留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动力舱红外成像火情探测系统

王利军 关俊娟 秦智勇 陈建 姬鹏远

王利军, 关俊娟, 秦智勇, 陈建, 姬鹏远. 动力舱红外成像火情探测系统[J]. 红外与激光工程, 2022, 51(5): 20210384. doi: 10.3788/IRLA20210384
引用本文: 王利军, 关俊娟, 秦智勇, 陈建, 姬鹏远. 动力舱红外成像火情探测系统[J]. 红外与激光工程, 2022, 51(5): 20210384. doi: 10.3788/IRLA20210384
Wang Lijun, Guan Junjuan, Qin Zhiyong, Chen Jian, Ji Pengyuan. Fire detecting system of engine bay based on infrared imaging technology[J]. Infrared and Laser Engineering, 2022, 51(5): 20210384. doi: 10.3788/IRLA20210384
Citation: Wang Lijun, Guan Junjuan, Qin Zhiyong, Chen Jian, Ji Pengyuan. Fire detecting system of engine bay based on infrared imaging technology[J]. Infrared and Laser Engineering, 2022, 51(5): 20210384. doi: 10.3788/IRLA20210384

动力舱红外成像火情探测系统

doi: 10.3788/IRLA20210384
详细信息
  • 中图分类号: TN219

Fire detecting system of engine bay based on infrared imaging technology

  • 摘要: 火情探测是特种车辆灭火抑爆系统的重要组成部分,火情探测能力的高低直接影响车辆及其内部乘载员的安全。现有动力舱火情探测系统主要利用温度传感器和非成像光学火情探测器,但由于动力舱结构复杂,环境恶劣,基于温度传感器的动力舱火情探测系统由于无法实现舱内空间全覆盖安装,因此容易产生火灾漏报现象,而非成像光学火情探测器由于灵敏度过高容易产生火情误报现象,动力舱应用甚少。与现有动力舱火情探测系统不同,设计了红外成像火情探测系统,采用测温热像装置和测温显控装置,能够实现对动力舱一定目标空间内的实时温度监控,通过温度识别算法和设定预警温度阈值、报警温度阈值,实现了高温预警功能和火灾报警功能。利用标准火焰测试平台对探测系统进行了实验测试,结果表明红外成像火情探测系统的火灾响应时间小于5 s,满足国军标的要求。该系统将火灾发生后的报警提升到火灾发生前预警,能够有效避免动力舱火灾漏报问题,保护特种车辆内部人员安全。
  • 图  1  系统构成与探测流程示意图

    Figure  1.  Schematic diagram of system and detecting process

    图  2  红外热成像测温探测器示意图

    Figure  2.  Schematic diagram of infrared thermal imaging temperature measuring detector

    图  3  测温显控装置示意图

    Figure  3.  Schematic diagram of temperature measuring display and control equipment

    图  4  标准火焰测试台架

    Figure  4.  Normal blaze experimental platform

    图  5  70.5 ℃高温预警图

    Figure  5.  Early warning image of high temperature at 70.5 ℃

    图  6  80.5 ℃高温预警图

    Figure  6.  Early warning image of high temperature at 80.5 ℃

    图  7  90.1 ℃高温预警图

    Figure  7.  Early warning image of high temperature at 90.1 ℃

    图  8  100.1 ℃高温预警图

    Figure  8.  Early warning image of high temperature at 100.1 ℃

    图  9  110.3 ℃高温预警图

    Figure  9.  Early warning image of high temperature at 110.3 ℃

    图  10  120.5 ℃火灾报警图

    Figure  10.  Fire alarm image of high temperature at 120.5 ℃

    图  11  130.2 ℃火灾报警图

    Figure  11.  Fire alarm image of high temperature at 130.2 ℃

  • [1] Xiong Jie, Li Qiang. Research on automatic fire extinguishment and explosion suppression technology for armored vehicles [J]. Journal of the Armed Police Academy, 2021, 37(4): 15-18. (in Chinese) doi:  10.3969/j.issn.1008-2077.2021.04.003
    [2] 张立来, 刘淑芝, 朱庆国等. GJB4100-2000装甲车辆灭火及抑爆装置系列[S], 2001.

