留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集成微腔光频梳在精密测量中的应用(特邀)

陈豪敬 肖云峰

陈豪敬, 肖云峰. 集成微腔光频梳在精密测量中的应用(特邀)[J]. 红外与激光工程, 2021, 50(11): 20210560. doi: 10.3788/IRLA20210560
引用本文: 陈豪敬, 肖云峰. 集成微腔光频梳在精密测量中的应用(特邀)[J]. 红外与激光工程, 2021, 50(11): 20210560. doi: 10.3788/IRLA20210560
Chen Haojing, Xiao Yunfeng. Applications of integrated microresonator-based optical frequency combs in precision measurement (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210560. doi: 10.3788/IRLA20210560
Citation: Chen Haojing, Xiao Yunfeng. Applications of integrated microresonator-based optical frequency combs in precision measurement (Invited)[J]. Infrared and Laser Engineering, 2021, 50(11): 20210560. doi: 10.3788/IRLA20210560

集成微腔光频梳在精密测量中的应用(特邀)

doi: 10.3788/IRLA20210560
基金项目: 国家自然科学基金(11825402, 11654003)
详细信息
    作者简介:

    陈豪敬,男,博士生,主要从事微腔光子学与微腔光学频率梳方面的研究

  • 中图分类号: O439

Applications of integrated microresonator-based optical frequency combs in precision measurement (Invited)

  • 摘要: 精密测量是现代物理学的基石,而激光光源的发展直接推动了测量科学与技术的进步。21世纪初,光学频率梳的发明促使人们成功实现最精准的时间/频率标准装置——光学原子钟,推动了绝对光学频率测量、基本物理常数测量、精密距离测量以及分子光谱测量等精密测量技术的发展。然而早期的光梳光源系统复杂、价格昂贵,一般工作于大型实验室里,限制了其应用场景的拓展。近年来,出现了一种新型集成微腔光频梳,其具有体积小、功耗低、可批量制备等优势,吸引了科学界和产业界的广泛关注。不同于传统光梳,这种集成微腔光梳不需要依赖增益介质或可饱和吸收体实现锁模,而是通过高品质因子微腔增强的非线性作用来实现光梳的激发与锁模。这种全新的光梳激发与锁模机制降低了精密光源的体积和成本,在平民化精密测量应用中具有优势。文中介绍了集成微腔光梳在精密测量领域中取得的进展,主要围绕微型化光学原子钟、超快精密距离测量、精密光谱测量三个方向。最后对集成微腔光梳在未来精密测量应用中的机遇与挑战进行了总结与展望。
  • 图  1  集成微腔光梳在精密测量中的应用[7](从上往下):高精度超快距离测量、微型化光学原子钟、高精密光谱测量

    Figure  1.  Integrated microresonator-based optical frequency combs in precision measurement[7](from top to bottom): High-precision ultrafast ranging, miniature atomic clocks and high-precision spectroscopy

