留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摆线光束的微粒等间距操控(特邀)

朱刘昊 秦雪云 台玉萍 李新忠

朱刘昊, 秦雪云, 台玉萍, 李新忠. 摆线光束的微粒等间距操控(特邀)[J]. 红外与激光工程, 2021, 50(9): 20210380. doi: 10.3788/IRLA20210380
引用本文: 朱刘昊, 秦雪云, 台玉萍, 李新忠. 摆线光束的微粒等间距操控(特邀)[J]. 红外与激光工程, 2021, 50(9): 20210380. doi: 10.3788/IRLA20210380
Zhu Liuhao, Qin Xueyun, Tai Yuping, Li Xinzhong. Equal spacing control of particle via cycloidal beam (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210380. doi: 10.3788/IRLA20210380
Citation: Zhu Liuhao, Qin Xueyun, Tai Yuping, Li Xinzhong. Equal spacing control of particle via cycloidal beam (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210380. doi: 10.3788/IRLA20210380

摆线光束的微粒等间距操控(特邀)

doi: 10.3788/IRLA20210380
基金项目: 国家自然科学基金(11974102);河南省教育厅高等学校重点科研项目(21zx002);瞬态光学与光子技术国家重点实验室(SKLST201901)
详细信息
    作者简介:

    朱刘昊,男,硕士生,主要从事光场调控及光镊技术方面的研究

  • 中图分类号: O436.3

Equal spacing control of particle via cycloidal beam (Invited)

  • 摘要: 轨道角动量(OAM)的发现为光镊的研究开辟了新的道路。但具有OAM的光束在操纵微粒时,由于生物细胞不可能大小形状完全相同,所以当其进行旋转等操作时,粒子运动速度的不均匀会导致粒子之间的间距不可控。针对该问题,首先通过任意曲线塑形技术,并为传统摆线公式附加曲率调控参数提出了一种调控模式丰富的摆线光束,理论分析了该光束的OAM和梯度力,证明了解决上述问题的可能性。最后在实验中实现了粒子在运动过程中的启停,且成功操纵三个粒子进行等间距旋转,实验测得三个微粒在整个旋转过程中间距变化的误差可以维持在纳米级。这项工作为未来光捕获和操纵多种微粒在其他领域的应用铺平了道路,特别是在生物科学领域。
  • 图  1  尖峰调控参数m及曲率调控参数n不同时,归一化后的光强及相位。(a1)~(a3)分别为m=2,n=0.25~0.75时的光强分布图;(b1)~(b3)为相应的相位分布图;(c1)~(c3)为m=3,n=0-0.75时的光强分布图;(d1)~(d3)为相应的相位分布图;(e1)~(e3)为m=4-6,n=0.5时的光强分布图;(f1)~(f3)为相应的相位分布图

    Figure  1.  Normalized light intensity and phase that the peak control parameter m and the curvature control parameter n are different. (a1)-(a3) are the light intensity distribution diagram when m=2 and n=0.25-0.75 respectively; (b1)-(b3) is the corresponding phase distribution diagram; (c1)-(c3) is the light intensity distribution when m=3 and n=0-0.75; (d1)-(d3) is the corresponding phase distribution diagram; (e1)-(e3) is the light intensity distribution when m=4-6 and n=0.5; (f1)-(f3) is the corresponding phase distribution diagram

    图  2  尖峰调控参数m=2及曲率调控参数n=0-0.75时,归一化后的光强、梯度力和OAM。(a1)~(a4)分别为 m=2,n=0-0.75时的光强分布图;(b1)~(b4)为(a1)~(a4)中白色虚线框区域相应的梯度力分布图的放大图;(c1)~(c4)为白色虚线框区域相应的OAM密度图的放大图

    Figure  2.  Normalized light intensity, gradient force and OAM when the peak control parameter m=2 and the curvature control parameter n=0-0.75. (a1)-(a4) are the light intensity distribution diagram when m=2 and n=0-0.75 respectively; (b1)-(b4) is an enlarged version of the gradient force distribution map corresponding to the white dashed frame region in (a1)-(a4); (c1)-(c4) enlarged view of the corresponding OAM density map in the area with the white dotted line

