留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等离激元纳米结构非对称集成的二维材料自驱动光响应增强的研究进展(特邀)

郭尚坤 邓杰 周靖 张东海 余宇 邓嘉男 蔡清元 李志锋 陆卫 陈效双

郭尚坤, 邓杰, 周靖, 张东海, 余宇, 邓嘉男, 蔡清元, 李志锋, 陆卫, 陈效双. 基于等离激元纳米结构非对称集成的二维材料自驱动光响应增强的研究进展(特邀)[J]. 红外与激光工程, 2021, 50(1): 20211011. doi: 10.3788/IRLA20211011
引用本文: 郭尚坤, 邓杰, 周靖, 张东海, 余宇, 邓嘉男, 蔡清元, 李志锋, 陆卫, 陈效双. 基于等离激元纳米结构非对称集成的二维材料自驱动光响应增强的研究进展(特邀)[J]. 红外与激光工程, 2021, 50(1): 20211011. doi: 10.3788/IRLA20211011
Guo Shangkun, Deng Jie, Zhou Jing, Zhang Donghai, Yu Yu, Deng Jia'nan, Cai Qingyuan, Li Zhifeng, Lu Wei, Chen Xiaoshuang. Progress on the study of two-dimensional material self-driven photoresponse enhancement by asymmetrically integrated plasmonic nanostructures (Invited)[J]. Infrared and Laser Engineering, 2021, 50(1): 20211011. doi: 10.3788/IRLA20211011
Citation: Guo Shangkun, Deng Jie, Zhou Jing, Zhang Donghai, Yu Yu, Deng Jia'nan, Cai Qingyuan, Li Zhifeng, Lu Wei, Chen Xiaoshuang. Progress on the study of two-dimensional material self-driven photoresponse enhancement by asymmetrically integrated plasmonic nanostructures (Invited)[J]. Infrared and Laser Engineering, 2021, 50(1): 20211011. doi: 10.3788/IRLA20211011

基于等离激元纳米结构非对称集成的二维材料自驱动光响应增强的研究进展(特邀)

doi: 10.3788/IRLA20211011
基金项目: 国家重点研究开发项目(2018YFA0306200);国家自然科学基金(U1737111, 61975223, 91850208, 61991442, 61521005, 61874126, 61805267);中国科学院百人计划(20181214);上海市科学技术基金(18ZR1446000, 18JC1420401, 18ZR1445400,185907810019590780100);青年创新促进会资助(2019241)
详细信息
    作者简介:

    郭尚坤(1993−),男,2016年于青岛大学获应用物理学专业学士学位, 2016年至今,进入中国科学院大学攻读微电子学与固体电子学专业博士研究生,在中国科学院上海技术物理研究所红外物理国家重点实验室,师从陈效双老师和周靖老师从事基于微纳光子结构的二维材料红外探测器的研究

    周靖(1984−),男,研究员,博士。2006年本科毕业于复旦大学光科学与工程系;2011年在复旦大学光科学与工程系获得理学博士学位;2007~2009年获国家留学基金委资助在德国德累斯顿研究中心(FZD)离子束物理与材料研究所作交换博士生;2011~2015年在美国密西根大学安娜堡校区电子工程和计算科学系任博士后研究员。2015年至今,为中国科学院上海技术物理研究所研究员。主要从事微纳光子学以及红外物理方面的研究,发表SCI 论文33 篇,第一及通信作者发表Phys. Rev. Lett.、Adv. Mater.、ACS Photonics、Adv. Opt. Mater.、Nanoscale 等国际权威期刊论文16 篇,其中5 篇他引超过20 次,单篇最高111 次。多次在国际学术会议上作邀请报告和口头报告

    通讯作者: 周靖
  • 中图分类号: O47

Progress on the study of two-dimensional material self-driven photoresponse enhancement by asymmetrically integrated plasmonic nanostructures (Invited)

