留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可调谐激光器扫频干涉绝对距离测量方法研究进展

宋鲁明 张福民 孙栋 林洪沂 黄晓桦 于淼 张乾

宋鲁明, 张福民, 孙栋, 林洪沂, 黄晓桦, 于淼, 张乾. 基于可调谐激光器扫频干涉绝对距离测量方法研究进展[J]. 红外与激光工程, 2022, 51(5): 20210406. doi: 10.3788/IRLA20210406
引用本文: 宋鲁明, 张福民, 孙栋, 林洪沂, 黄晓桦, 于淼, 张乾. 基于可调谐激光器扫频干涉绝对距离测量方法研究进展[J]. 红外与激光工程, 2022, 51(5): 20210406. doi: 10.3788/IRLA20210406
Song Luming, Zhang Fumin, Sun Dong, Lin Hongyi, Huang Xiaohua, Yu Miao, Zhang Qian. Research progress of absolute distance measurement methods based on tunable laser frequency sweeping interference[J]. Infrared and Laser Engineering, 2022, 51(5): 20210406. doi: 10.3788/IRLA20210406
Citation: Song Luming, Zhang Fumin, Sun Dong, Lin Hongyi, Huang Xiaohua, Yu Miao, Zhang Qian. Research progress of absolute distance measurement methods based on tunable laser frequency sweeping interference[J]. Infrared and Laser Engineering, 2022, 51(5): 20210406. doi: 10.3788/IRLA20210406

基于可调谐激光器扫频干涉绝对距离测量方法研究进展

doi: 10.3788/IRLA20210406
基金项目: 国家重点研发计划(2018YFB2003501);国家自然科学基金(11904304);福建省自然科学基金(2021I0025、2021J011217)
详细信息
    作者简介:

    宋鲁明,男,硕士生,主要从事扫频干涉测距等方面的研究

    孙栋,男,副教授,硕士生导师,博士,主要从事激光精密测量、光子技术应用等方面的研究

  • 中图分类号: TH741

Research progress of absolute distance measurement methods based on tunable laser frequency sweeping interference

  • 摘要: 绝对距离测量的精度对于航空航天科技、精密装备加工、卫星编队、行星空间定位等领域具有重要意义。近年来,基于可调谐激光器的扫频干涉(FSI)测距技术以其突破2π模糊度、无测量死区、不接触且不依赖导轨等优点成为国际研究热点。文中在阐述FSI测距原理的基础上,简要分析了测距系统中部分器件的类型与性能,如可调谐激光器、探测器等,以及影响测距系统不确定度的因素,包括非线性扫频、多普勒频移、色散失配等方面,着重介绍了国内外对影响不确定度因素的相应补偿方法,并对补偿后的测量结果进行对比与总结。
  • 图  1  FSI测距示意图

    Figure  1.  Schematic of laser ranging of frequency sweeping interferometer

    图  2  干涉信号相位差计算示意图。(a) 理想线性扫频;(b) 实际非线性扫频

    Figure  2.  Schematic diagram of calculating the interference signal phase difference. (a) Ideal linear frequency sweeping; (b) Actual nonlinear frequency sweeping

    图  3  基于锁相环控制的扫频系统[29]

    Figure  3.  Frequency sweeping system based on PLL control[29]

    图  4  基于锁相环控制的VCSEL扫频测距系统[33]

    Figure  4.  VCSEL frequency sweeping ranging system based on PLL control[33]

    图  5  基于希尔伯特变换的非线性扫频补偿系统[37]

    Figure  5.  Nonlinear frequency sweeping compensation system based on Hilbert transform[37]

    图  6  基于硬件的重采样扫频干涉测距[40]

    Figure  6.  Resampling frequency sweeping interferometry ranging based on hardware[40]

    图  7  基于F-P腔与M-Z干涉仪补偿非线性扫频[44]

    Figure  7.  Compensation of non-linear frequency sweeping based on F-P cavity and M-Z interferometer[44]

    图  8  基于双激光器的对向扫频测距[50]

    Figure  8.  Dual laser-based counter frequency sweeping ranging[50]

    图  9  基于双扫与气室标定的扫频测距系统[60]

    Figure  9.  Frequency sweeping ranging system based on double swept and gas chamber calibration[60]

    图  10  基于四波混频的双扫频干涉测距[63]

    Figure  10.  Double swept interferometric ranging based on four wave mixing[63]

    图  11  基于多普勒测速仪的扫频测距系统[66]

    Figure  11.  Frequency sweeping ranging system based on Doppler velocimeter[66]

    图  12  抑制多普勒放大动态误差的FSI系统[77]

    Figure  12.  FSI system for suppressing Doppler amplification dynamic error[77]

    表  1  主动稳频式FSI系统测距精度比较

    Table  1.   Comparison of ranging accuracy of active frequency stabilized FSI system

    AuthorDistance/mmStandard deviationRelative errorRef.
    Iiyama2001.3 mm-[29]
    Kakuma140.12 µm0.9×10−5[32-33]
    Deng407 µm7.5×10−5[35]
    Zhu402.4 µm9.7×10−5[36]
    下载: 导出CSV

    表  2  被动补偿式FSI系统测距精度比较

    Table  2.   Comparison of ranging accuracy of passive compensation FSI system

    AuthorDistance/mStandard deviationRelative errorFWHMRef.
    Ahn---177.4 cm[37]
    Yuksel---0.4 cm[38]
    Jiang54.64 µm--[41]
    Liu32.4 µm1.1×10-4-[42]
    Meng26-1.0×10-450 µm[39]
    下载: 导出CSV

    表  3  补偿振动漂移的FSI系统测距精度比较

    Table  3.   Comparison of FSI system ranging accuracy for compensating vibration drift

    AuthorDistance/mStandard deviation/µmRelative errorFWHMRef.
    Yang0.7--50 nm[52]
    Martinez0.421--[63]
    Tao0.660.48--[61-62]
    Zhang311--[75]
    Prellinger4116.0×10−7-[64-65]
    Kakuma1143.6×10−4-[59]
    Swinkels15-1.3×10−4-[53]
    Le Floch15--50 µm[55-56]
    Lu163.15-65.5 µm[66]
    Dale20-0.4×10−640 nm[60]
    Pollinger20-5.1×10−712 µm[57]
    下载: 导出CSV

    表  4  补偿色散失配的FSI系统测距精度比较

    Table  4.   Comparison of FSI system ranging accuracy for compensating dispersion mismatch