    图  3  实验装置图

    Figure  3.  Schematic of the experimental setup

    图  4  尖峰调控参数m=2、曲率调控参数n=0.02时的摆线光束操纵粒子进行旋转

    Figure  4.  When the peak control parameter m=2 and the curvature control parameter n=0.02, the cycloid beam manipulates the particle to rotate

    图  5  尖峰调控参数m=2、曲率调控参数n=0.75时的摆线光束,通过调整相位差同时操纵三个酵母菌细胞进行旋转

    Figure  5.  When the peak control parameter m=2 and the curvature control parameter n=0.75, the cycloid beam simultaneously manipulates three yeast cells to rotate by adjusting the phase difference

  • [1] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles [J]. Opt Lett, 1986, 11(5): 288-290. doi:  10.1364/OL.11.000288
    [2] Abbondanzieri E A, Greenleaf W J, Shaevitz J W, et al. Direct observation of base-pair stepping by RNA polymerase [J]. Nature, 2005, 438(7067): 460-465. doi:  10.1038/nature04268
    [3] Wen J D, Lancaster L, Hodges C, et al. Following translation by single ribosomes one codon at a time [J]. Nature, 2008, 452(7187): 598-603. doi:  10.1038/nature06716
    [4] Yan Shubin, Zhao Yu, Yang Dechao, et al. Optical tweezers based on near-field optical theory [J]. Infrared and Laser Engineering, 2015, 44(3): 1034-1041. (in Chinese) doi:  10.3969/j.issn.1007-2276.2015.03.045
    [5] Cheng Shubo, Wu Liang, Tao Shaohua. Optical trapping characteristics of a metal microsphere coated with thick dielectric shell in the focused optical field [J]. Infrared and Laser Engineering, 2016, 45(6): 0621002. (in Chinese) doi:  10.3788/irla201645.0621002
    [6] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Phys Rev A, 1992, 45(11): 8185. doi:  10.1103/PhysRevA.45.8185
    [7] Zhang Jingchao, Zhu Yanying, Dou Hongxing, et al. Analysis of radius effect on optical rotation of birefringent crystal particles [J]. Infrared and Laser Engineering, 2012, 41(1): 155-159. (in Chinese) doi:  10.3969/j.issn.1007-2276.2012.01.031
    [8] Qin Xueyun, Zhu Liuhao, Tai Yuping, et al. Properties of optical vortex lattice generated via multiple plane wave interference [J]. Acta Optica Sinica, 2021, 41(8): 2126001. (in Chinese)
    [9] Ngo T T, Zhang Q, Zhou R, et al. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility [J]. Cell, 2015, 160(6): 1135-1144. doi:  10.1016/j.cell.2015.02.001
    [10] Reimann R, Doderer M, Hebestreit E, et al. GHz rotation of an optically trapped nanoparticle in vacuum [J]. Phys Rev Lett, 2018, 121(3): 033602. doi:  10.1103/PhysRevLett.121.033602