    Zhang Lilai, Liu Shuzhi, Zhu Qingguo, et al. GJB4100-2000 series of fire extinguishing and explosion suppression equipments for armoured vehicles[S]. Beijing, 2001. (in Chinese)
    [3] 陈革, 陈晓军, 龚秀君, 等. GJB1734A-2011 装甲车辆灭火抑爆系统通用规范[S], 2011.

    Chen Ge, Chen Xiaojun, Gong Xiujun, et al. GJB1734A-2011 General specification for armoured vehicles fire-extinguishing and explosion-suppression system[S], 2011. (in Chinese)
    [4] Li Zhou, Li Mingyang, Yu Yi, et al. Improvement of wide dynamic infrared radiation measurement accuracy based on dual correction [J]. Infrared and Laser Engineering, 2020, 49(10): 20200142. (in Chinese) doi:  10.3788/IRLA20200142
    [5] Yu Lijing, Tang Libin, Yang Wenyuan, et al. Research progress of uncooled infrared detectors (Invited) [J]. Infrared and Laser Engineering, 2021, 50(1): 20211013. (in Chinese) doi:  10.3788/IRLA20211013
    [6] Sun Hongsheng, Liang Xingang, Ma Weigang, et al. Non-scanning wide range multi-wavelength imaging temperature measurement technology [J]. Infrared and Laser Engineering, 2021, 50(5): 20200394. (in Chinese) doi:  10.3788/IRLA20200394
    [7] Li Congming, Yi Luo, Zhou Chuanpeng, et al. Design of infrared temperature measurement system for micro heat pipe [J]. Optics and Precision Engineering, 2016, 24(10): 2449-2455. (in Chinese) doi:  10.3788/OPE.20162410.2449
    [8] Shi Li. The design and analysis of the infrared imaging system for cloud meteorological observation [J]. Optics and Precision Engineering, 2008, 16(12): 2429-2434. (in Chinese) doi:  10.3321/j.issn:1004-924X.2008.12.018
    [9] 刘淑芝, 赵广福. 灭火抑爆系统中光学探测器“低温误报”研究[J]. 红外技术, 1993, 15(5): 27-28.
    [10] Wang Linxiang, Nie Wenqi, Kong Wenyan. Optical detection temperature adaptation technology in fire extinguishing and explosion suppression systems on the military vehicle [J]. Ordnance Industry Automation, 2012, 31(5): 65-67, 71. (in Chinese)
    [11] Zhang Lei, Chen Shaowu, Zhao Haichuan, et al. Multi-spectral temperature measuring system based on photoelectric detection [J]. Chinese Optics, 2019, 12(2): 289-293. (in Chinese) doi:  10.3788/co.20191202.0289
    [12] Zhang Xiaolong, Liu Ying, Sun Qiang. Radiometric calibration of uncooled long-wave infrared thermal imager with high-precision [J]. Chinese Optics, 2012, 5(3): 235-241. (in Chinese) doi:  10.3969/j.issn.2095-1531.2012.03.007
  • [1] 姚成喆, 郭伟兰, 陈钱, 顾国华, 隋修宝.  红外运动目标轨迹重构动态仿真平台 . 红外与激光工程, 2022, 51(2): 20210901-1-20210901-7. doi: 10.3788/IRLA20210901