    AuthorDistance/mStandard
    deviation
    Relative
    error
    FWHMRef.
    Barber100-1×10−7-[80-81]
    Xu2.53-1.3×10−4-[82-83]
    Pan8--45[84]
    Shi6.734--[85]
    下载: 导出CSV
  • [1] Daendliker R, Hug K, Politch J, et al. High-accuracy distance measurements with multiple-wavelength interferometry [J]. Optical Engineering, 1995, 34(8): 2407-2412. doi:  10.1117/12.205665
    [2] Fox-Murphy A F, Howell D F, Nickerson R B, et al. Frequency scanned interferometry (FSI): The basis of a survey system for ATLAS using fast automated remote interferometry [J]. Nucl Instr and Meth in Phys Res A, 1996, 383(1): 229-237. doi:  10.1016/S0168-9002(96)00617-1
    [3] Hibino K, Tani Y, Bitou Y, et al. Discontinuous surface measurement by wavelengthtuning interferometry with the excess fraction method correcting scanning nonlinearity [J]. Applied Optics, 2011, 50(6): 962-969. doi:  10.1364/AO.50.000962
    [4] Dai X L, Seta K. High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry [J]. Measurement Science and Technology, 1998, 9(7): 1031-1035. doi:  10.1088/0957-0233/9/7/004
    [5] Rovati L, Minoni U, Docchio F. Dispersive white light combined with a frequency-modulated continuous-wave interferometer for high-resolution absolute measurements of distance [J]. Optics Letters, 1997, 22(12): 850-852. doi:  10.1364/OL.22.000850
    [6] Jha A, Azcona F J, Royo S. Frequency-modulated optical feedback interferometry for nanometric scale vibrometry [J]. IEEE Photonics Technology Letters, 2016, 28(11): 1217-1220. doi:  10.1109/LPT.2016.2531790
    [7] Yoshino H, Walls J M, Smith R. Interfacial surface roughness determination by coherence scanning interferometry using noise compensation [J]. Applied Optics, 2017, 56(16): 4757-4765. doi:  10.1364/AO.56.004757
    [8] Lau K, Hocken R, Haynes L. Robot performance measurements using automatic laser tracking techniques [J]. Robotics and Computer-Integrated Manufacturing, 1985, 2(3): 227-236.
    [9] Kikuta H, Iwata K, Nagata R. Distance measurement by the wavelength shift of laser diode light [J]. Applied Optics, 1986, 25(17): 2976-2980. doi:  10.1364/AO.25.002976
    [10] Shi G, Wang W. Single laser complex method to improve the resolution of FMCW laser ranging [J]. J Infrared Millim Waves, 2016, 35(3): 363-367. (in Chinese)
    [11] Hou C B, Wang J G, Yang J, et al. Improved path imbalance measurement of a fiber-optic interferometer based on frequency scanning interferometry [J]. Measurement Science and Technology, 2017, 28(8): 085007. doi:  10.1088/1361-6501/aa73a9
    [12] Iiyama K, Matsui S, Kobayashi T, et al. High-resolution FMCW reflectometry using a single-mode vertical-cavity surface-emitting laser [J]. IEEE Photonics Technology Letters, 2011, 23(11): 703-705. doi:  10.1109/LPT.2011.2131124
    [13] Ye S H, Zhu J G, Zhang Z L, et al. Status and development of large-scale coordinate measurement research [J]. Acta Metrologica Sinica, 2008, 29(4A): 1-6. (in Chinese)
    [14] Estler W T, Edmundson K L, Peggs G N, et al. Large-scale metrology - An update [J]. CIRP Annals, 2002, 51(2): 587-609. doi:  10.1016/S0007-8506(07)61702-8
    [15] Zhang K, Lv T, Mo D, et al. Double sideband frequency scanning interferometry for distance measurement in the outdoor environment [J]. Optics Communications, 2018, 425: 176-179. doi:  10.1016/j.optcom.2018.04.056
    [16] Zhang T, Gao F, Muhamedsalih H, et al. Improvement of the fringe analysis algorithm for wavelength scanning interferometry based on filter parameter optimization [J]. Applied Optics, 2018, 57(9): 2227-2234. doi:  10.1364/AO.57.002227
    [17] Qu X H, Zhi G T, Zhang F M, et al. Improvement of resolution of frequency modulated continuous wave laser ranging system by signal splicing [J]. Optics and Precision Engineering, 2015, 23(1): 40-47. (in Chinese) doi:  10.3788/OPE.20152301.0040
    [18] Tilford C R. Analytical procedure for determining lengths from fractional fringes [J]. Applied Optics, 1977, 16(7): 1857-1860. doi:  10.1364/AO.16.001857
    [19] Cabral A, Rebordã o J. Accuracy of frequency-sweeping interferometry for absolute distance metrology [J]. Optical Engineering, 2007, 46(7): 073602. doi:  10.1117/1.2754308
    [20] Bitou Y, Seta K. Gauge block measurement using a wavelength scanning interferometer [J]. Japanese Journal of Applied Physics, 2000, 39(10): 6084-6088.
    [21] Moore E D, McLeod R R. Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry [J]. Optics Express, 2008, 16(17): 13139-13149.
    [22] Shi G, Zhang F M, Qu X H, et al. High-resolution frequency-modulated continuous-wave laser ranging for precision distance metrology applications [J]. Optical Engineering, 2014, 53(12): 122402. doi:  10.1117/1.OE.53.12.122402
    [23] Shi G, Wang W. Dual interferometry FMCW laser ranging for high precision absolute distance measurement system [J]. Infrared and Laser Engineering, 2016, 45(8): 0806001. (in Chinese) doi:  10.3788/IRLA201645.0806001
    [24] Ji N K, Zhang F M, Qu X H, et al. Ranging technology for frequency modulated continuous wave laser based on phase difference frequency measurement [J]. Chinese Journal of Lasers, 2018, 45(11): 1104002. (in Chinese) doi:  10.3788/CJL201845.1104002
    [25] Liu Z, Liu Z G, Deng Z W, et al. Suppression of nonlinear frequency sweep in frequency sweeping interferometer based on order tracking technique [J]. Acta Optica Sinica, 2016, 36(1): 140-148. (in Chinese)
    [26] Deng Z W, Liu Z G, Jia X Y, et al. Dynamic cascade-model-based frequency-scanning interferometry for real-time and rapid absolute optical ranging [J]. Optics Express, 2019, 27(15): 21929-21945. doi:  10.1364/OE.27.021929
    [27] Deng W, Liu Z G, Deng Z W, et al. Extraction of interference phase in frequencyscanning interferometry based on empirical mode decomposition and Hilbert transform [J]. Applied Optics, 2018, 57(9): 2299-2305. doi:  10.1364/AO.57.002299
    [28] Greiner C, Boggs B, Wang T, et al. Laser frequency stabilization by means of optical self-heterodyne beat-frequency control [J]. Optics Letters, 1998, 23(16): 1280-1282. doi:  10.1364/OL.23.001280
    [29] Iiyama K, Wang L T, Hayashi K I. Linearizing optical frequency-sweep of a laser diode for FMCW reflectometry [J]. Journal of Lightwave Technology, 1996, 14(2): 173-178. doi:  10.1109/50.482260
    [30] Ahn T J, Kim D Y. Analysis of nonlinear frequency sweep in high-speed tunable laser sources using a self-homodyne measurement and Hilbert transformation [J]. Applied Optics, 2007, 46(13): 2394-2400. doi:  10.1364/AO.46.002394
    [31] Roos P A, Reibel R R, Berg T, et al. Ultrabroadband optical chirp linearization for precision metrology applications [J]. Optics Letters, 2009, 34(23): 3692-3694. doi:  10.1364/OL.34.003692
    [32] Kakuma S, Katase Y. Resolution improvement in vertical-cavity-surface-emitting-laser diode interferometry based on linear least-squares estimation of phase gradients of phase-locked fringes [J]. Optical Review, 2010, 17(5): 481-485. doi:  10.1007/s10043-010-0087-3
    [33] Kakuma S. Frequency scanning interferometry with nanometer precision using a vertical-cavity surface-emitting laser diode under scanning speed control [J]. Optical Review, 2015, 22(6): 869-874. doi:  10.1007/s10043-015-0140-3
    [34] Medhat M, Sobee M, Hussein H M, et al. Distance measurement using frequency scanning interferometry with mode-hoped laser [J]. Optics and Laser Technology, 2016, 80: 209-213. doi:  10.1016/j.optlastec.2016.01.025