    [11] Rui G, Li Y, Zhou S, et al. Optically induced rotation of Rayleigh particles by arbitrary photonic spin [J]. Photonics Res, 2019, 7(1): 69-79. doi:  10.1364/PRJ.7.000069
    [12] Armstrong D J, Nieminen T A, Stilgoe A B, et al. Swimming force and behavior of optically trapped micro-organisms [J]. Optica, 2020, 7(8): 989-994. doi:  10.1364/OPTICA.394232
    [13] Garcés-Chávez V, McGloin D, Melville H, et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam [J]. Nature, 2002, 419(6903): 145-147. doi:  10.1038/nature01007
    [14] Jesacher A, Fürhapter S, Maurer C, et al. Reverse orbiting of microparticles in optical vortices [J]. Opt Lett, 2006, 31(19): 2824-2826. doi:  10.1364/OL.31.002824
    [15] Shanblatt E R, Grier D G. Extended and knotted optical traps in three dimensions [J]. Opt Express, 2011, 19(7): 5833-5838. doi:  10.1364/OE.19.005833
    [16] Rodrigo J A, Alieva T, Abramochkin E, et al. Shaping of light beams along curves in three dimensions [J]. Opt Express, 2013, 21(18): 20544-20555. doi:  10.1364/OE.21.020544
    [17] Rodrigo J A, Alieva T. Freestyle 3D laser traps: Tools for studying light-driven particle dynamics and beyond [J]. Optica, 2015, 2(9): 812-815. doi:  10.1364/OPTICA.2.000812
    [18] Li X Z, Ma H X, Zhang H, et al. Is it possible to enlarge the trapping range of optical tweezers via a single beam? [J]. Appl Phys Lett, 2019, 114(8): 081903. doi:  10.1063/1.5083108
    [19] Rodrigo J A, Angulo M, Alieva T. All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories [J]. Photonics Res, 2021, 9(1): 1-12. doi:  10.1364/PRJ.408680
    [20] Li L, Chang C, Yuan X, et al. Generation of optical vortex array along arbitrary curvilinear arrangement [J]. Opt Express, 2018, 26(8): 9798-9812. doi:  10.1364/OE.26.009798
    [21] Zhang Y, Xue Y, Zhu Z, et al. Theoretical investigation on asymmetrical spinning and orbiting motions of particles in a tightly focused power-exponent azimuthal-variant vector field [J]. Opt Express, 2018, 26(4): 4318-4329. doi:  10.1364/OE.26.004318
    [22] Sztul H I, Alfano R R. The Poynting vector and angular momentum of Airy beams [J]. Opt Express, 2008, 16(13): 9411-9416. doi:  10.1364/OE.16.009411
  • [1] 杨青元, 王维, 田祥.  聚焦强度可调的高数值孔径的双焦点超透镜 . 红外与激光工程, 2022, 51(5): 20210602-1-20210602-8. doi: 10.3788/IRLA20210602