    [2] 史泽林, 冯斌, 冯萍.  基于波前编码的无热化红外成像技术综述(特邀) . 红外与激光工程, 2022, 51(1): 20210454-1-20210454-11. doi: 10.3788/IRLA20210454
    [3] 杨子龙, 朱付平, 田金文, 田甜.  基于显著性与稠密光流的红外船只烟幕检测方法研究 . 红外与激光工程, 2021, 50(7): 20200496-1-20200496-8. doi: 10.3788/IRLA20200496
    [4] 张宝辉, 李中文, 吴杰, 吉莉, 王炜毅, 蔡璐, 时亚辉, 法静怡.  中波1 280×1 024红外成像组件设计(特邀) . 红外与激光工程, 2021, 50(4): 20211023-1-20211023-9. doi: 10.3788/IRLA20211023
    [5] 袁航, 王晓蕊, 袁影, 张卫国, 郭冰涛.  天基平台海云背景下飞机全链路成像特征建模及分析 . 红外与激光工程, 2020, 49(2): 0204004-0204004. doi: 10.3788/IRLA202049.0204004
    [6] 于海涛, 马金鹏, 范芸, 李科, 张春熹.  红外成像系统响应光谱非均匀性的理论分析 . 红外与激光工程, 2019, 48(2): 204002-0204002(7). doi: 10.3788/IRLA201948.0204002
    [7] 张旭, 金伟其, 李力, 王霞, 秦超.  天然气泄漏被动式红外成像检测技术及系统性能评价研究进展 . 红外与激光工程, 2019, 48(S2): 47-59. doi: 10.3788/IRLA201948.S204001
    [8] 耿子海, 蔡晋生, 张卫国, 赵俊英.  红外成像与Michel模型在旋翼翼型转捩特性中的应用 . 红外与激光工程, 2019, 48(8): 803002-0803002(6). doi: 10.3788/IRLA201948.0803002
    [9] 王超哲, 李慎波, 黄聪会, 柴世杰, 贾文铜.  飞机成像目标的红外隐身效果评估 . 红外与激光工程, 2019, 48(10): 1004004-1004004(9). doi: 10.3788/IRLA201948.1004004
    [10] 武魁军, 何微微, 于光保, 熊远辉, 李发泉.  分子滤光红外成像技术及其在光电探测中的应用(特邀) . 红外与激光工程, 2019, 48(4): 402003-0402003(9). doi: 10.3788/IRLA201948.0402003
    [11] 李方彪, 何昕, 魏仲慧, 何家维, 何丁龙.  生成式对抗神经网络的多帧红外图像超分辨率重建 . 红外与激光工程, 2018, 47(2): 203003-0203003(8). doi: 10.3788/IRLA201847.0203003
    [12] 王明昌, 樊养余, 陈宝国, 雷伟, 周波.  基于SOPC的红外图像自适应非均匀性校正设计 . 红外与激光工程, 2017, 46(6): 628001-0628001(6). doi: 10.3788/IRLA201746.0628001
    [13] 胡斌, 黄颖, 马永利, 李岩.  高分辨率红外成像仪五反无焦主系统设计 . 红外与激光工程, 2016, 45(5): 518001-0518001(5). doi: 10.3788/IRLA201645.0518001
    [14] 何显中, 袁强, 黄明其, 耿子海, 袁红刚.  红外成像技术在金属模型转捩测量中的应用 . 红外与激光工程, 2016, 45(6): 604004-0604004(5). doi: 10.3788/IRLA201645.0604004
    [15] 王炜强, 贾晓洪, 韩宇萌, 张晓阳, 付奎生.  定向干扰激光的红外成像建模与仿真 . 红外与激光工程, 2016, 45(6): 606005-0606005(6). doi: 10.3788/IRLA201645.0606005
    [16] 张傲, 汪清, 杨敬钰, 孙懿.  编码掩模红外成像的建模与性能分析 . 红外与激光工程, 2015, 44(10): 2891-2899.
    [17] 陈艳菲, 王利恒, 王洪伟.  估算红外成像作用空间分辨率的新方法 . 红外与激光工程, 2014, 43(1): 33-38.
    [18] 李家琨, 顿雄, 金明磊, 金伟其, 王霞, 夏润秋.  宽波段气体泄漏红外成像检测系统设计 . 红外与激光工程, 2014, 43(6): 1966-1971.
    [19] 孟卫华, 倪国强, 高昆, 向静波, 项建胜.  红外高光谱成像的光谱聚焦 . 红外与激光工程, 2013, 42(3): 774-779.
    [20] 屈惠明, 陈钱.  环境温度补偿的红外焦平面阵列非均匀性校正 . 红外与激光工程, 2011, 40(12): 2328-2332.
  • 加载中
图(11)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  5
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-09
  • 修回日期:  2021-07-07
  • 刊出日期:  2022-06-08