    [35] Deng Z W, Liu Z G, Li B, et al. Precision improvement in frequency-scanning interferometry based on suppressing nonlinear optical frequency sweeping [J]. Optical Review, 2015, 22(5): 724-730. doi:  10.1007/s10043-015-0134-1
    [36] Zhu Y, Liu Z G, Deng Wen, et al. Input signal shaping based on harmonic frequency response function for suppressing nonlinear optical frequency in frequency-scanning interferometry [J]. Review of Scientific Instruments, 2018, 89(5): 053109. doi:  10.1063/1.5025369
    [37] Ahn T J, Lee J Y, Kim D Y. Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation [J]. Applied Optics, 2005, 44(35): 7630-7634. doi:  10.1364/AO.44.007630
    [38] Yüksel K, Wuilpart M, Mégret P. Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer [J]. Optics Express, 2009, 17(7): 5845-5851. doi:  10.1364/OE.17.005845
    [39] Meng X S, Zhang F M, Qu X H. High precision and fast method for absolute distance measurement based on resampling technique used in FM continuous wave laser ranging [J]. Acta Physica Sinica, 2015, 64(23): 230601. (in Chinese) doi:  10.7498/aps.64.230601
    [40] Yao Y N, Zhang F M, Qu X H. Hardware-based equispaced-phase resampling nonlinearity correction algorithm and spectral analysis method [J]. Acta Optica Sinica, 2016, 36(12): 1212003. (in Chinese) doi:  10.3788/AOS201636.1212003
    [41] Jiang S, Liu B, Wang H C, et al. Absolute distance measurement using frequency-scanning interferometry based on Hilbert phase subdivision [J]. Sensors, 2019, 19(23): 5132. doi:  10.3390/s19235132
    [42] Liu Z, Liu Z G, Deng Z W, et al. Interference signal frequency tracking for extracting phase in frequency scanning interferometry using an extended Kalman filter [J]. Applied Optics, 2016, 55(11): 2985-2992. doi:  10.1364/AO.55.002985
    [43] Wang Z Y, Liu Z G, Deng Z W, et al. Phase extraction of non-stationary interference signal in frequency scanning interferometry using complex shifted Morlet wavelets [J]. Optics Communications, 2018, 420: 26-33. doi:  10.1016/j.optcom.2018.03.032
    [44] Deng Z W, Liu Z G, Gu S W, et al. Frequency-scanning interferometry for depth mapping using the Fabry–Perot cavity as a reference with compensation for nonlinear optical frequency scanning [J]. Optics Communications, 2020, 455: 124556. doi:  10.1016/j.optcom.2019.124556
    [45] Ohna R, Uehira I, Kakuma S I. Interferometric determination of a static optical path difference using a frequency swept laser diode [J]. Measurement Science and Technology, 1990, 1(6): 500-504. doi:  10.1088/0957-0233/1/6/007
    [46] Jing L Q, Zheng G, Sun B, et al. Measurement of distance to moving target using frequency-modulated continuous-wave interference technique [J]. Chinese Journal of Lasers, 2019, 46(12): 1204001. (in Chinese) doi:  10.3788/CJL201946.1204001
    [47] Li Y T, Zhang F M, Pan H, et al. Simulation of vibration compensation in frequency-modulated continuous-wave laser ranging system [J]. Chinese Journal of Lasers, 2019, 46(1): 0104001. (in Chinese) doi:  10.3788/CJL201946.0104001
    [48] Cabral A, Rebordão J M, Abreu M. Dual frequency sweeping interferometry with range-invariant accuracy for absolute distance metrology [C]//Proceedings of the SPIE, 2008, 7063: 70630T.
    [49] Cabral A, Abreu M, Rebordão J M. Dual-frequency sweeping interferometry for absolute metrology of long distances [J]. Optical Engineering, 2010, 49(8): 085601. doi:  10.1117/1.3481105
    [50] Schneider R, Thürmel P, Stockmann M. Distance measurement of moving objects by frequency modulated laser radar [J]. Optical Engineering, 2001, 40(1): 33-37. doi:  10.1117/1.1332772
    [51] Coe P A, Howell D F, Nickerson R B. Frequency scanning interferometry in ATLAS: Remote, multiple, simultaneous and precise distance measurements in a hostile environment [J]. Measurement Science and Technology, 2004, 15(11): 2175-2187. doi:  10.1088/0957-0233/15/11/001
    [52] Yang H J, Deibel J, Nyberg S, et al. High-precision absolute distance and vibration measurement with frequency scanned interferometry [J]. Applied Optics, 2005, 44(19): 3937-3944. doi:  10.1364/AO.44.003937
    [53] Swinkels B L, Bhattacharya N, Braat J J M. Correcting movement errors in frequency-sweeping interferometry [J]. Optics Letters, 2005, 30(17): 2242-2244. doi:  10.1364/OL.30.002242
    [54] Cabral A, Rebordão J. Absolute distance metrology with frequency sweeping interferometry [C]//Proceedings of SPIE, 2005, 5879: 58790L.
    [55] Le Floch S, Salvadé Y, Mitouassiwou R, et al. Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry [J]. Applied Optics, 2008, 47(16): 3027-3031. doi:  10.1364/AO.47.003027
    [56] Le Floch S, Salvadé Y, Droz N, et al. Superheterodyne configuration for two-wavelength interferometry applied to absolute distance measurement [J]. Applied Optics, 2010, 49(4): 714-717. doi:  10.1364/AO.49.000714
    [57] Pollinger F, Meiners-Hagen K, Wedde M, et al. Diode-laser-based high-precision absolute distance interferometer of 20 m range [J]. Applied Optics, 2009, 48(32): 6188-6194. doi:  10.1364/AO.48.006188
    [58] Li Z D, Jiang Y S, Sang F, et al. Movement error compensation in frequency scanning interferometry for absolute distance measurement [J]. Acta Optica Sinica, 2011, 31(3): 0314001. (in Chinese) doi:  10.3788/AOS201131.0314001
    [59] Kakuma S, Katase Y. Frequency scanning interferometry immune to length drift using a pair of vertical-cavity surface-emitting laser diodes [J]. Optical Review, 2012, 19(6): 376-380. doi:  10.1007/s10043-012-0061-3
    [60] Dale J, Hughes B, Lancaster A J, et al. Multi-channel absolute distance measurement system with subppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells [J]. Optics Express, 2014, 22(20): 24869-24893. doi:  10.1364/OE.22.024869
    [61] Tao L, Liu Z G, Zhang W B, et al. Frequency-scanning interferometry for dynamic absolute distance measurement using Kalman filter [J]. Optics Letters, 2014, 39(24): 6997-7000. doi:  10.1364/OL.39.006997
    [62] Tao L, Liu Z G, Lv T, et al. Drift error compensation method of frequency sweeping interferometer by consecutive forward and reverse optical frequency scanning [J]. Acta Optica Sinica, 2014, 34(2): 0212002. (in Chinese) doi:  10.3788/AOS201434.0212002
    [63] Martinez J J, Campbell M A, Warden M S, et al. Dual-sweep frequency scanning interferometry using four wave mixing [J]. IEEE Photonics Technology Letters, 2015, 27(7): 733-736. doi:  10.1109/LPT.2015.2390779
    [64] Prellinger G, Meiners-Hagen K, Pollinger F. Spectroscopically in situ traceable heterodyne frequency-scanning interferometry for distances up to 50m [J]. Measurement Science and Technology, 2015, 26(8): 084003. doi:  10.1088/0957-0233/26/8/084003
    [65] Prellinger G, Meiners-Hagen K, Pollinger F. Dynamic high-resolution spectroscopic frequency referencing for frequency sweeping interferometry [J]. Surface Topography: Metrology and Properties, 2016, 4(2): 024012. doi:  10.1088/2051-672X/4/2/024012
    [66] Lu C, Liu G D, Liu B G, et al. Absolute distance measurement system with micron-grade measurement uncertainty and 24 m range using frequency scanning interferometry with compensation of environmental vibration [J]. Optics Express, 2016, 24(26): 30215-30224. doi:  10.1364/OE.24.030215
    [67] Liu G D, Xu X K, Liu B G, et al. A method of suppressing vibration for high precision broadband laser frequency scanning interferometry [J]. Acta Physica Sinica, 2016, 65(20): 209501. (in Chinese) doi:  10.7498/aps.65.209501
    [68] Chen X L, Wang X C, Pan S L. Accuracy enhanced distance measurement system using doublesideband modulated frequency scanning interferometry [J]. Optical Engineering, 2017, 56(3): 036114. doi:  10.1117/1.OE.56.3.036114
