:  2022-01-25
  • 刊出日期:  2022-06-08

近红外光谱吸收技术的无线电子鼻设计

doi: 10.3788/IRLA20210374
    作者简介:

    史屹君,男,正高级工程师,主要从事光电信号探测技和工程光学计量测试技术方面的研究

  • 中图分类号: TP212.6

摘要: 基于近红外光谱吸收技术,设计并开发出了一套能够高效、准确地对目标气体进行检测的电子鼻系统。电子鼻系统主要包括近红外激光发射单元、气室单元、系统控制单元、人机界面单元。主成分分析(PCA)算法和反向传播(BP)神经网络通过LabVIEW所提供的MATLAB Script节点,集成到上位机软件中,并用来对采集到的数据进行分析。结果表明,该电子鼻在网络训练次数达到1 000次以上时达到稳定,且精度达到0.000 1。对白醋、米醋和苹果醋进行食品分辨,识别准确率达到100%,实现了高精度、高稳定度和高分辨率的设计目标,具有较好的应用前景。

English Abstract

    • 近红外光谱区的频率范围为780~2 526 nm,该频率范围区域有机分子中的含氢基团(如:C-H,O-H和N-H等)的合频及各级倍频的吸收区一致。所以通过获取待测样品的近红外吸收光谱便可以获取样品中有机分子的含氢基团的特征信息,从而通过进一步的分析获取待测样品中的各种组成成分及含量。相对于传统的化学分析手段,基于近红外吸收光谱的检测方法具有便捷、高效、成本低、无污染且不会对样品产生破坏等明显的优点。所以该技术得到了越来越多的关注,并被广泛的应用于石油化工、食品安全检测、公共安全、生物科技和制药等各个领域[1-6]

      传统的近红外光谱仪光源光照强度低、波长范围大,所以接收到的信号信噪比低、区分度小、数据量大、后期处理运算量大且检测下限高。相对而言,激光器发光强度高、相干性好、波长精确可控,被广泛应用于各种光学检测领域[7-9],所以可以根据被检测气体的近红外光谱的吸收特征峰,选取波长范围合适的激光器对特定的检测对象进行检测。基于这种设计的近红外光谱测试仪器具有信号强度大、信号信噪比高、对不同浓度的目标气体的区分度大、检测下限低且需要处理的数据量小的优点。同时通过激光耦合和时分控制手段,可以方便的对检测对象范围进行扩展。基于上述分析,并结合PCA和BP神经网络算法[10-13],文中设计并开发出了一套基于近红外吸收光谱技术的电子鼻,并对整套系统的性能进行测试。结果表明:整套系统对白醋、米醋和苹果醋进行食品分辨,识别准确率达到100%,实现了高精度、高稳定度和高分辨率的设计目标,具有较好的应用前景。

    • 基于近红外光谱吸收技术的电子鼻设计的结构框架图如图1所示。从图中可以看出整个电子鼻系统主要由四部分组成:近红外激光发射单元、气室单元、系统控制单元和人机界面单元。近红外激光发射单元为整个电子鼻系统提供近红外激光源,发射出的激光通过充满待测气体的气室后被探测器所接收,探测器将接收到的光谱数据转换成为数字信号,再通过无线收发模块将数据传给上位机进行分析。

      图  1  无线电子鼻系统结构框图

      Figure 1.  Structure diagram of wireless e-nose system

    • 无线电子鼻系统以半导体激光器作为发射光源,采用凸透镜将光束聚焦照射到气室内。图2所示为光源发射模块的原理图。其中DSP控制系统采用TMS320LF2812芯片作为主控芯片,它对由传感器从激光器采集上传的数字信息进行处理,产生两路控制信号:一路经DAC转换成模拟信号,控制压控恒流源实现对激光器的恒流驱动;另一路经DAC转换成模拟信号,控制TEC驱动电路对TEC的制热与制冷进行控制,以实现对激光器的恒温控制。信息采集部分主要采集激光器的温度信息以及电流信息,并对其进行AD变换后输送给DSP控制系统。其中,DSP控制采用TMS320LF2812芯片实现,ADC采用LTC1864芯片实现,TEC采用MAX1968芯片实现。

      图  2  激光发射模块

      Figure 2.  Laser emitting module

    • 气室主要由传感器阵列、传感器驱动、样品和TEC组成,其中传感器驱动驱动传感器阵列采集透射过样品气体的激光。控制系统的信号调理电路接收来自气体传感器阵列的模拟信号,经A/D转换电路转换为数字信号,送到ARM控制器中进行数据处理。基于LPC2138芯片的ARM控制系统是该系统的控制核心,它一方面发送控制命令到传感器电源控制电路,以输出稳定的控制电压使传感器工作在稳定的状态,另一方面控制TEC驱动控制电路以控制TEC的工作电流,实现TEC对气室的制冷和制热工作。ARM控制器与上位机的通信采用基于ZigBee技术的无线通信,其中无线发送与接收模块采用CC2530芯片实现。上位机将接收到的数据上传到MATLAB的LabvieW软件中进行分析和显示。图3所示为传感器阵列信号调理电路原理图,为了提高传感器阵列的工作稳定性,减少因交叉电源波动对其造成的影响,采用偏置电压与驱动电压相分离的技术,设计传感器电源。图中,M5V和H5V分别为偏置电压与驱动电压,INA_CH0为共同输出端,S1_r1、S1_r2和S1_r3为量程切换控制端。