动力舱红外成像火情探测系统

doi: 10.3788/IRLA20210384
  • 中图分类号: TN219

摘要: 火情探测是特种车辆灭火抑爆系统的重要组成部分,火情探测能力的高低直接影响车辆及其内部乘载员的安全。现有动力舱火情探测系统主要利用温度传感器和非成像光学火情探测器,但由于动力舱结构复杂,环境恶劣,基于温度传感器的动力舱火情探测系统由于无法实现舱内空间全覆盖安装,因此容易产生火灾漏报现象,而非成像光学火情探测器由于灵敏度过高容易产生火情误报现象,动力舱应用甚少。与现有动力舱火情探测系统不同,设计了红外成像火情探测系统,采用测温热像装置和测温显控装置,能够实现对动力舱一定目标空间内的实时温度监控,通过温度识别算法和设定预警温度阈值、报警温度阈值,实现了高温预警功能和火灾报警功能。利用标准火焰测试平台对探测系统进行了实验测试,结果表明红外成像火情探测系统的火灾响应时间小于5 s,满足国军标的要求。该系统将火灾发生后的报警提升到火灾发生前预警,能够有效避免动力舱火灾漏报问题,保护特种车辆内部人员安全。

English Abstract

    • 动力舱火情探测是特种车辆灭火抑爆系统的重要组成部分,其功能为自动探测动力舱火情信息,发出火警信号并传送给控制系统。对于特种车辆动力舱而言,空间结构复杂,存在由于发动机过热引燃滴油而发生火灾的情况,动力舱火情探测的及时性和准确性将直接关系到车内人员的生命安全,及时发现火情并准确定位是有效扑灭车内火灾的重要前提,因此提高动力舱火情探测能力对于提高人员和车辆的生存能力至关重要 [1]

      动力舱火情探测通常采用感温式传感器 [2-3] ,该类传感器只有当整体所处温度超过规定值时,或火焰直接灼烧传感器引发温度上升速率达到某一值时才会输出电压信号进行报警,并启动自动灭火装置。但由于动力舱空间结构复杂,在传感器安装布置方面无法实现空间全覆盖,因此采用该探测方式会存在火情漏报问题,目前尚无较好的改进措施。近些年光学探测技术发展迅速[4-8],特种车辆乘员舱已有应用,其原理主要通过非成像光学探测器对火焰紫外和红外光谱特征信号的提取和判断来实现火情探测,该类探测器主要应用于抑爆系统,由于该类探测方式对光学信号探测灵敏度过高且受温度的影响较大,很容易导致火情误报现象的发生。为了解决漏报误报问题,相关研究在不断开展,如刘淑芝等[9]早期就对光学探测器在低温环境下产生的误报进行了分析研究,并提出了采用调整校准灯工作点的方法解决低温误报问题。王林祥[10]研究了光学探测器的选择及温度对光学探测器的影响,提出了调整光学火情探测器的探测灵敏度的解决方案。以上研究对光学火情探测器误报问题的解决提出了思路。

      文中设计了一种基于红外成像[11-12]的动力舱火情探测系统,该系统采用非制冷红外成像测温热像装置和测温显控装置,实现了对模拟舱42.0°×32.1°视场范围的实时温度监控,通过设定预警温度阈值和报警温度阈值,实现了高温预警和火灾报警功能,能够在一定程度上解决现有感温式探测方法及非成像式光学火情探测方法存在的漏报误报问题。利用标准火焰测试平台对系统进行了实验测试,结果表明该系统的响应时间小于5 s,满足GJB1734A[8]的要求,该系统对于减小动力舱火灾漏报具有实际意义。

    • 动力舱火灾探测通常采用感温式探测方法,其核心部件为感温探测器,当火灾发生时,物质的燃烧产生大量的热,使周围温度发生变化,感温探测器对警戒范围中某一点或某一线路周围温度变化产生响应,将温度的变化转换为电信号,实现报警。感温式火灾探测器通常包括定温式、差温式和差定温式三类[2],定温式和差温式分别为温度和温度变化升高到预定值时产生响应,差定温式是两者的混合类型。感温探测器的结构形式通常为“点”式和“线”式,分别实现对某一点和某一线路周围温度变化的响应,这两种结构形式的感温探测器只能实现对舱体空间的局部探测,无法实现对警戒区域的全覆盖,在一定程度上限制了温度探测的范围,因此增加了火灾漏报的几率。利用光学火情探测器也可以实现对动力舱火灾报警,但应用甚少,其原理为通过非成像光学探测器对火焰紫外和红外光谱特征信号的提取和甄别实现对火灾的探测,探测灵敏度高,但容易引起火灾误报,且不能从根本上解决漏报问题,因此在动力舱的应用甚少。