    [69] Chen X L, Wang X C, Pan S L. Laser ranging of frequency scanning interferometry system based on double-sideband modulation [J]. Acta Photonica Sinica, 2017, 46(6): 0612005. (in Chinese) doi:  10.3788/gzxb20174606.0612005
    [70] Mo D, Wang R, Li G Z, et al. Double-sideband frequency scanning interferometry for long-distance dynamic absolute measurement [J]. Applied Physics B, 2017, 123: 272.
    [71] Jia X Y, Liu Z G, Tao L, et al. Frequency-scanning interferometry using a time-varying Kalman filter for dynamic tracking measurements [J]. Optics Express, 2017, 25(21): 25782-25796. doi:  10.1364/OE.25.025782
    [72] Jia X Y, Liu Z G, Deng Z W, et al. Dynamic absolute distance measurement by frequency sweeping interferometry based Doppler beat frequency tracking model [J]. Optics Communications, 2019, 430: 163-169. doi:  10.1016/j.optcom.2018.08.013
    [73] Zhang S H, Xu Z Y, Chen B Y, et al. Sinusoidal phase modulating absolute distance measurement interferometer combining frequency-sweeping and multiwavelength interferometry [J]. Optics Express, 2018, 26(7): 9273-9284. doi:  10.1364/OE.26.009273
    [74] Barwood G P, Gill P, Rowley W R C. High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes [J]. Measurement Science and Technology, 1998, 9(7): 1036-1041. doi:  10.1088/0957-0233/9/7/005
    [75] Zhang F M, Li Y T, Pan H, et al. Vibration compensation of the frequency-scanning-interferometry-based absolute ranging system [J]. Applied Sciences, 2019, 9(1): 147. doi:  10.3390/app9010147
    [76] Shao B, Zhang W, Zhang P, et al. Dynamic clearance measurement using fiber-optic frequency-swept and frequency-fixed interferometry [J]. IEEE Photonics Technology Letters, 2020, 32(20): 1331-1334. doi:  10.1109/LPT.2020.3023006
    [77] Shang Y, Lin J R, Yang L H, et al. Precision improvement in frequency scanning interferometry based on suppression of the magnification effect [J]. Optics Express, 2020, 28(4): 5822-5834. doi:  10.1364/OE.385357
    [78] Koshikiya Y, Fan X Y, Ito F, et al. High resolution PNC-OFDR with suppressed fading noise for dispersive media measurement [J]. Journal of Lightwave Technology, 2013, 31(6): 866-873. doi:  10.1109/JLT.2013.2238505
    [79] Wojtkowski M, Srinivasan V J, Ko, T H, et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation [J]. Optics Express, 2004, 12(11): 2404-2422. doi:  10.1364/OPEX.12.002404
    [80] Barber Z W, Babbitt W R, Kaylor B, et al. Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar [J]. Applied Optics, 2010, 49(2): 213-219. doi:  10.1364/AO.49.000213
    [81] Barber Z W, Giorgetta F R, Roos P A, et al. Characterization of an actively linearized ultrabroadband chirped laser with a fiber-laser optical frequency comb [J]. Optics Letters, 2011, 36(7): 1152-1154. doi:  10.1364/OL.36.001152
    [82] Xu X K, Liu G D, Chen F D, et al. Research on the fiber dispersion and compensation in large-scale highresolution broadband frequencymodulated continuous wave laser measurement system [J]. Optical Engineering, 2015, 54(7): 074102. doi:  10.1117/1.OE.54.7.074102
    [83] Xu X K, Liu G D, Liu B G, et al. High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation [J]. Acta Physica Sinica, 2015, 64(21): 219501. (in Chinese) doi:  10.7498/aps.64.219501
    [84] Pan H, Qu X H, Shi C Z, et al. Resolution-enhancement and sampling error correction based on molecular absorption line in frequency scanning interferometry [J]. Optics Communications, 2018, 416: 214-220. doi:  10.1016/j.optcom.2018.02.006
    [85] Shi G, Hei K, Wang W, et al. High precision FSI for absolute distance measurement using a tunable laser with sweeping range of 88 GHz [J]. Measurement Science and Technology, 2019, 31(4): 109293.
    [86] Gibson S M, Coe P A, Mitra A, et al. Coordinate measurement in 2-D and 3-D geometries using frequency scanning interferometry [J]. Optics and Lasers in Engineering, 2005, 43(7): 815-831. doi:  10.1016/j.optlaseng.2004.09.001
    [87] Gao F, Muhamedsalih H, Jiang X Q. Surface and thickness measurement of a transparent film using wavelength scanning interferometry [J]. Optics Express, 2012, 20(19): 21450-21456. doi:  10.1364/OE.20.021450
    [88] Chen T X, Yang H J, Riles K, et al. High-precision absolute coordinate measurement using frequency scanned interferometry [J]. Journal of Instrumentation, 2014, 9(3): P03001. doi:  10.1088/1748-0221/9/03/P03001
    [89] Gabai H, Steinberg I, Eyal A. Multiplexing of fiber-optic ultrasound sensors via swept frequency interferometry [J]. Optics Express, 2015, 23(15): 18915-18924. doi:  10.1364/OE.23.018915
    [90] Ohno S, Iida D, Toge K, et al. High-resolution measurement of differential mode delay of few-mode fiber using phase reference technique for swept-frequency interferometry [J]. Optical Fiber Technology, 2018, 40: 56-61. doi:  10.1016/j.yofte.2017.10.007
    [91] Kim I, Martins R J, Jang J, et al. Nanophotonics for light detection and ranging technology [J]. Nature Nanotechnology, 2021, 16: 508-524. doi:  10.1038/s41565-021-00895-3
  • [1] 邵光灏, 刘昂, 翟计全, 张国强.  光波束形成中色散延时的非线性修正 . 红外与激光工程, 2021, 50(7): 20210235-1-20210235-6. doi: 10.3788/IRLA20210235
    [2] 曹康, 姜成昊, 朱精果, 杜鹃, 乔治, 叶征宇.  激光多普勒移频特性研究 . 红外与激光工程, 2021, 50(11): 20210116-1-20210116-8. doi: 10.3788/IRLA20210116
    [3] Zhang Bo, Zhang Wengjian, Lei Lihua.  Development of coaxiality measurement system of turbine components and stud standard parts . 红外与激光工程, 2020, 49(10): 20200216-1-20200216-6. doi: 10.3788/IRLA20200216
    [4] 何微微, 武魁军, 冯玉涛, 王后茂, 傅頔, 刘秋新, 鄢小虎.  O3辐射源星载干涉仪测风不确定度分析 . 红外与激光工程, 2019, 48(8): 813001-0813001(8). doi: 10.3788/IRLA201948.0813001
    [5] 龙亮, 张丽莎, 吴立民.  甚高灵敏度长波红外相机测试技术 . 红外与激光工程, 2018, 47(5): 504001-0504001(6). doi: 10.3788/IRLA201847.0504001
    [6] 徐均琪, 苏俊宏, 葛锦蔓, 基玛 格拉索夫.  光学薄膜激光损伤阈值测量不确定度 . 红外与激光工程, 2017, 46(8): 806007-0806007(7). doi: 10.3788/IRLA201746.0806007
    [7] 郝文泽, 胡雄, 徐轻尘, 宋亮, 吴小成, 王鑫.  利用微波调制激光技术测速的实验研究 . 红外与激光工程, 2017, 46(3): 306002-0306002(5). doi: 10.3788/IRLA201746.0306002
    [8] 黄宇翔, 张鸿翼, 李飞, 徐卫明, 胡以华.  相位调制激光雷达成像设计及仿真 . 红外与激光工程, 2017, 46(5): 506003-0506003(6). doi: 10.3788/IRLA201746.0506003
    [9] 许云祥, 吴斌, 汪勃.  卫星相干光通信多普勒频移开环估计技术 . 红外与激光工程, 2017, 46(9): 922004-0922004(6). doi: 10.3788/IRLA201746.0922004
    [10] 贺静波, 许江湖.  无色散光纤信道的非线性演化 . 红外与激光工程, 2016, 45(4): 422004-0422004(5). doi: 10.3788/IRLA201645.0422004
    [11] 肖文健, 马东玺, 陈志斌, 张勇, 肖程, 秦梦泽.  大尺寸空间角测量系统光轴指向不确定度评定 . 红外与激光工程, 2016, 45(11): 1118004-1118004(7). doi: 10.3788/IRLA201645.1118004
    [12] 徐春凤, 韩成, 姜会林.  GEO与LEO间激光通信轨道特性仿真 . 红外与激光工程, 2016, 45(8): 822008-0822008(7). doi: 10.3788/IRLA201645.0822008
    [13] 胡杨, 朱鹤元.  1.55μm全光纤相干多普勒激光测风雷达 . 红外与激光工程, 2016, 45(S1): 71-75. doi: 10.3788/IRLA201645.S130001
    [14] 安盼龙, 赵瑞娟, 刘争光, 张旭峰, 李亦军.  激光线性扫频法快速标定法布里-珀罗标准具参数 . 红外与激光工程, 2015, 44(11): 3418-3423.
    [15] 韩启金, 张学文, 乔志远, 杨磊, 潘志强, 刘李.  高分一号卫星PMS 相机多场地宽动态辐射定标 . 红外与激光工程, 2015, 44(1): 127-133.
    [16] 庞伟伟, 郑小兵, 李健军, 史学舜, 吴浩宇, 夏茂鹏, 高东阳, 史剑民, 戚涛, 康晴.  溯源于低温辐射计的1064nm波段探测器绝对光谱响应度定标 . 红外与激光工程, 2015, 44(12): 3812-3818.
    [17] 林冠宇, 于向阳.  高精度智能化可见/近红外积分球辐射定标装置 . 红外与激光工程, 2014, 43(8): 2520-2525.
    [18] 周跃, 闫丰, 章明朝.  CCD光电参数测试系统的研制 . 红外与激光工程, 2014, 43(10): 3451-3456.
    [19] 肖韶荣, 周洁, 赵静, 黄新.  温度对激光光斑跟踪不确定度的影响 . 红外与激光工程, 2013, 42(3): 605-610.
    [20] 代雷, 隋永新, 吴迪.  基于激光干涉法的曲率半径精密检测系统 . 红外与激光工程, 2013, 42(8): 2221-2225.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  1
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-15
  • 修回日期:  2021-07-18
  • 刊出日期:  2022-06-08