  • [1] Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis [J]. Science, 2000, 288(5466): 635-639.
    [2] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications [J]. Communications Physics, 2019, 2(1): 1-16.
    [3] Hall J L. Nobel lecture: Defining and measuring optical frequencies [J]. Rev Mod Phys, 2006, 78(4): 1279–1295.
    [4] Hänsch T W. Nobel lecture: passion for precision [J]. Rev Mod Phys, 2006, 78(4): 1297–1309.
    [5] Cao Q T, Tang S J, Chen H J, et al. Research advances of ultrahigh-Q on-chip microcavity photonics [J]. Chin Sci Bull, 2020, 65(27): 3028-3042. (in Chinese) doi:  10.1360/TB-2020-0333
    [6] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs [J]. Science, 2011, 332(6029): 555-559.
    [7] Kippenberg T J, Gaeta A L, Lipson M, et al. Dissipative Kerr solitons in optical microresonators [J]. Science, 2018, 361(6402): 129-162.
    [8] Papp S B, Beha K, Del’Haye P, et al. Microresonator frequency comb optical clock [J]. Optica, 2014, 1(1): 10-14. doi:  10.1364/OPTICA.1.000010
    [9] Drake T E, Briles T C, Stone J R, et al. Terahertz-rate Kerr-microresonator optical clockwork [J]. Phys Rev X, 2019, 9(3): 031023.
    [10] Newman Z L, Maurice V, Drake T, et al. Architecture for the photonic integration of an optical atomic clock [J]. Optica, 2019, 6(5): 680-685. doi:  10.1364/OPTICA.6.000680
    [11] Suh M G, Vahala K J. Soliton microcomb range measurement [J]. Science, 2018, 359(6378): 884-887.
    [12] Trocha P, Karpov M, Ganin D, et al. Ultrafast optical ranging using microresonator soliton frequency combs [J]. Science, 2018, 359(6378): 887-891.
    [13] Riemensberger J, Lukashchuk A, Karpov M, et al. Massively parallel coherent laser ranging using a soliton microcomb [J]. Nature, 2020, 581(7807): 164-170.
    [14] Wang J, Lu Z, Wang W, et al. Long-distance ranging with high precision using a soliton microcomb [J]. Photonics Research, 2020, 8(12): 1964-1972.
    [15] Jang Y S, Liu H, Yang J, et al. Nanometric precision distance metrology via hybrid spectrally resolved and homodyne interferometry in a single soliton frequency microcomb [J]. Phys Rew Lett, 2021, 126(2): 023903.
    [16] Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy [J]. Science, 2016, 354(6312): 600-603.
    [17] Yu M, Okawachi Y, Griffith A G, et al. Microresonator-based high-resolution gas spectroscopy [J]. Opt Lett, 2017, 42(21): 4442-4445.
    [18] Yang Q F, Shen B, Wang H, et al. Vernier spectrometer using counterpropagating soliton microcombs [J]. Science, 2019, 363(6430): 965-968.
    [19] Stern L, Stone J R, Kang S, et al. Direct Kerr frequency comb atomic spectroscopy and stabilization [J]. Science Advances, 2020, 6(9): eaax6230. doi:  10.1126/sciadv.aax6230