    [2] 曹良才, 何泽浩, 刘珂瑄, 隋晓萌.  元宇宙中的动态全息三维显示:发展与挑战(特邀) . 红外与激光工程, 2022, 51(1): 20210935-1-20210935-15. doi: 10.3788/IRLA20210935
    [3] 郑伟, 席思星, 王桂林, 李永宏, 姜其畅.  结合计算全息和频移的JTC系统多图像光学加密方法 . 红外与激光工程, 2022, 51(5): 20220175-1-20220175-7. doi: 10.3788/IRLA20220175
    [4] 李子乐, 周舟, 梁聪玲, 郑国兴.  融合计算全息术与纳米印刷术的多功能超表面研究进展 . 红外与激光工程, 2020, 49(9): 20201036-1-20201036-15. doi: 10.3788/IRLA20201036
    [5] 郭弘扬, 杜升平, 黄永梅, 付承毓.  液晶空间光调制器过驱动方法的FPGA实现 . 红外与激光工程, 2019, 48(7): 722002-0722002(7). doi: 10.3788/IRLA201948.0722002
    [6] 孙悦, 黄新宁, 温钰, 谢小平.  空间激光通信网络中的全光相位再生技术 . 红外与激光工程, 2019, 48(9): 918003-0918003(9). doi: 10.3788/IRLA201948.0918003
    [7] 王奕方, 吴侃, 陈建平.  MoS2/WSe2-PVA薄膜热光全光调制器(特邀) . 红外与激光工程, 2019, 48(1): 103003-0103003(5). doi: 10.3788/IRLA201948.0103003
    [8] 蔡文涛, 李晶, 江海波, 孙秀辉, 杨若夫, 尹韶云.  基于非均匀采样的高分辨曲面投影计算全息方法 . 红外与激光工程, 2019, 48(5): 524004-0524004(6). doi: 10.3788/IRLA201948.0524004
    [9] 曹良才, 何泽浩, 赵燕, 金国藩.  面向层结构的角谱传播计算全息算法(特邀) . 红外与激光工程, 2018, 47(6): 603001-0603001(9). doi: 10.3788/IRLA201847.0603001
    [10] 石铭, 王羚, 程泓勋, 张樊.  基于激光偏振调制的全光Cs原子磁力仪研究 . 红外与激光工程, 2018, 47(9): 920001-0920001(4). doi: 10.3788/IRLA201847.0920001
    [11] 柯熙政, 石欣雨.  高阶径向拉盖尔-高斯光束叠加态的实验研究 . 红外与激光工程, 2018, 47(12): 1207002-1207002(7). doi: 10.3788/IRLA201847.1207002
    [12] 顾华荣.  计算全息三维显示的数据压缩编码技术 . 红外与激光工程, 2018, 47(6): 603006-0603006(6). doi: 10.3788/IRLA201847.0603006
    [13] 刘震, 洪津, 龚冠源, 郑小兵, 杨伟锋, 袁银麟.  空间调制型全偏振成像系统的角度误差优化 . 红外与激光工程, 2017, 46(1): 117003-0117003(7). doi: 10.3788/IRLA201746.0117003
    [14] 杨旭, 李亚明, 郭肃丽, 李晶, 刘旭东.  拉曼增益对回音壁模式光学微腔的全光调制 . 红外与激光工程, 2017, 46(11): 1122003-1122003(5). doi: 10.3788/IRLA201746.1122003
    [15] 黄大杰, 范薇, 张攀政, 李菁辉, 唐顺兴, 郭亚晶, 李学春, 林尊琪.  光寻址空间光调制器研制进展及性能测试 . 红外与激光工程, 2016, 45(9): 920001-0920001(6). doi: 10.3788/IRLA201645.0920001
    [16] 张肃, 付强, 段锦, 战俊彤.  湿度对偏振光传输特性影响的研究 . 红外与激光工程, 2016, 45(5): 511001-0511001(6). doi: 10.3788/IRLA201645.0511001
    [17] 彭龙瑶, 钟森城, 朱礼国, 孟坤, 刘乔, 彭其先, 赵剑衡, 张蓉竹, 李泽仁.  基于硅基石墨烯的全光控太赫兹波强度调制系统研究 . 红外与激光工程, 2015, 44(3): 974-978.
    [18] 闫树斌, 赵宇, 杨德超, 李明慧, 张安富, 张文栋, 薛晨阳.  基于近场光学理论光镊的研究进展 . 红外与激光工程, 2015, 44(3): 1034-1041.
    [19] 闫高宾, 于佳, 刘惠萍, 阚凌雁, 王金城.  基于计算全息的全视差合成全息研究 . 红外与激光工程, 2015, 44(8): 2467-2471.
    [20] 朱艳英, 姚文颖, 李云涛, 魏勇, 王锁明.  计算全息法产生涡旋光束的实验 . 红外与激光工程, 2014, 43(12): 3907-3911.
  • 加载中
图(5)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  52
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-08-24
  • 刊出日期:  2021-09-23