基于可调谐激光器扫频干涉绝对距离测量方法研究进展

doi: 10.3788/IRLA20210406
    作者简介:

    宋鲁明,男,硕士生,主要从事扫频干涉测距等方面的研究

    孙栋,男,副教授,硕士生导师,博士,主要从事激光精密测量、光子技术应用等方面的研究

基金项目:  国家重点研发计划(2018YFB2003501);国家自然科学基金(11904304);福建省自然科学基金(2021I0025、2021J011217)
  • 中图分类号: TH741

摘要: 绝对距离测量的精度对于航空航天科技、精密装备加工、卫星编队、行星空间定位等领域具有重要意义。近年来,基于可调谐激光器的扫频干涉(FSI)测距技术以其突破2π模糊度、无测量死区、不接触且不依赖导轨等优点成为国际研究热点。文中在阐述FSI测距原理的基础上,简要分析了测距系统中部分器件的类型与性能,如可调谐激光器、探测器等,以及影响测距系统不确定度的因素,包括非线性扫频、多普勒频移、色散失配等方面,着重介绍了国内外对影响不确定度因素的相应补偿方法,并对补偿后的测量结果进行对比与总结。

English Abstract

    • 工业制造业快速发展的今天,人们对测量对象的移动速度、距离精度、空间坐标的测量需求越来越高。目前,有几种主要测量目标距离及速度的方法:脉冲式、相位式、调频式[1-3]。脉冲式测量技术常被用于遥感卫星、雷达监控、无人驾驶等领域,距离测量精度主要受限于时间精度;相位式测量技术受到相位2π模糊度的约束[4],通常采用多个单波长激光器获得整数阶;调频式测量技术具有较高的信噪比,可以用于无合作目标探测,不受2π模糊度及半波长的限制,近十几年已经成为测距领域的研究热点[5-7]

      光学领域的调频式测量技术即FSI测距可追溯至20世纪80年代[8-9],但受到早期可调谐激光器的相干长度、调制范围和调制线性度的限制,调频式测距优势没有得以充分体现。如,20世纪90年代Sharp公司生产的LT024能输出可调谐连续波,但可调范围较低,仅在765~795 nm之内,而且需要用Fabry-Perot标准具进行扫频标定,增加了测距系统的复杂性。近几年,外腔式可调谐激光二极管(ECLD)凭借大带宽调制的优势,被用于FSI测距。Toptica公司的第一代ECLD(DL100),调制范围为1540~1580 nm,大带宽调制有助于将距离分辨率提高到微米量级[10-11]。分布反馈式半导体激光器(DFB)具有调谐速度快的优势,如LUNA的PHOENIX1400,其扫频速度可控制在1~1000 nm/s,可调谐范围在1515~1565 nm之间。单模垂直腔面发射激光器(VCSEL)凭借锁相环精准控制线性扫频的优势,也被作为FSI测距系统的光源[12]。此外,探测器的升级也提高了对干涉信号的捕获能力。如,InGaAs探测器可以捕捉到900~1700 nm的光信号。Thorlabs的平衡放大探测器PDB450C具有消共模的特点(共模抑制比大于20 dB),可以滤掉干涉信号中的共模噪声。一些外国机械制造公司已推出商用的FSI测距系统,如,eTALON公司制造的Absolute Multiline Technology测距仪,由124个通道组成,以气体池的分子吸收光谱为基准,在多次测量中,系统可以自动重新校准。测量范围在0.02~30 m之间,测量精度达到0.5 ppm (1 ppm=10-6);Nikon公司也推出了非接触式大尺寸测量激光雷达MV351,测量范围最高可达到50 m,每秒可捕获2 000个测量点,在2~20 m测量范围内精度可达到24~201 µm。

      随着对理论的深入研究和技术的迭代更新,FSI激光测距的最高精度可以达到亚微米量级,最远距离可以达到百米量级,极大地拓展了该技术的应用范围[13-15]。但FSI测距技术的测量精度及可重复性主要受到激光器非线性调频,目标微小振动引起的多普勒频移,光纤色散引起的失配以及数据在频域处理中会发生漏频等因素的制约[16]。文中结合国内外最新的FSI测距技术进展,综述了对于上述影响测距因素的各种补偿方法,对比了这些方法的精度、稳定性及重复性。

    • FSI测距是以迈克尔逊干涉仪为基础进行测量的,其依赖于干涉仪两臂的相位差与激光频率扫描之间的线性变化[17-18]。在测量时,通过改变可调谐激光器发射的激光频率达到改变接收光相位的目的,从而引起外差干涉条纹的变化。

      FSI测距系统如图1所示。以三角波调制信号为例,信号发生器输出的三角波信号作用到ECLD的压电陶瓷(PZT)上,PZT控制光栅进行线性选频。ECLD发出的激光被第一个分束器(BS1)分离。一部分传入法布里-珀罗干涉仪,用来测量ECLD的扫频范围;另一部分传入迈克尔逊干涉仪。在迈克尔逊干涉仪中,光束被第二偏振器(BS2)分成两部分:一束沿着固定长度的参考臂传输至回射器(RR1);另一束沿着测量臂传输至回射器(RR2)。经两个回射器反射后的光束在探测器(PD2)处形成干涉信号,PD2将记录ECLD光学频率扫描期间干涉信号的相移变化。

      图  1  FSI测距示意图

      Figure 1.  Schematic of laser ranging of frequency sweeping interferometer

      绝对距离L可以被表示为:

      $$ {L}={N} \cdot \frac{c}{2 \cdot {n} \cdot {r} \cdot {F S R}}+\text{δ}{N} \cdot \frac{c}{2 \cdot {n} \cdot {r} \cdot {F }{S }{R}} $$ (1)

      式中:N为测量条纹整数部分;$ \text{δ}{N}$为测量条纹分数部分;FSR为F-P干涉仪的自由光谱区;r为共振态;n为折射率;c为光速。测距系统的不确定度∆L主要受到几个影响因子的约束[19-20]

      $$ \Delta {L}=\sqrt{{\left(\frac{c}{2 \cdot n \cdot F S R \cdot r} \cdot \text{δ}{N}\right)}^{2}+{\left(\frac{c \cdot N}{2 \cdot n \cdot {F S R}^{2} \cdot r} \cdot \text{δ}{F} {S} {R}\right)}^{2}+{\left(\frac{c \cdot N}{2 \cdot n \cdot F S R \cdot {r}^{2}} \cdot \text{δ}{r}\right)}^{2}+{\left(\frac{c \cdot N}{2 \cdot {n}^{2} \cdot F S R \cdot r} \cdot \text{δ}{n}\right)}^{2}} $$ (2)