  • 摘要: 金属-二维材料-金属是最常见的二维材料光探测器件的结构。由于结构简单、易于集成,该类器件受到最广泛的关注和研究。其自驱动光探测的模式具有很低的暗电流,有望成为高性能红外探测的新途径。然而金属-二维材料-金属的自驱动光探测存在两个瓶颈问题:(1)反对称的金属-二维材料结区引起的泛光照射下光响应的抵消;(2)二维材料有限光吸收导致的低响应率。文中介绍了利用等离激元纳米结构的非对称集成引入非对称的光耦合,从而打破泛光照射下二维材料与两端电极接触区域产生的光电流的对称性,实现净的自驱动光响应;同时利用等离激元纳米结构产生的局域强光场提高二维材料光吸收率和光响应率的一系列研究进展。在石墨烯等离激元纳米谐振腔复合结构中,实现两个电极附近的光响应对比度超过100倍,突破了对称光耦合导致的光响应抵消的难题。由于具有将入射光耦合成局域模式的优越能力,等离激元纳米谐振腔比亚波长金属光栅更有效地提高石墨烯响应率一个数量级以上。
  • 图  1  (a)等离激元纳米结构集成石墨烯器件的SEM图像(蓝色为石墨烯;紫色为SiO2(300 nm);黄色为Ti/Au电极。比例尺为20 μm);(b)金属条带阵列的SEM图像(L和TR 为入射光的偏振方向。比例尺为1 μm);(c)纳米结构处的光电压分布图(入射波长514 nm,偏振为TR方向,线宽110 nm,周期300 nm);(d)归一化光电流和最大增强系数[14]

    Figure  1.  (a) Scanning electron microscopy micrographs of the graphene devices with plasmonic nanostructures (Blue, graphene; purple, SiO2 (300 nm); yellow, Ti/Au electrodes. Scale bar, 20 μm); (b) SEM image of the metal strip array (L and TR incident light polarizations are indicated. Scale bar, 1 μm); (c) Photovoltage maps of one of the nanostructured contacts (The incident wavelength is 514 nm, TR polarization, the line width is 110 nm and the period is 300 nm); (d) Normalized photocurrent and maximum enhancement coefficient[14]

    图  2  (a)具有等离激元纳米结构非对称分布的石墨烯器件原理图;(b)器件以及石墨烯/金纳米结构的SEM图像(上标尺代表2 μm,下标尺代表300 nm);(c)计算了入射波长740 nm时纵向(L)极化和横向(TR)极化的电磁场分布;(d)具有等离激元纳米结构(左)和无等离激元纳米结构(右)的石墨烯器件的暗场显微图像;(e)在不同的激发波长下,光电压以(d)箭头所示的方向扫描整个器件;(f)计算积分电磁场的线扫描[16]

    Figure  2.  (a) Schematic of the graphene device with plasmonic and nonplasmonic contacts; (b) Scanning electron microscopic image of the device (upper panel, scale bar is 2 μm) and graphene/Au nanostructures (lower panel, scale bar is 300 nm); (c) Calculated electromagnetic field distributions for longitudinal (L) and transverse (TR) polarization at 740 nm; (d) Dark field microscopic image of the graphene device with plasmonic (left) and nonplasmonic contacts (right); (e) Photovoltage line scans across the device in the direction indicated by the arrow in (d) taken at different excitation wavelengths; (f) Calculated line scan of the integrated electromagnetic field[16]

    图  3  (a) MoS2光电探测器的SEM图像(刻度条代表5.0 μm);(b)放大的单个光学纳米天线的SEM俯视图(标尺代表100 nm);(c) 830 nm波长激发下单元Au纳米天线阵列处的电场分布俯视图(xy平面);(d)比较入射激光束在不同位置激发的光电流[26]

    Figure  3.  (a) SEM image of the MoS2 photodetector (The scale bar represents 5.0 μm); (b) Enlarged SEM top view of a single optical nano-antenna (The scale bar represents 100 nm); (c) Top view (xy plane) of the electric field distribution of an Au nano-antenna array under light excitation at 830 nm; (d) Comparison of the photocurrents measured with the incident laser beam at different positions[26]