摆线光束的微粒等间距操控(特邀)

doi: 10.3788/IRLA20210380
    作者简介:

    朱刘昊,男,硕士生,主要从事光场调控及光镊技术方面的研究

基金项目:  国家自然科学基金(11974102);河南省教育厅高等学校重点科研项目(21zx002);瞬态光学与光子技术国家重点实验室(SKLST201901)
  • 中图分类号: O436.3

摘要: 轨道角动量(OAM)的发现为光镊的研究开辟了新的道路。但具有OAM的光束在操纵微粒时,由于生物细胞不可能大小形状完全相同,所以当其进行旋转等操作时,粒子运动速度的不均匀会导致粒子之间的间距不可控。针对该问题,首先通过任意曲线塑形技术,并为传统摆线公式附加曲率调控参数提出了一种调控模式丰富的摆线光束,理论分析了该光束的OAM和梯度力,证明了解决上述问题的可能性。最后在实验中实现了粒子在运动过程中的启停,且成功操纵三个粒子进行等间距旋转,实验测得三个微粒在整个旋转过程中间距变化的误差可以维持在纳米级。这项工作为未来光捕获和操纵多种微粒在其他领域的应用铺平了道路,特别是在生物科学领域。

English Abstract

    • 单光束三维光镊自1986年被A. Ashkin发明以来[1],由于其相比于传统镊子具有低损伤、无机械接触等特性,在生物学领域一直有着非常广阔的应用[2-5]。1992年Allen等[6]发现了涡旋光束具有轨道角动量(OAM)极大地促进了光镊的发展。OAM的发现意味着光镊不仅可以捕获粒子,而且可以在垂直于光轴方向对粒子施加各式各样的横向力,以达到不同领域的应用需求[7-8]。目前具有OAM的光束已经被广泛应用于生物学[9]、纳米科学[10-11]、光学测量[12]等诸多科研领域。

      2002年,V. Garces-Chavez等[13]成功使用贝塞尔光束在多个平面同时操纵微粒,2006年,A. Jesacher等[14]成功完成在一个涡旋光束上两个粒子的相向运动。2011年,David G. Grier等[15]完成了三维空间中打结的光阱,完成了粒子在三维空间中的交叉运动。2013年,Rodrigo, José A等[16]完成了一种可以任意曲线定制的三维光束并成功捕获粒子;2015年,他们又进一步完成了可以加速和减速粒子的自由式光阱[17]。2019年,李新忠等[18]成功使用一种非对称光束扩大了单光束的捕获范围。2021年,Rodrigo、José A等[19]使用全光光镊成功控制金属纳米颗粒沿着定制的三维轨迹运动。但上述具有OAM的光束在操纵微粒时都会存在一个明显的问题,那就是当微粒被具有OAM的光束照射时,粒子会一直旋转,且在旋转多个微粒的过程中,因为生物细胞大小形状不可能完全相同,所以都会存在当进行旋转等操作时粒子之间的间距时大时小的问题。当操纵的微粒之间可以互相黏着时该问题将更为严重,这极大地限制了具有OAM的光束在生物学、流体力学等研究领域的应用。

      针对上述问题,文中基于任意曲线塑形技术提出一种摆线光束,为传统摆线的参数方程附加曲率调控参数来控制摆线光束的摆动幅度。之后对其OAM和梯度力进行了理论分析,发现通过更改摆动幅度可以解决上述问题。之后在实验中实现了粒子在运动过程中的启停。最后成功操纵三个粒子进行等间距旋转,实验测得三个微粒在整个旋转过程中间距变化的误差可以维持在纳米级。研究结果在光镊及其他领域的应用,尤其是在生物学和流体力学中具有重要意义。

    • 要想达成以上目标,首先需要从一种可自由曲线塑性的光束出发[16],这种光束的表达式为:

      $$E\left( {\xi ,\eta } \right) = \int {\int_{ - \infty }^\infty {H\left( {x,y} \right)\exp \left[ { - 2{{j}}\pi \left( {\xi x + \eta y} \right)} \right]} } {\rm{d}}x{\rm{d}}y$$ (1)

      式中:H(x, y)是计算全息图的透过率函数。可以表示为:

      $$H(x,y) = \frac{1}{{\displaystyle\int_0^T {\left| {{{c'}_2}\left( t \right)} \right|} {\rm{d}}t}}\int_0^T {{\varphi _i}\left( {x,y,t} \right)\left| {{{c'}_2}\left( t \right)} \right|} {\rm{d}}t$$ (2)

      式中:|c'2(t)| = [x'0(t)2 + y'0(t)2]1/2t∈[0, T = 2π],x0(t)和y0(t)是曲线的参数方程,决定着曲线的形状;φi(x, y, t)为相位项,具体可以表示为:

      $$\begin{split} \varphi ( {x,y,t} ) =& \exp \Bigg( \dfrac{i}{{\omega _0^2}}[ {y{x_0}( t ) - x{y_0}(t)}] + \dfrac{{{{i}}\sigma }}{{\omega _0^2}}\int_0^t [ {{x_0}( t ){y'}_0}( t ) - \\ & {y_0}\left( t \right){{x'}_0}\left( t \right) ] {\rm{d}}t \Bigg)\\[-10pt] \end{split}$$ (3)