      国外特种车辆动力舱的火灾探测方法与国内大致相同,主要采用感温探测器和光学火情探测器,对于相关问题的解决主要从提高探测灵敏度、增大探测视场以及采取多探测器融合的方法入手。但无论是采用点、线式感温传感器,还是采用非成像光学火情探测器,均无法彻底解决火灾漏报和误报问题,点、线式感温传感器不能全方位覆盖探测空间,尤其是动力舱狭小复杂环境空间,因此设计一种新型火情探测系统,实现高温提前预警尤为必要,是解决实际问题的重要方法。

    • 基于红外成像技术的动力舱火情探测系统是利用红外辐射成像原理采用高分辨率数字测温技术通过非制冷小面阵红外探测器对目标空间进行红外成像,将处理后的红外图像传输到显控终端,对目标空间的温度值进行实时监控,并对超过温度设定值的区域进行预警或报警。红外成像火情探测系统能够使车辆内的人员对动力舱各区域温度进行实时观察,同时,通过设定温度阈值,可对火情隐患实施高温预警,在一定程度上能够避免火灾的发生,降低火灾漏报。红外成像火情探测系统是红外探测技术在动力舱的应用,将探测功能由火灾发生后报警提前到火灾发生前预警,具有现实意义。

      该系统主要由测温热像装置和测温显控装置组成,系统组成与探测流程如图1所示。

      图  1  系统构成与探测流程示意图

      Figure 1.  Schematic diagram of system and detecting process

      测温热像装置如图2所示,主要由红外探测器、前端驱动电路和红外图像处理器三部分组成。其中红外探测器目前采用的是焦平面红外探测器,该探测器为基于晶圆级封装非制冷氧化钒红外探测器,视场范围为42.0°×32.1°,分辨率250×192,测温精度为±3 ℃/量程的±3%。在前端驱动电路的作用下,探测器接收红外热辐射并转换为电信号,形成红外图像,表征红外辐射分布,经红外图像处理器进行图像处理后进入测温显控模块。测温热像分系统能够对一定视场范围内的空间区域进行温度测量,实现成像式实时监控,测温范围为−20 ~+120 ℃,数据实时并行输出,温度图像的获取是实现高温预警的前提。

      图  2  红外热成像测温探测器示意图

      Figure 2.  Schematic diagram of infrared thermal imaging temperature measuring detector

      测温显控装置如图3所示,主要由测温算法模块、采集模块、电源处理模块和显控模块四部分组成。测温热像装置产生的红外图像数据传送到测温显控装置前端的测温算法模块,测温模块进行温度提取、识别,经过测温算法模块处理后再传送给采集模块,采集模块对图像信息和温度信息进行综合分析,分析后的数据传送至显控模块,通过显示屏和报警装置实现显示功能和报警功能,其中显示内容包括区域范围、测量温度值和预警、报警信息等,当某个位置的温度超过设定的温度最高值时,进行声光预警或报警,核心机用于参数设定、程序控制及通信等。

      图  3  测温显控装置示意图

      Figure 3.  Schematic diagram of temperature measuring display and control equipment

      测温显控装置中的测温算法,首先通过黑体辐射建立探测器像素点标准温度矩阵数据库,将探测器获取并传回的红外矩阵值在矩阵库中利用对比法查询并提取对应的温度值,对温度数据矩阵进行高温识别,利用二值化方法建立二值矩阵(1,0),改变高温值的RGB值用以高温标注。