      图  3  传感器阵列信号调理电路

      Figure 3.  Signal regulating circuit of sensor array

    • 无线电子鼻系统的软件采用主成分分析方法(PCA)与反向传播(BP)神经网络相结合,主流程图如图4所示。

      图  4  电子鼻系统的软件流程图

      Figure 4.  Software flow chart of e-nose system

      从软件设计可以看出,该系统主要包括3个过程:数据采集、特征提取以及网络学习。

      (1)数据采集

      设传感器阵列的第i个传感器的测量电阻值为${R_i}$,参考电阻为${R_0}$,则有:

      $${R_i} = {R_0}\left(\dfrac{{{V_{cc}}}}{{{V_0}}} - 1\right)$$ (1)

      (2)数据处理

      由于环境因素的影响,传感器的测量存在误差,为此需要对数据进行如下处理:

      $$\overline {{R_i}} = \dfrac{{\displaystyle\sum\limits_{j = 1}^n {{R_{ij}} - \max {R_{ij}} - \min {R_{ij}}} }}{{n - 2}}$$ (2)

      式中:n为传感器每秒钟的采用次数;$\max {R_{ij}}$为采样的最大值;$\min {R_{ij}}$为采样的最小值。

      利用PCA对得到的3个传感器的数据进行归一化处理,如公式(3)所示:

      $${y_i} = \frac{{\overline {{X_i}} - \min \overline {{X_i}} }}{{\max \overline {{X_i}} - \min \overline {{X_i}} }}$$ (3)

      式中:$\overline {{X_i}} $为样本数据,其值为$\overline {{R_i}} $经过DA转换后获得;$\max \overline {{X_i}} $表示3个传感器的平均输出最大值;$\min \overline {{X_i}} $表示3个传感器的平均输出最小值,i=1,2,3。

      (3)网络学习

      BP神经网络具有很强的自组织、自适应和自学习能力,可以将网络学习与训练的结果输出与数据库中的特征值进行比对,从而确定样本的类别。图5给出了电子鼻系统的用户界面。

      图  5  电子鼻系统的用户界面

      Figure 5.  The user interface of e-nose system

    • 为了验证整套系统的测试效果,白醋、米醋和苹果醋等3种醋挥发的气体被用作目标检测对象。测试的第一步,已知浓度的3种气体和基于上述3种气体的混合气体被注入到气室中。上位机软件被设定为学习模式,相关的近红外吸收光谱数据被采集并存储到数据库中,并用来进行BP神经网络的构建。学习过程完成后,待测未知气体被注入气室中进行检测和识别,电子鼻系统对待分析的气体成分的近红外吸收光谱数据进行采集和分析,最终完成对目标气体的检测。图3所示为对一组待测气体的检测结果,图6右侧所示为从探测单元接收到的原始数据所构成的雷达图,原始数据共10组,与每次检测过程中,3个激光器交替各发射10次相对应;每组数据包括3个值,分别与3种不同波长的激光相对应。最终这些数组经过上位机软件内置的算法进行处理,得到的结果在上位机界面的左侧进行显示。图中所示的检测结果为白醋:<1 ppm,米醋:203 ppm,苹果醋:97 ppm;该组气体中实际包含的白醋、米醋和苹果醋挥发气体浓度分别为0 ppm、100 ppm和200 ppm。从总体的测试结果来看,所设计的基于近红外吸收光谱技术所设计的电子鼻系统工作状况稳定可靠,在实际的识分析识别中,对于10 ppm~20%浓度范围内的目标气体可以实现准确识别,且误差率小于10%。

      图  6  气体检测结果

      Figure 6.  Gas test result

      同时为了测试无线电子鼻系统的稳定性和探测准确性,实验中网络学习的输入层数为传感器个数3,输出层为样本种类数3,隐层通过实验获得为10,对系统进行BP网络训练,当训练次数达到1000次以上时,系统基本稳定,且稳定精度达到0.000 1,并获得6×300的特征数据矩阵,建立数据库。经过PCA分析,获得3种样品的主成分分析结果,如图7所示,其分辨正确率为100%。

      图  7  3种样品的主成分分析结果

      Figure 7.  PCA analyzing result of three samples

    • 鉴于近红外吸收光谱技术在物质检测和识别上的明显优势,文中设计并完成了一套基于近红外光谱吸收技术的无线电子鼻系统。整个系统包括近红外激光发射单元,气室单元,系统控制单元,人机界面单元。系统在软件方面采用主成分分析(PCA)算法和反向传播(BP)神经网络通过LabVIEW所提供的MATLAB Script节点,集成到上位机软件中,并用来对采集到的数据进行分析。实验表明,该系统在网络训练次数达到1 000次以上时达到稳定,且精度达到0.000 1,对白醋、米醋和苹果醋进行食品分辨,准确率达到100%,实现了高精度、高稳定度和高分辨率的设计目标,在数据处理单元中具有较好的应用前景。

参考文献 (13)

目录

    /

    返回文章
    返回