      式中:σ是一个用来控制沿着曲线相位梯度的自由参数;ω0为光束的束腰宽度。当x0(t) = Rcosty0(t) = Rsint时该曲线为圆形,且此时计算全息图的透过率函数可以近似认为是一个贝塞尔函数[16]。接下来需要构造摆线,以传统摆线为例,其参数方程可以表示为:

      $$ \left\{ \begin{gathered} {x_0}(t) = R × \left[ {m × \cos t + \cos \left( {mt} \right)} \right] \\ {y_0}(t) = R×\left[ {m × \sin t - \sin \left( {mt} \right)} \right] \end{gathered} \right. $$ (4)

      其中,R决定了光束的半径,且曲线的尖峰数为m+1。但传统摆线无法对其摆动的幅度进行调整,此时由此生成出的摆线从参数方程的性质出发,传统摆线可以看作是一个半径更小的圆在其内部滚动时其圆周上一定点所画出的轨迹。因此想要改变其摆动幅度,只需要对内部那一个滚动的圆进行调整即可。据此,为传统摆线附加上曲率调控参数n之后可以将公式(4)改为:

      $$ \left\{ \begin{gathered} {x_0}(t) = R × \left[ {m × \cos t + n\cos \left( {mt} \right)} \right] \\ {y_0}(t) = R × \left[ {m × \sin t - n\sin \left( {mt} \right)} \right] \end{gathered} \right. $$ (5)

      此时n可以控制尖瓣曲线的凹陷程度,m可以调控其尖峰数目。根据公式(5)在R = 0.7 mm模拟生成了不同mn的曲线及其相位图,如图1所示。图中所有光束的拓扑荷值全部为16。从图中可以观察到,随着n的增大,以顶点为界,顶点之间的曲线凹陷程度越来越大。

      图  1  尖峰调控参数m及曲率调控参数n不同时,归一化后的光强及相位。(a1)~(a3)分别为m=2,n=0.25~0.75时的光强分布图;(b1)~(b3)为相应的相位分布图;(c1)~(c3)为m=3,n=0-0.75时的光强分布图;(d1)~(d3)为相应的相位分布图;(e1)~(e3)为m=4-6,n=0.5时的光强分布图;(f1)~(f3)为相应的相位分布图

      Figure 1.  Normalized light intensity and phase that the peak control parameter m and the curvature control parameter n are different. (a1)-(a3) are the light intensity distribution diagram when m=2 and n=0.25-0.75 respectively; (b1)-(b3) is the corresponding phase distribution diagram; (c1)-(c3) is the light intensity distribution when m=3 and n=0-0.75; (d1)-(d3) is the corresponding phase distribution diagram; (e1)-(e3) is the light intensity distribution when m=4-6 and n=0.5; (f1)-(f3) is the corresponding phase distribution diagram

      至此已经生成了一种可以调控其摆动幅度的新型摆线。为了能够更加清晰地看到其在光镊上的应用与通常环形涡旋光束的不同,需要对其梯度力和OAM进行分析。由于任意曲线塑形光束光环宽度很小,这样在计算梯度力和OAM时不利于分析,所以在计算之前需要生成不同环半径,相同拓扑荷值的光束进行叠加,使光束宽度加厚[20]。加厚之后的光强分布如图2(a1)~(a4)所示。在此根据参考文献[21]中的方法对其进行计算,其梯度力计算公式可以表示为:

      图  2  尖峰调控参数m=2及曲率调控参数n=0-0.75时,归一化后的光强、梯度力和OAM。(a1)~(a4)分别为 m=2,n=0-0.75时的光强分布图;(b1)~(b4)为(a1)~(a4)中白色虚线框区域相应的梯度力分布图的放大图;(c1)~(c4)为白色虚线框区域相应的OAM密度图的放大图