      调频非线性,目标微小振动以及色散失配等会将影响因子对系统不确定度的影响放大几十甚至上百倍,因此,分析和补偿这些干扰因素对测量精度至关重要。

    • ECLD调频是通过信号发生器控制PZT驱动反射镜转动实现的。虽然信号发生器产生的调制信号是线性的,但PZT具有迟滞性响应的特点,使得光频率呈非线性变化,进而造成干涉信号相位提取误差[21]图2展示了线性扫频与非线性扫频对相位差的影响,非线性扫频会导致干涉信号在时域中的条纹数发生变化。

      图  2  干涉信号相位差计算示意图。(a) 理想线性扫频;(b) 实际非线性扫频

      Figure 2.  Schematic diagram of calculating the interference signal phase difference. (a) Ideal linear frequency sweeping; (b) Actual nonlinear frequency sweeping

      针对非线性扫频造成的不利影响,研究人员提出一系列改进FSI测距系统的方法,例如:搭建重采样系统[22-24]等测量装置,以及最小拟合二乘法[25]、卡尔曼滤波[26]、希尔伯特相位展开[27]等算法。可以将这些方法分成两大类:一类是利用光电晶体[28]、锁相环[29]等技术进行主动稳频,降低非线性扫频;另一类是对干涉信号频率进行追踪,利用算法提取并进行校正相位,被动补偿非线性扫频[30-31]

    • 1996年,日本金泽大学的Iiyama等人[29]使用自参考稳频方法。如图3所示,利用参考信号Reference SG与外差干涉信号的频率差值进行锁相放大,与三角波调制信号Triangular SG相叠加,达到非线性校正的目的。经锁相环调制后,在100 GHz扫频范围内,测量20 cm处的目标,分辨率达到1.3 mm,与调制之前的12 mm分辨率相比,测量精度大约提高了10倍。

      图  3  基于锁相环控制的扫频系统[29]

      Figure 3.  Frequency sweeping system based on PLL control[29]

      1998年,美国俄勒冈大学的Greiner[28]在谐振腔内加入了抗反射涂层钽酸锂电光晶体EOC,配置为横向相位调制器,可以快速调谐频率。通过锁相环稳频后,将电流调制引入的噪声抑制了两个数量级。

      2010年,日本北海道大学的Kakuma等人[32-33]将VCSEL作为光源,克服了ECLD的跳模限制[34],实现太赫兹范围内无跳模频率调谐。2015年,Kakuma用基于锁相环技术的电流控制器稳定VCSEL的扫频速度,同时用铷气体池Rb-cell标记测量频率,通过最小二乘拟合法精确确定干涉条纹的梯度,如图4所示。在14 mm测量范围内,实现亚微米测量精度,测量标准差为0.12 µm,相对误差为0.9×10−5,有较好的重复性。

      图  4  基于锁相环控制的VCSEL扫频测距系统[33]

      Figure 4.  VCSEL frequency sweeping ranging system based on PLL control[33]

      2015年,西安交通大学的邓忠文等人[35]用子空间识别算法N4SID对非线性扫频建模,构建三角波电压调制信号与F-P干涉仪的干涉信号之间的传递函数G(s)。用校正的G(s)驱动信号替代三角波信号控制PZT,进行反向补偿。在40 mm范围内,用三角波调制信号测量,标准差为16 µm,相对残差为2×10−4。用G(s)校正的驱动信号测量,标准差为7 µm,相对残差为7.5×10−5。该方法有效地抑制了光学扫频的非线性。

      2018年,西安交通大学的Zhu等人[36]用频率响应函数(FRF)描述输入信号的每个谐波分量对扫描频率的线性和动态行为的影响。通过三角波的逆FRF处理得到校正的输入信号。在40 mm范围内,用原始三角波调制信号测量,频域峰值的半高宽(FWHM)为4003 Hz,标准差为8 µm,相对误差为2.1×10−4。用校正后的调制信号测量,FWHM为1160 Hz,标准差为2.4 µm,相对误差为9.7×10−5

      主动稳频技术指标如表1所示。

      表 1  主动稳频式FSI系统测距精度比较

      Table 1.  Comparison of ranging accuracy of active frequency stabilized FSI system

      AuthorDistance/mmStandard deviationRelative errorRef.
      Iiyama2001.3 mm-[29]
      Kakuma140.12 µm0.9×10−5[32-33]
      Deng407 µm7.5×10−5[35]
      Zhu402.4 µm9.7×10−5[36]
    • 2005年,韩国光州科技学院的Ahn等人[37]用希尔伯特变换的补偿方法消除非线性扫频,如图5所示,将具有固定延迟时间的辅助干涉仪(Aux. interferometer)添加到常规光频域反射计系统中,利用希尔伯特变换提取干涉信号的相位,并从其导数中得到调谐速率。对速率数据进行插值,补偿调谐频率。补偿后频率的FWHM约为3 cm,原始频率的FWHM约为177.4 cm,精度提高了约60倍。

      图  5  基于希尔伯特变换的非线性扫频补偿系统[37]

      Figure 5.  Nonlinear frequency sweeping compensation system based on Hilbert transform[37]

      2009年,比利时蒙斯工程学院的Yuksel等人[38]利用重采样法,降低非线性的影响。借助辅助干涉信号中等频域间隔的位点(峰谷值点),对测量干涉信号进行重采样。重采样后FWHM的分辨率为0.4 cm,相比原始干涉信号的13 cm的FWHM,空间分辨率提高了约30倍。

      2015年,天津大学的孟祥松等人[39]用小带宽调制、拼接重采样信号相位的方法,补偿宽带调制中的非线性问题。实验表明,在26 m测量范围内,标准差为50 µm,相对误差为100×10−6

      上述重采样技术[38-39]是基于软件算法实现的,实际信号的位点信息有一定概率不在采样频率点上,会使后续FFT变换出现漏频现象。2016年,天津大学的姚艳南等人[40]用硬件实现等频率间隔的重采样技术,如图6所示,将辅助路正弦干涉信号整形为方波信号,以方波信号的上升沿和下降沿作为数据采集卡DAQ的时钟信号,对通道1的干涉信号进行采集,确保数据点的相位信息真实有效。基于软件的等光频间隔重采样频谱的FWHM为19.68 kHz,基于硬件等光频间隔重采样频谱的FWHM为19.21 kHz。

      图  6  基于硬件的重采样扫频干涉测距[40]

      Figure 6.  Resampling frequency sweeping interferometry ranging based on hardware[40]

      实验室利用此重采样方法对2 m范围内目标进行测量,对干涉信号直接进行FFT变换,FWHM约为10 mm,无法分辨被测目标的距离,经过重采样后做FFT变换,FWHM为20 µm。

      当基于峰谷点等光频间隔重采样时,辅助干涉仪中延迟光纤的光程差(OPD)应至少是测量距离的两倍,这将限制大尺寸测量中辅助光路的光纤长度。2019年,中国科学院大学的Jiang等人[41]用基于希尔伯特相位展开的等光频重采样方法细分等光频间隔,对一个周期内的辅助信号提取多个采样点,在补偿调频非线性的同时有效降低了对辅助路光纤长度的需求。当辅助干涉仪的光纤长度为4.5 m左右时,测量到的目标距离约为5 m,距离测量结果的标准差可达4.64 µm。

      2016年,西安交通大学的Liu等人[42]采用扩展卡尔曼滤波(EKF)技术跟踪干涉信号频率,补偿非线性光频输出,提高相位提取精度。在3 m测量范围内,绝对距离测量的标准偏差小于2.4 µm,相对误差为1.1×10−4。2018年,西安交通大学的Wang等人[43]在Liu等人[42]的研究基础上利用复数移位小波提取相位的方法,跟踪干涉信号的瞬时频率,同样估计分数相位。3 m范围内,绝对距离测量的标准偏差小于1.69 µm。

      2020年,西安交通大学的邓忠文等人[44]用干涉信号的峰值反向截断检测到的光频率曲线补偿频率调谐的非线性。如图7所示,对任意两个相邻F-P峰之间的M-Z干涉信号的采样点进行拟合,降低了F-P腔的FSR (1.5 GHz)对频率分辨率的限制[45],得到精确的频率变化曲线。测量约为2.6 mm的台阶,与X光测量相比,残余误差为3.1~8.3 µm。