    • 红外成像火情探测系统具有成像测温功能、预警报警功能、通讯功能和数据记录保存功能。成像测温功能是系统通过实时自动扫描探测视场空间热分布,显示屏直观显示监测区域热图,同时自动捕捉特定区域最高温度点,发现并自动识别火情隐患;高温预警功能是系统对探测器监视区域内超过温度阈值的部位进行高温预警,当温度高于预警温度时输出灯光和声音报警信号;通讯功能是指系统具备上传报警信息至核心机,实现与整车信息交互功能;数据记录保存功能是指系统能够自动记录和保存报警数据,便于进行火情分析。

    • 采用标准火焰实验平台对红外成像火情探测系统进行测试,标准火焰是由内径127 mm、深度76 mm,气流速度不超过3 m/s的标准火盆中燃烧的汽油所产生的火焰[8],该次实验采用95号汽油。如图4所示,标准火焰实验平台主要由标准火盆和排烟装置组成。利用该实验台架对红外成像火情探测系统的高温预警功能、火灾报警功能和火灾响应时间进行了测试,红外探测器与标准火盆中心距离为1200 mm。实验前将火情探测系统的预警温度值和报警温度值分别设置为70 ℃和120 ℃,为了模拟火盆从温度过热至内部火焰燃烧的过程,先将标准火盆升温预热,再将火焰点燃,通过调整汽油量控制火焰的大小,从而控制温度。

      图  4  标准火焰测试台架

      Figure 4.  Normal blaze experimental platform

    • 利用标准火盆分别测试了红外成像探测系统对70.5、80.5、90.1、100.1、110.3 ℃的高温预警功能,结果如图5~图9所示。红外图像中显示了最高温度值,对超过高温预警温度值的区域利用红色方框进行了标识,实现了预警功能。利用标准火焰分别测试了红外成像探测系统对120.5 ℃和130.2 ℃的火灾报警功能,结果如图10图11所示,红外图像中显示了最高温度值,对超过火灾报警温度值的区域利用红色方框进行了标识,同时进行声光报警,实现了火灾报警功能。在测试以上系统功能的同时,图像右下角显示了响应时间,图10图11中的响应时间为火灾发生后探测系统的火灾响应时间,即从系统探测到火焰信号到显示装置作出报警标识的时间间隔,通过多次测量,火灾响应时间平均值小于1.5 s,满足GJB1734A-2011火灾响应时间不大于5 s的要求。

      图  5  70.5 ℃高温预警图

      Figure 5.  Early warning image of high temperature at 70.5 ℃

      图  6  80.5 ℃高温预警图

      Figure 6.  Early warning image of high temperature at 80.5 ℃

      图  7  90.1 ℃高温预警图

      Figure 7.  Early warning image of high temperature at 90.1 ℃

      图  8  100.1 ℃高温预警图

      Figure 8.  Early warning image of high temperature at 100.1 ℃

      图  9  110.3 ℃高温预警图

      Figure 9.  Early warning image of high temperature at 110.3 ℃

      图  10  120.5 ℃火灾报警图

      Figure 10.  Fire alarm image of high temperature at 120.5 ℃

      图  11  130.2 ℃火灾报警图

      Figure 11.  Fire alarm image of high temperature at 130.2 ℃

    • 火情探测是动力舱灭火系统的关键组成部分,火情探测的准确性和及时性直接关系到承载人员的安全,提高火情探测能力是改进提升特种车辆防护能力和生存能力的重要方法。设计了红外成像火情探测系统,将非制冷红外成像技术应用于动力舱火情探测,实现了温度监控,将火灾报警提高到火灾预警。利用标准火焰对该系统进行了实验测试,火灾响应时间小于5 s,满足国军标的要求。由于红外成像探测器探测空间范围较大,该系统与线式温度传感器相比,在红外探测器测温精度范围内,可避免由于线式温度传感器探测原理及覆盖空间较小所导致的有火不报问题。在此研究基础上,可以提高红外探测器测温精度,并依据探测空间大小增加探测器的数量,建立动力舱高温预警机制,将红外成像探测机构、逻辑控制机构和灭火执行机构进行合理配置,提升系统总体智能化水平和环境适应性,为新型灭火抑爆系统的研制奠定基础。

参考文献 (12)

目录

    /

    返回文章
    返回