  • [1] 李锦, 王丕屿, 王正瑜, 牛睿, 万帅, 郭光灿, 董春华.  氮化硅微腔中的光学频率梳(特邀) . 红外与激光工程, 2022, 51(5): 20220302-1-20220302-7. doi: 10.3788/IRLA20220302
    [2] 卢启景, 廖令琴, 舒方杰, 李明, 谢树森, 邹长铃.  基于回音壁微腔的可见光波段光频梳研究进展(特邀) . 红外与激光工程, 2022, 51(5): 20220335-1-20220335-17. doi: 10.3788/IRLA20220335
    [3] 夏迪, 赵佳鑫, 吴家越, 王自富, 张斌, 李朝晖.  硫系集成光频梳(特邀) . 红外与激光工程, 2022, 51(5): 20220312-1-20220312-9. doi: 10.3788/IRLA20220312
    [4] 高友, 刘拓, 王思宇, 郭海润.  高品质因子氧化硅微腔的制备和光频梳产生(特邀) . 红外与激光工程, 2022, 51(5): 20220294-1-20220294-8. doi: 10.3788/IRLA20220294
    [5] 孙长征, 郑焱真, 熊兵, 汪莱, 郝智彪, 王健, 韩彦军, 李洪涛, 罗毅.  基于宽禁带氮化物的微腔光频梳进展(特邀) . 红外与激光工程, 2022, 51(5): 20220270-1-20220270-7. doi: 10.3788/IRLA20220270
    [6] 杨嘉川, 刘容玮, 解晓鹏.  基于微腔光梳的低相噪微波信号产生(特邀) . 红外与激光工程, 2022, 51(5): 20220236-1-20220236-7. doi: 10.3788/IRLA20220236
    [7] 涂慧镧, 刘佳, 翁海中, 张雨丹, 戴江南, 陆巧银, JohnF. Donegan, 国伟华.  AlN微环谐振腔倍频程孤子光频梳(特邀) . 红外与激光工程, 2022, 51(5): 20220311-1-20220311-7. doi: 10.3788/IRLA20220311
    [8] 蔡兆雨, 王子皓, 杨昌喜, 鲍成英.  相干泵浦微腔光孤子基础与双光梳应用(特邀) . 红外与激光工程, 2022, 51(5): 20220271-1-20220271-12. doi: 10.3788/IRLA20220271
    [9] 朱振东, 林平卫, 孙朝阳, 白本锋, 王雪深.  氮化硅集成微腔光频梳器件关键制备技术(特邀) . 红外与激光工程, 2022, 51(5): 20220214-1-20220214-7. doi: 10.3788/IRLA20220214
    [10] 薛晓晓, 郑小平.  基于集成光频梳的新型微波光子应用 (特邀) . 红外与激光工程, 2021, 50(7): 20211046-1-20211046-5. doi: 10.3788/IRLA20211046
    [11] 谭腾, 姚佰承.  新型功能化光纤微腔光频梳 . 红外与激光工程, 2021, 50(5): 20211025-1-20211025-2. doi: 10.3788/IRLA20211025
    [12] 王梦宇, 范乐康, 吴凌峰, 卢志舟, 刘波, 郭状, 谢成峰.  基于超高Q值氟化镁晶体微腔的克尔光频梳产生研究 . 红外与激光工程, 2021, 50(11): 20210481-1-20210481-6. doi: 10.3788/IRLA20210481
    [13] 王雅君, 高丽, 张晓莉, 郑耀辉.  用于精密测量的低噪声激光器研究进展(特邀) . 红外与激光工程, 2020, 49(12): 20201073-1-20201073-13. doi: 10.3788/IRLA20201073
    [14] 缪立军, 闫景涛, 胡慧珠, 应光耀, 黄腾超, 车双良, 舒晓武.  光阱中微粒位置高精度检测技术 . 红外与激光工程, 2019, 48(12): 1213001-1213001(7). doi: 10.3788/IRLA201948.1213001
    [15] 薛彬, 赵拓, 吴翰钟, 张凯, 王志洋, 游画.  飞秒光频梳基于鉴相信号处理实现速度测量 . 红外与激光工程, 2018, 47(2): 206002-0206002(8). doi: 10.3788/IRLA201847.0206002
    [16] 杨旭, 李亚明, 郭肃丽, 李晶, 刘旭东.  拉曼增益对回音壁模式光学微腔的全光调制 . 红外与激光工程, 2017, 46(11): 1122003-1122003(5). doi: 10.3788/IRLA201746.1122003
    [17] 李东康, 刘玉娟.  激光场作用下原子系统中光学烧孔和慢光效应 . 红外与激光工程, 2016, 45(12): 1206005-1206005(4). doi: 10.3788/IRLA201645.1206005
    [18] 郝利丽, 侯春风, 牟海维, 李贤丽, 白永强, 王强, 赵远.  双光子光折变介质中基于两种电光效应的相干耦合孤子对 . 红外与激光工程, 2016, 45(S1): 105-110. doi: 10.3788/IRLA201645.S108001
    [19] 李绍良, 徐静, 张志强, 吴亚明.  一种微型化制造的双腔结构芯片原子钟87Rb蒸汽腔 . 红外与激光工程, 2014, 43(5): 1463-1468.
    [20] 吉选芒, 姜其畅, 苏艳丽, 刘劲松.  中心对称和非中心对称单光子光折变空间屏蔽灰孤子的时间特性 . 红外与激光工程, 2013, 42(1): 63-68.
  • 加载中
图(1)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  78
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-15
  • 修回日期:  2021-08-20
  • 网络出版日期:  2021-12-03
  • 刊出日期:  2021-11-25