      被动补偿式方法技术指标如表2所示。

      图  7  基于F-P腔与M-Z干涉仪补偿非线性扫频[44]

      Figure 7.  Compensation of non-linear frequency sweeping based on F-P cavity and M-Z interferometer[44]

      表 2  被动补偿式FSI系统测距精度比较

      Table 2.  Comparison of ranging accuracy of passive compensation FSI system

      AuthorDistance/mStandard deviationRelative errorFWHMRef.
      Ahn---177.4 cm[37]
      Yuksel---0.4 cm[38]
      Jiang54.64 µm--[41]
      Liu32.4 µm1.1×10-4-[42]
      Meng26-1.0×10-450 µm[39]
    • 在实际测量中,待测目标会受到振动等外界环境的影响,产生多普勒频移现象[46-47]。此时,很难区分以下两个因素对干涉条纹造成的影响:(1)扫描频率形成的合成波长${\Lambda }$条纹,(2)微小振动造成距离变化从而引起的光学波长$ \mathrm{\lambda } $条纹变化。这将使微小振动引起的位移误差成系数放大,放大系数为$ \mathrm{\Lambda }/\mathrm{\lambda } $。因此,实际绝对距离如公式(3)所示[48-49]。对于中心波长为1550 nm,扫描带宽为20 nm的激光器,位移误差将被放大77.49倍。近20年,如何解决多普勒频移造成的影响成为FSI测距研究的热点之一。

      $${L}={N} \cdot \frac{\varLambda }{2{n}}-{{\Delta }{L}}_{\mathrm{d}\mathrm{r}\mathrm{i}\mathrm{f}\mathrm{t}} \cdot \frac{\varLambda }{{\lambda }} $$ (3)

      2001年,西门子公司的Schneider等人[50]用双向扫频方法,如图8所示,用两台可调谐激光器,同时向上和向下调谐频率,调频范围相同。因为是同步扫频,目标振动对两个外差信号产生的影响是相同的,可以通过两干涉信号彼此相乘,经过滤波处理,抵消掉多普勒频移的影响。

      图  8  基于双激光器的对向扫频测距[50]

      Figure 8.  Dual laser-based counter frequency sweeping ranging[50]

      2004年,牛津大学的Coe等人[51]将Schneider等人提出的双扫方法[50]应用在对ATLAS粒子对撞机内部的半导体跟踪器SCT的形状变化上,使用两个扫频方向相反的激光器完成测距,大大降低干涉仪长度漂移引起的误差,可以测量大于10 µm的形变。

      2005年,美国密歇根大学的Yang等人[52]用滑动测量窗口法提取目标的振动频率与振动幅度。在两者为常数的情况下,距离测量仅取决于时间窗口的大小,如公式(4)所示:

      $$ \Delta {L}=4{{a}}_{\mathrm{v}\mathrm{i}\mathrm{b}}\frac{\varLambda }{{\lambda }}\mathrm{s}\mathrm{i}\mathrm{n}\left[{\pi }{{f}}_{\mathrm{v}\mathrm{i}\mathrm{b}}\right({t}-{{t}}_{0}\left)\right] $$ (4)

      式中:${{a}}_{\mathrm{v}\mathrm{i}\mathrm{b}}$为振动幅度;${{f}}_{\mathrm{v}\mathrm{i}\mathrm{b}}$为振动频率。每将固定长度的测量窗口向前移动一个F-P峰,把一个扫频周期内所有测量的实际距离的算术平均值视为扫频测量距离,多次测量取平均值,可以极大地抑制振动效应。在实验室环境下,10~70 cm范围内的测量精度为50 nm。同年,荷兰代尔夫特理工大学的Swinkels等人[53]利用扫频干涉与定频干涉相结合的方法测量目标的漂移信息。将固定频率干涉信号偏振复用,在正交中测量四个点的瞬时相位,补偿目标漂移。在15 m范围内,测量的相对误差为130 µm。

      2005年,葡萄牙国家工程技术创新研究所的Cabral等人[54]用一台可调谐激光器以不同的扫描持续时间进行两次连续测量,借助两个FSI连续条纹数确定目标移动速度以及偏移距离,进而补偿漂移,获得实际的绝对距离。

      2008年,瑞士巴汝拉地区工程师学院的Le Floch等人[55-56]利用射频发生器控制做双边带调制扫频,产生大约45 GHz的可调频率差。在光电探测器上会探测到两个距离相关的干涉信号,经带通滤波后解调频率信息。在15 m范围内,测量精度达到50 µm。

      2009年,德国不伦瑞克联邦物理技术研究院的Pollinger等人[57]采用扫频干涉测量与双波长干涉测量相结合的方法,细化干涉条纹的精细度,补偿多普勒频移引起的放大位移量。在20 m测量范围内,测量精度达到12 µm,相对不确定度为5.1×10−7

      2011年,北京航空航天大学的李志栋等人[58]利用外差干涉和频分复用实现绝对距离和光程差位移量的同时测量。用高精度波长计对扫频终点频率进行测量,剔除与扫频终点频率和光程差位移量有关的误差相位偏移量,实现频移补偿。在50 m测量范围内,测量残差为5~55 µm。

      2012年,日本北海道大学的Kakuma等人[59]使用两台VCSEL在相反方向上同步扫频,通过解调两个干涉信号中的反向相移,得到两个距离信息,取其平均值抵消目标振动的影响。在11 mm测量范围内,测量标准差为4 µm,相对误差为3.6×10−4

      2014年,牛津大学的Dale等人[60]用双扫干涉测量与气体吸收池组合的测量系统实现动态目标追踪。如图9所示,在每个扫频周期内用气体吸收池的跃迁谱线做为频率标准标记。结合双扫干涉,补偿目标振动的影响。在20 m范围内,测量的相对不确定度为0.4×10−6,FWHM为40 nm。同年,西安交通大学的陶龙等人[61-62]利用卡尔曼滤波技术进行动态距离测量。通过卡尔曼滤波计算干涉信号的状态,估计目标的绝对距离和移动速度可以。在0.66 m范围内,目标振动幅度为1 µm,振动频率为4.7 Hz时,测量标准差为0.48 µm。

      图  9  基于双扫与气室标定的扫频测距系统[60]

      Figure 9.  Frequency sweeping ranging system based on double swept and gas chamber calibration[60]

      2015年,英国南威尔士大学的Martinez等人[63]用基于四波混频(FWM)的双扫测距系统降低目标振动的影响,如图10所示,利用SOA的三阶非线性效应,产生四波混频。经滤波后,用两个镜像对称的扫频信号测距。相比于Schneider等人[50]提出的双可调谐激光器扫频测距,此方法仅用到一台可调谐激光器,降低了系统成本和两个扫频信号的同步性伺服控制难度。当测量范围为0.4 m,目标以9 µm振幅,2 Hz频率振动时,测量标准差为21 µm。

      图  10  基于四波混频的双扫频干涉测距[63]

      Figure 10.  Double swept interferometric ranging based on four wave mixing[63]

      2016年,德国不伦瑞克联邦物理技术学院的Prellinger等人[64-65],将637 nm处碘跃迁的饱和光谱用于频率参考标记,结合双扫测距,补偿环境振动的影响。与牛津大学Dale等人[60]提出的用气室标定参考光路频率相似,但碘分子跃迁的光谱特性相对稳定,不受环境影响。在4 m测量范围内,测量标准差为11 µm,相对误差为6.0×10−7。同年,哈尔滨工业大学的Lu等人[66]建立了绝对距离测量中多普勒效应的理论模型。结构如图11所示,用多普勒测速仪校正干涉信号中的频移放大。对16 m处的目标进行测量,测量分辨率为65.5 µm,标准差为3.15 µm。

      图  11  基于多普勒测速仪的扫频测距系统[66]

      Figure 11.  Frequency sweeping ranging system based on Doppler velocimeter[66]

      2016年,哈尔滨工业大学的刘国栋等人[67]建立了振动对宽带激光扫频干涉测距系统的影响模型,结合卡尔曼滤波方法对目标距离信息进行状态估计。测量9.6 m处的目标,标准差由185.4 µm降低到9.0 µm,有效降低了环境振动对测量结果的影响。