      Figure 2.  Normalized light intensity, gradient force and OAM when the peak control parameter m=2 and the curvature control parameter n=0-0.75. (a1)-(a4) are the light intensity distribution diagram when m=2 and n=0-0.75 respectively; (b1)-(b4) is an enlarged version of the gradient force distribution map corresponding to the white dashed frame region in (a1)-(a4); (c1)-(c4) enlarged view of the corresponding OAM density map in the area with the white dotted line

      $${F_g}\left( {\xi ,\eta } \right) = \alpha \nabla {\left| {E\left( {\xi ,\eta } \right)} \right|^2}$$ (6)

      式中:α是一个与粒子相关的参数;$\nabla$为梯度算子。由于尖峰处最能反映摆线和通常的圆形光束在操纵粒子方面的区别,所以在计算了梯度力之后,只展示了图2(a1)~(a4)中白色虚线框内的放大图,如图2(b1)~(b4)所示,所有放大图的放大倍数均为20倍。可以看到,随着曲率调控参数n的增大,梯度力会逐渐指向尖峰处。OAM的计算公式可以表示为[22]

      $$ \boldsymbol{J}(\eta, \xi)=\frac{\varepsilon_{0}}{2 \omega} \boldsymbol{r} \times {\rm{Im}}\left\{\boldsymbol{E}^{*}(\eta, \xi) \cdot[\nabla \boldsymbol{E}(\eta, \xi)]\right\} \\ =\eta \cdot \boldsymbol{P}_{\xi}+\xi \cdot \boldsymbol{P}_{\eta} $$ (7)

      式中:ε0为真空介电常量;Im {}为取虚部函数;ω = kc为光的角频率,c为真空中的光速,k为波数;P为坡印廷矢量。其计算公式为[21]

      $$\boldsymbol{P}(\eta, \xi)=\frac{\rm{\varepsilon}_{0}}{4 \omega} {\rm{Im}}\left\{\boldsymbol{E}^{*}(\eta, \xi) \cdot[\nabla \boldsymbol{E}(\eta, \xi)]\right\}$$ (8)

      最终白色虚线框内的OAM计算结果放大图如图2(c1)~(c4)所示。与梯度力不同,因为从始至终拓扑荷值并没有发生变化,所以OAM密度在曲线上的分布依旧是均匀的,不存在尖端处OAM增大的现象。而且在几何模型中,OAM所产生的横向力相比于梯度力是微不足道的[21]。所以结合梯度力和OAM进行总体分析,理论上可以判断出随着n的增大粒子在尖峰处运动会变得越来越困难直至无法运动,从而将粒子捕获在尖峰处,之后为光束附加上初始相位差φ0使其旋转即可完成等间距旋转。

    • 为了进行光镊实验,搭建了如图3所示的实验装置,激光器(波长为532 nm,功率20 mW)射出的光经过针孔滤波器PF整形滤波,之后经过偏振片P被调制成线偏振光,经过透镜L1(f = 20 cm)被调制成平行光束,经由反射镜M1反射至空间光调制器(SLM, 型号:Holoeye, PLUTO-VIS-016;像素尺寸8 μm×8 μm;分辨率1920×1080 pixel)中。SLM中加载了生成实验光束所需的计算全息图,其衍射出的+1级光(强度为入射SLM的17.96%)经由反射镜M2反射,傅里叶变换透镜L2(f =20 cm)进行傅里叶变换,最终小孔光阑滤出的+1级衍射即为实验所需的光束。实验光束经由耦合透镜L3(f =20 cm)耦合,被二向色镜DM反射入显微物镜MO1(100×,NA=1.2),聚焦至样品台进行微粒操纵。LED激光器(波长620±20 nm)作为背景照明光源,其射出的光经由物镜MO2(25×,NA=0.4)聚焦后,经由透镜L4(f =20 cm)聚焦打到CCD相机(像素尺寸4.5 μm×4.5 μm)上记录。