集成微腔光频梳在精密测量中的应用(特邀)

doi: 10.3788/IRLA20210560
    作者简介:

    陈豪敬,男,博士生,主要从事微腔光子学与微腔光学频率梳方面的研究

基金项目:  国家自然科学基金(11825402, 11654003)
  • 中图分类号: O439

摘要: 精密测量是现代物理学的基石,而激光光源的发展直接推动了测量科学与技术的进步。21世纪初,光学频率梳的发明促使人们成功实现最精准的时间/频率标准装置——光学原子钟,推动了绝对光学频率测量、基本物理常数测量、精密距离测量以及分子光谱测量等精密测量技术的发展。然而早期的光梳光源系统复杂、价格昂贵,一般工作于大型实验室里,限制了其应用场景的拓展。近年来,出现了一种新型集成微腔光频梳,其具有体积小、功耗低、可批量制备等优势,吸引了科学界和产业界的广泛关注。不同于传统光梳,这种集成微腔光梳不需要依赖增益介质或可饱和吸收体实现锁模,而是通过高品质因子微腔增强的非线性作用来实现光梳的激发与锁模。这种全新的光梳激发与锁模机制降低了精密光源的体积和成本,在平民化精密测量应用中具有优势。文中介绍了集成微腔光梳在精密测量领域中取得的进展,主要围绕微型化光学原子钟、超快精密距离测量、精密光谱测量三个方向。最后对集成微腔光梳在未来精密测量应用中的机遇与挑战进行了总结与展望。

English Abstract

    • 激光作为最亮的光、最快的刀、最准的尺,每一次新的激光光源出现都大大加速了相关科学技术的发展。脱胎于超快脉冲激光器,光学频率梳这一光源的出现[1],在过去20年中极大地改变了精密测量的方式[2]。所谓光学频率梳(简称光梳),就是在频谱上表现为严格等间距的激光序列,呈梳齿状,故而得名。其每根梳齿的频率由光梳的重复频率(简称重频)和载波包络偏移频率(简称偏频)决定。这两个频率既可以锁定到稳定的微波源,也可以锁定到原子能级或光学谐振腔上。利用稳频光梳,对光学频率的测量就可以转化为对微波拍频信号的测量,从而实现测量精度的飞跃。

      作为世界上精度最高的频率标准,光梳已被广泛应用于时间标准、精细光谱、激光雷达等众多领域,在基础科学研究、产业应用和军事国防上都具有重大需求。 2005年,德国马克斯普朗克研究所的T. Hansch和美国国家标准计量局的J. Hall就因其在光梳以及精密测量领域的贡献共同获得了诺贝尔物理学奖[3-4]

      传统的光梳平台包括锁模固体激光器和掺铒光纤光梳,这些桌面级光梳相位噪声低、系统成熟,但在体积、能耗和造价等方面具有很大的局限性,且对工作环境十分敏感,目前主要适用于实验室范围内,极大地限制了精密测量的应用场景。近年来,一种基于集成光学微腔的孤子光梳出现有望彻底打破这种局限性[5-6]。这种微腔光梳不依赖于增益介质,而是利用腔体材料的非线性效应产生锁模的边带。如图1所示,在连续光泵浦下,当微腔色散与克尔效应自发平衡时,腔内就会产生包络不随路径干扰的时域光孤子,在频域上就对应于锁模的、频率严格等间距的孤子光梳[7]。由于光学微腔具有超高的品质因子和极强的场增强效应,光梳的工作阈值可低至毫瓦量级,而且每根梳齿具有很窄的线宽,因此完全适用于传统光梳所涉及的精密测量应用。文中将综述近年来这种集成微腔光梳在精密测量应用中取得的成果,并对其未来的发展趋势展开讨论。