    图  4  (a)石墨烯与等离激元纳米谐振腔复合器件示意图;(b)单个等离激元纳米谐振腔集成石墨烯的示意图(器件的沟道长度为20 μm);(c)光响应率作为垂直和平行于x轴偏振的激光光斑照明位置的函数(激光波长为1.55 μm,光斑尺寸约为2.25 μm,功率为2.18 mW);(d)测量了两种器件的自驱动光响应光谱(两种器件的沟道长度均为10 μm);(e)光电压作为栅控电压的函数;(f)四种器件的光响应光谱(这四种复合结构器件都有不同的金属条带宽度:215、237、256、283 nm。周期保持不变:~590 nm)[29]

    Figure  4.  (a) Sketch of the graphene and plasmonic nanocavity hybrid structure; (b) Sketch of a single plasmonic nanocavity with graphene (The channel length of the device is 20 μm); (c) Photoresponsivity as a function of the laser spot illuminating position for polarizations perpendicular and parallel to the x-axis (The laser wavelength is 1.55 μm, the spot size is about 2.25 μm, and the power is 2.18 mW); (d) Measured self-driven photoresponse spectra of the two devices (The channel lengths of both devices are 10 μm); (e) Photovoltage as a function of the gating voltage; (f) Photoresponse spectra of the four devices (Each of the four hybrid devices has a different metal patch width: 215, 237, 256 and 283 nm. The period is kept the same: ~590 nm)[29]