      图  3  实验装置图

      Figure 3.  Schematic of the experimental setup

    • 下面将通过上述光镊实验装置对摆线光束操纵微粒特性进行研究。为了突出在生物学中的应用,文中采用了酵母菌细胞进行操纵。首先选用半径R=0.7 mm、尖峰调控参数m=2,曲率调控参数n=0.01时的摆线光束使酵母菌细胞进行旋转,之后观察到细胞每旋转一周之后将曲率调控参数调大,每次增长0.01,直至粒子无法旋转。随后将曲率调控参数n重新调回0.01,粒子重新开始旋转。图4截取了视频2其中一圈的图像作为展示,可以清楚地看到粒子再次沿着光束进行逆时针旋转。该次实验捕获的酵母菌细胞直径约为6.3 μm。实验结果充分证明了摆线光束可以完成粒子运动时的启停工作。

      图  4  尖峰调控参数m=2、曲率调控参数n=0.02时的摆线光束操纵粒子进行旋转

      Figure 4.  When the peak control parameter m=2 and the curvature control parameter n=0.02, the cycloid beam manipulates the particle to rotate

      接下来,选用半径R = 0.7 mm,尖峰调控参数m = 2,曲率调控参数n = 0.75时的摆线光束,其拓扑荷值为40。分别捕获了直径为5.25 μm、5.98 μm和5.36 μm的三个酵母菌细胞进行旋转运动,并且通过调整初始相位差φ0的变化速度可以控制旋转的速度逐渐加快。图5展示了从视频2中截取的部分图像,图中三个粒子恰好旋转一周。为了证明摆线光束可以完成等间距旋转粒子,分别标记了粒子1、2、3,且设粒子1和粒子2之间间距为S1,粒子2和粒子3之间的间距为S2,粒子1和粒子3之间的间距为S3。在其运动过程中每隔0.5 s进行一次记录,然后测量S1S2S3的大小,在实验中相机所拍摄的图片由于被物镜放大100倍,其像素尺寸为45 nm×45 nm。最终得到它们的平均值和标准误差分别为:

      $$ \left\{ \begin{gathered} \overline {{S_1}} = 10.157 \;\text{μ}{\rm{m}} \\ \overline {{S_2}} = 9.877\;\text{μ}{\rm{m}} \\ \overline {{S_3}} = 10.397\;\text{μ}{\rm{m}} \end{gathered} \right. $$ (9)
      $$ \left\{ \begin{gathered} E{r_1} = 96.971\;{\rm{nm}} \\ E{r_2} = 113.990\;{\rm{nm}} \\ E{r_3} = 72.847\;{\rm{nm}} \end{gathered} \right. $$ (10)

      平均值误差是由于生物细胞往往不是一个标准的球体,所以被捕获的位置会有细微的差别。同时由于粒子在液体中会受到布朗运动的影响,从而对结果造成一定的误差,在实验中对布朗运动进行了测量,发现单粒子被光点捕获后的1 min内平均位移为69.77 nm。但即使如此,该实验标准误差依旧维持在纳米级。因此,可以确定摆线光束的等间距操纵微粒是成立的,并且该实验仅以三个尖峰的光束作为例证,通过调整不同的尖峰调控参数m = 2和不同的半径R即可得到不同数量、不同间距的摆线光束,以完成不同领域的应用需求。

      图  5  尖峰调控参数m=2、曲率调控参数n=0.75时的摆线光束,通过调整相位差同时操纵三个酵母菌细胞进行旋转

      Figure 5.  When the peak control parameter m=2 and the curvature control parameter n=0.75, the cycloid beam simultaneously manipulates three yeast cells to rotate by adjusting the phase difference

    • 传统的具有OAM的光束在微粒操纵时存在一个问题:由于需要捕获和移动的粒子不一定都是高标准的统一形状和大小的微粒,相反大部分生物学应用和流体力学应用中的微粒都是形状大小不一的,这就导致了粒子在被OAM带动时运动速度的不可控性。文中通过任意曲线光束塑形技术,为传统摆线曲线附加曲率因子,使摆动幅度可以进行控制,从而得到了一种摆线光束。之后分析了曲率因子对其梯度力和OAM的影响发现,证明该光束可以完美解决上述问题。最终在实验里成功实现了粒子的实时启停和等间距旋转,且等间距旋转误差可以控制在纳米级。该研究对光镊在其他领域中的应用具有重要意义。

参考文献 (22)

目录

    /

    返回文章
    返回