      图  1  集成微腔光梳在精密测量中的应用[7](从上往下):高精度超快距离测量、微型化光学原子钟、高精密光谱测量

      Figure 1.  Integrated microresonator-based optical frequency combs in precision measurement[7](from top to bottom): High-precision ultrafast ranging, miniature atomic clocks and high-precision spectroscopy

    • 在原子中电子的能级跃迁是原子的固有共振频率, 几乎不受外界影响, 同时原子具有的稳定性和普遍性, 使得原子共振频率成为绝佳的时间频率标准。1967年第13届国际计量大会将时间单位“秒”改由铯原子基态能级的微波共振跃迁频率来定义, 并延续至今。而原子钟,即是以原子共振频率作为参考,产生精准时间信号的装置。

      目前,最精准的原子钟是以原子在光学波段的共振频率作为时间频率基准,即光学原子钟(简称“光钟”),其准确度已经达到了 10−19量级。光梳是光钟的核心组成部分,它使得光频段的原子跃迁谱线可以通过电子学仪器精密测量,实现原子钟的锁定。而利用集成微腔光梳代替传统锁模光梳可大大降低光钟的能耗与体积,有望为光钟走出实验室惠及人们生活的方方面面起到重要推动作用。

      2014年,美国标准计量局首先作出了尝试,构建了第一台基于微腔的光学原子钟[8]。他们将单频泵浦激光经电光调制后输入硅基片上微腔,通过微腔内的非线性光学效应展宽产生光梳。随后将微腔光梳的两根梳齿分别锁定在Rb原子的两个能级上。最后输出了33 GHz的光钟信号,1 s内的不确定度为5 × 10−9,主要精度受限于Rb原子参考源。 2019年,美国标准计量局用单频连续激光直接泵浦集成氮化硅微腔,实现了倍频程展宽的微腔孤子光梳产生[9]。光梳的倍频程展宽为测量偏频提供了前提条件,实验上,研究人员通过f-2f自参考技术测量并锁定了偏频,同时也将光梳的一根梳齿锁定在了超稳激光光学参考上。这种自参考锁定技术的引入以及优越的光学参考源性能,大大提升了微腔光钟的稳定性,实现了0.01 mHz精度的THz信号输出。同年,为了解决THz信号难以电学探测,而GHz重频光梳难以倍频程展宽的矛盾,美国标准计量局在另一个工作中采用了THz重频倍频程光梳与另一套GHz重频光梳相互锁定的方法,同时实现了光梳的自参考锁定和微波频段的光钟信号输出。此外,为了进一步减小光钟系统的体积和复杂性,该工作采用了微型化的Rb原子气室作为光学参考。最终实现了22 GHz, 频率稳定度10−13的光钟信号输出[10]

      基于集成微腔光梳的微型光钟,由于具有能耗、体积上的先天优势,在全球定位导航卫星、广义相对论验证、暗物质探测等空间应用中有望发挥巨大作用。而提高微型化原子系统的精度、实现电学可探测重频的倍频程展宽集成光梳、提高光梳系统的长期稳定性等将是未来集成光钟的主要发展方向。

    • 高精度的距离测量对人类的生产生活、科学研究具有举足轻重的作用,从生活中的车载激光雷达、工业测绘、微纳加工、生物医疗到国防军事上的导弹定位、航天器对准无不需要高精度的距离测量装置。而这些应用场景不仅对精度有着较高要求,也同时需要满足较快的采集速度以及较高的便携性。