      2017年,南京航空航天大学的陈希伦等人[68-69]采用基于电光调制器的双边带调制,做双扫测距。在3.48 m测量范围内,当光路中存在7.7 mm扰动时,测量标准差为60 µm。同年,中国科学院电子学研究所的Mo等人[70]将马赫-曾德尔调制器作用于固定频率的激光器上,产生双边带扫频信号,同样做双扫测距。在千米量级的绝对距离,测距精度可达3 µm。

      2018年,西安交通大学的Jia等人[71-72]利用时变卡尔曼滤波器的时间更新方程和测量更新方程迭代地估计目标的绝对长度和速度,描述目标的瞬时运动,实现动态测量。当目标的振幅为1 µm,振动频率为1 Hz时,在0.3 m测量范围内,测量精度为2.5 µm。同年,浙江科技大学的Zhang等人[73]设计了一种结合扫频干涉(FSI)和多波长干涉(MWI)[74]的正弦相位调制型绝对距离干涉仪。在4.25 m的距离内重复进行20次实验,结果表明标准差为0.18 µm,最大测量残差为0.36 µm。

      2019年,天津大学的张福民等人[75]将三角波调制的一个周期内上下扫频干涉信号相乘,做Chirp-Z变换,建立了振动效应模型,对干涉信号进行补偿,抵消振动偏移量。当目标做振幅为10 µm,频率为1 Hz的正弦振动时,在3 m测量范围内,标准偏差从775 µm减小到12 µm。在自然环境中,通过使用振动补偿,标准偏差从289 µm减小到11 µm。

      2020年,重庆大学的Shao等人[76]结合扫频和定频干涉测量的相位信息,组成了一种动态位移测量法。从扫频干涉信号SFSI(t)中重新构造一个类似定频干涉SFFI(t)的信号,展开FFI信号相位并计算相位增量,得到每个时刻点的动态距离值。在1 cm测量范围内,测量不确定度为2 µm。

      天津大学的Shang等人[77]用连续波单频激光器及波分复用器建立了一种外差干涉仪,检测距离的变化。如图12所示,利用AOM对于扫频和固定频率做频移,当固定信号的频率等于扫频信号的截止频率时,将固定频率的干涉信号与扫频干涉信号相乘,做低通滤波,消除由目标振动引起的频偏。在10 m范围内实现了4.26 µm的测量精度。

      图  12  抑制多普勒放大动态误差的FSI系统[77]

      Figure 12.  FSI system for suppressing Doppler amplification dynamic error[77]

      目标振动补偿的技术指标如表3所示。

      表 3  补偿振动漂移的FSI系统测距精度比较

      Table 3.  Comparison of FSI system ranging accuracy for compensating vibration drift

      AuthorDistance/mStandard deviation/µmRelative errorFWHMRef.
      Yang0.7--50 nm[52]
      Martinez0.421--[63]
      Tao0.660.48--[61-62]
      Zhang311--[75]
      Prellinger4116.0×10−7-[64-65]
      Kakuma1143.6×10−4-[59]
      Swinkels15-1.3×10−4-[53]
      Le Floch15--50 µm[55-56]
      Lu163.15-65.5 µm[66]
      Dale20-0.4×10−640 nm[60]
      Pollinger20-5.1×10−712 µm[57]
    • 对于高分辨率扫频干涉测距系统,光纤光路的色散失配也是限制提高测量分辨率的重要因素。色散效应将导致测量信号频域峰值FWHM展宽[78-79],从而导致测量分辨率下降,因此,需要对色散失配进行补偿。

      2010年,美国蒙塔纳州立大学的Barber等人[80-81]提出了一种基于H13C14N气室吸收线的分辨率增强和色散误差校正的方法。对H13C14N气室吸收的离散激光频率和交叉时间进行最小二乘拟合,得到ECLD扫描速率曲线和频率啁啾曲线,通过相邻点替换和样条插值消除色散失配引起的采样误差。在100 m测量范围内,测量不确定度为1×10−7

      2015年,哈尔滨工业大学的许新科等人[82-83]设计了一种啁啾斜率校准和相位补偿相结合的方法,将测量的信号被分成M个部分,并进行Chirp Z变换,获得频率分布的斜率Dsi。选择合适的M值,平衡线性调频Chirp Z变换的频率分辨率和拟合点。在2.53 m范围内进行测量,FWHM为64.5 µm,标准差为4.5 µm。

      2018年,天津大学的潘浩等人[84]利用H13C14N分子频率参考线的光谱学进行测量,结合相邻点替换和样条插值技术,消除采样误差。与相关的HCN气室校准工作[80-81]有所不同,此处线性调频曲线用于计算与线性扫描曲线的偏差,残差反馈到频率控制器中以校准激光扫频。在8 m范围内,绝对距离测量精度为45 µm。

      2019年,杭州电子科技大学的时光等人[85]用抽真空的P-F干涉仪作为辅助路,有效避免了基于M-Z干涉仪光纤回路带来的色散失配问题。将扫频信号在F-P腔中产生的周期性最大值作为采样信号,对测量路干涉信号进行重采样。测量6.7 m处的目标,标准差为34 µm。

      色散失配补偿技术指标如表4所示。

      表 4  补偿色散失配的FSI系统测距精度比较

      Table 4.  Comparison of FSI system ranging accuracy for compensating dispersion mismatch

      AuthorDistance/mStandard
      deviation
      Relative
      error
      FWHMRef.
      Barber100-1×10−7-[80-81]
      Xu2.53-1.3×10−4-[82-83]
      Pan8--45[84]
      Shi6.734--[85]
    • 随着对调频非线性、目标振动以及色散失配等影响进行补偿,在实验室环境中,FSI测距系统的精度及稳定性得到很大提升。这使得FSI测距进入到初步应用环节,如:2005年,牛津大学的Gibson等人[86]用842个FSI测距系统组成的网格树,对ATLAS的半导体追踪器做空间定位测量;2012年,英国哈德斯菲尔德大学的Gao等人[87]利用卤素光源及AOM制成测量透明薄膜厚度的扫描干涉仪;2014年,中国 科学技术 大学的Xiang等人[88]做出基于FSI的多通道空间坐标测量系统;2015年,以色列特拉维夫大学的Gabai等人[89]将扫频干涉测量法的多路复用应用于超声波传感器;2018年,日本NTT公司的Ohno等人[90]介绍了一种基于调频连续波技术高分辨率测量少模光纤差模延迟的方法。这些FSI测距应用仅适用于实验室环境,离落实到工业环境及户外复杂环境中仍有许多关键技术需要突破,如:激光器微型化、目标表面粗糙度影响、无合作目标、发射端自动调焦准直等。结合数显、光电二极管和VCSEL的小型化集成化的激光器可以大大减小激光器的占地面积,将发射、扫描和接收组件集成到一个单元[91]。在无合作目标的户外测量环境中,漫反射目标表面的粗糙度和材料不同对测距会产生不同影响,噪声因素比重远远大得多,严重时会导致收不到回波信号。因此需要对不同漫反射表面的回波理论深入研究,实现对漫反射目标测距的高信噪比,成就真正意义上的无合作目标测距。

    • 扫频干涉测距凭借无测量死区、无需合作目标、高信噪比、高精度的优势使其在大尺寸空间绝对距离如:重大装备加工、卫星编队、行星空间定位、飞行器制造等领域展露头角。但利用FSI系统测距也同样面临者诸多挑战,如:激光器跳模影响、调频非线性对重采样信号的影响、环境振动引起的小位移放大、光纤色散失配使信号频谱展宽、对信号做FFT变换发生频谱泄露等都是需要研究的重点问题。

      我国在FSI测距方面一直紧跟国际脚步,近几年多个研究单位取得了显著的研究成果。随着国内在无人飞行器、无人驾驶、高端精密装备制造等行业的快速发展,测距测量成为热点之一,FSI测距的应用前景将更广泛。文中提到的FSI测距的补偿方案将有助于在未来实现稳定、快速、微型和轻质的激光测距系统,有助于提升我国的精密科技制造和研发实力。

参考文献 (91)

目录

    /

    返回文章
    返回