      得益于集成微腔光梳的超小体积、超低功耗以及高重复频率等优势,在高精度超快距离测量领域具有巨大的应用前景和优势,目前已有多个国际研究团队将集成微腔光梳应用于距离测量领域。2018年加州理工学院的Vahala课题组在单个微腔中产生了相向传播的、重复频率略有差别的两套光梳(双光梳),采用飞行时间的技术方案,在500 ms的积分时间内测距精度达到200 nm,其模糊距离为16 mm[11]。同年,瑞士洛桑联邦理工学院的Kippenberg课题组在两个分立的氮化硅微环腔中分别产生了100 GHz的孤子光频梳,两个光频梳的重频差为96.5 MHz,使测距系统的采样时间缩短到10.4 ns;基于双光梳干涉法,在13 μs的平均时间内,测距不确定度低至12 nm;并实现了对速度为160 m/s转盘表面轮廓和瞬时速度为150 m/s的飞行子弹的高精度超快测量[12]。2020年,Kippenberg课题组通过快速调谐泵浦激光的频率,实现了30路并行的相干激光测距系统,实现了对三维目标的距离和运动速度的同步测量,其测量帧率相对于现有的相干测量系统有两个数量级的提升[13]。此外,基于色散干涉法,天津大学和中国科学院西安光学精密机械研究所联合团队与美国加州大学洛杉矶分校分别实现了纳米级精度的距离测量[14-15]

      集成微腔孤子光频梳作为一种先进的新型光源,通过结合飞行时间法、双光梳采样法、色散干涉法等路径已在精密距离测量中取得巨大进展,其超高的频率稳定性保证了测距的精度,而小型化、低功耗和低成本的优势,未来将在精密测距装置集成化、产业化的趋势中起到重要的作用。

    • 光梳一直以来是光谱学研究中一种备受关注的光源,因为它们能提供:(1)宽的光谱覆盖范围,有利于同时检测多分子种类;(2)高空间相干性,即允许更长的测量路径和更高的灵敏度;(3)极高的频率分辨率和精度。而集成微腔光梳相对于传统光梳还具有高重复频率、有望实现便携探测装置等优势,自诞生以来这一小型化光源被迅速、广泛地应用于精密光谱测量研究中。

      2016年,加州理工学院的Vahala课题组首次将集成微腔光梳应用于精密光谱学测量中[16]。利用微腔中相向传播重频略有差别的两套光梳构成双光梳。结合微腔光梳的高重频和双光梳电学采样技术,实现了对氰化氢气体吸收谱的超快精密测量,测量时间仅为386 ns。2017年,哥伦比亚大学的Gaeta组通过扫描梳齿频率的方法(扫描范围达到16 GHz),实现了中红外波段乙炔吸收光谱的宽谱测量[17]。2019年,Vahala课题组利用两套光梳构建了一个集成游标卡尺光谱仪,联合了扫频连续波激光器,实现了对窄吸收谱气体的精密测量[18]。2020年,美国国家标准计量局通过对微腔光梳进行精细的重复频率和载波包络偏频同时控制,实现了直接的亚多普勒和超精细原子光谱测量[19]

      集成微腔光梳由于体积小、可集成等特性,未来有望实现便携式气体检测仪,在户外环境检测等方面有望发挥巨大作用,同时微腔光梳的高重复频率也将大大提高光谱测量速度。而单根梳齿功率低、梳齿间隔大导致分辨率较低等问题将是未来主要面对的挑战。

    • 由于保持测量的高精度通常需要复杂的支持系统和高昂的维护费用,精密测量技术一直以来被人们看作计量实验室里的专属技术。而近些年来,随着集成光梳的出现,精密测量系统已经逐渐小型化,未来有望形成产品,满足市场对超快测距系统、微型精密光谱仪等仪器的迫切需求。在基础科学研究方面,不久的将来,基于微腔光梳构建可移动光学原子钟将促进相距遥远的计量实验室之间的时钟比较,对支持秒的光学重新定义起到重要作用。除了时钟比对之外,基于便携式光梳的星载光钟系统具有低振动和无地球引力势等优势,可能有一天能够在10−20精度下实现高精度测地学和基础物理定律的测试。而目前集成微腔光梳在提高能量转化效率、产率和降低系统复杂性上仍然面临挑战,所以探索提高集成光梳效率的新机制、进一步优化集成微腔的制备工艺、光梳光源的鲁棒性将是未来的主要发展方向。

参考文献 (19)

目录

    /

    返回文章
    返回