    表  1  非对称集成等离激元结构器件比较

    Table  1.   Comparison between asymmetrically integrated plasmonic structures

    Plasmonic structuresPhotoresponse contrast ratio at the
    two contact-graphene junctions
    Ref.
    Subwavelength metal grating20[14]
    Plasmonic nano-patch5[16]
    Nano pentamer antenna2.54[17]
    Plasmonic-nanocavity105This work
    下载: 导出CSV
  • [1] Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems [J]. Nature Nanotechnology, 2014, 9(10): 780-793.
    [2] Lee E J H, Balasubramanian K, Weitz R T, et al. Contact and edge effects in graphene devices [J]. Nature Nanotechnology, 2008, 3(8): 486-490.
    [3] Gabor N M, Song J C W, Ma Q, et al. Hot carrier-assisted intrinsic photoresponse in graphene [J]. Science, 2011, 334(6056): 648-652.
    [4] Mueller T, Xia F, Freitag M, et al. Role of contacts in graphene transistors: A scanning photocurrent study [J]. Physical Review B, 2009, 79(24): 245430.
    [5] Echtermeyer T J, Nene P S, Trushin M, et al. Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors [J]. Nano Letters, 2014, 14(7): 3733-3742.
    [6] Lee H, Paeng K, Kim I S. A review of doping modulation in graphene [J]. Synthetic Metals, 2018, 244: 36-47.
    [7] Guo N, Hu W, Jiang T, et al. High-quality infrared imaging with graphene photodetectors at room temperature [J]. Nanoscale, 2016, 8(35): 16065-16072.
    [8] Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications [J]. Nature Photonics, 2010, 4(5): 297-301.
    [9] Cai X, Suess R J, Drew H D, et al. Pulsed near-IR photoresponse in a bi-metal contacted graphene photodetector [J]. Scientific Reports, 2015, 5(1): 14803.
    [10] Qiao H, Yuan J, Xu Z, et al. Broadband photodetectors based on graphene–Bi2Te3 heterostructure [J]. ACS Nano, 2015, 9(2): 1886-1894.
    [11] Yao Y, Shankar R, Rauter P, et al. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection [J]. Nano Letters, 2014, 14(7): 3749-3754.
    [12] Liu Y, Cheng R, Liao L, et al. Plasmon resonance enhanced multicolour photodetection by graphene [J]. Nature Communications, 2011, 2(1): 579.
    [13] Fang Z, Liu Z, Wang Y, et al. Graphene-antenna sandwich photodetector [J]. Nano Letters, 2012, 12(7): 3808-3813.
    [14] Echtermeyer T J, Britnell L, Jasnos P K, et al. Strong plasmonic enhancement of photovoltage in graphene [J]. Nature Communications, 2011, 2(1): 458.
    [15] Chakraborty C, Beams R, Goodfellow K M, et al. Optical antenna enhanced graphene photodetector [J]. Applied Physics Letters, 2014, 105(24): 241114.
    [16] Shautsova V, Sidiropoulos T, Xiao X, et al. Plasmon induced thermoelectric effect in graphene [J]. Nature Communications, 2018, 9(1): 5190.
    [17] Hou C, Wang Y, Yang L, et al. Position sensitivity of optical nano-antenna arrays on optoelectronic devices [J]. Nano Energy, 2018, 53: 734-744.
    [18] Furchi M, Urich A, Pospischil A, et al. Microcavity-integrated graphene photodetector [J]. Nano Letters, 2012, 12(6): 2773-2777.
    [19] Engel M, Steiner M, Lombardo A, et al. Light–matter interaction in a microcavity-controlled graphene transistor [J]. Nature Communications, 2012, 3(1): 906.
    [20] Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors [J]. Nature Photonics, 2013, 7(11): 888-891.
    [21] Pospischil A, Humer M, Furchi M M, et al. CMOS-compatible graphene photodetector covering all optical communication bands [J]. Nature Photonics, 2013, 7(11): 892-896.
    [22] Gan X, Shiue R-J, Gao Y, et al. Chip-integrated ultrafast graphene photodetector with high responsivity [J]. Nature Photonics, 2013, 7(11): 883-887.
    [23] Le Perchec J, Desieres Y, Espiau de Lamaestre R. Plasmon-based photosensors comprising a very thin semiconducting region [J]. Applied Physics Letters, 2009, 94(18): 181104.
    [24] Song S, Chen Q, Jin L, et al. Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber [J]. Nanoscale, 2013, 5(20): 9615.
    [25] Cai Y, Zhu J, Liu Q H. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers [J]. Applied Physics Letters, 2015, 106(4): 043105.
    [26] Xiong F, Zhang J, Zhu Z, et al. Ultrabroadband, more than one order absorption enhancement in graphene with plasmonic light trapping [J]. Scientific Reports, 2015, 5(1): 16998.
    [27] Yang J, Sauvan C, Jouanin A, et al. Ultrasmall metal-insulator-metal nanoresonators: Impact of slow-wave effects on the quality factor [J]. Optics Express, 2012, 20(15): 16880.
    [28] Zhen T, Zhou J, Li Z, et al. Realization of both high absorption of active materials and low ohmic loss in plasmonic cavities [J]. Advanced Optical Materials, 2019, 7(11): 1801627.
    [29] Guo, S, Zhang, D, Zhou, J, et al. Enhanced infrared photoresponse induced by symmetry breaking in a hybrid structure of graphene and plasmonic nanocavities [J]. Carbon, 2020, 170: 49-58.
    [30] Zhang D, Zhou J, Liu C, et al. Enhanced polarization sensitivity by plasmonic-cavity in graphene phototransistors [J]. Journal of Applied Physics, 2019, 126(7): 074301.
  • [1] 夏文新, 杨小冈, 席建祥, 卢瑞涛, 谢学立.  基于红外探测的无人机群结构特性感知方法 . 红外与激光工程, 2024, 53(1): 20230429-1-20230429-12. doi: 10.3788/IRLA20230429
    [2] 朱海勇, 陈俊林, 曾智江, 王小坤, 李亚冉, 王溪, 李雪.  用于冷光学长波红外杜瓦组件杂散光分析与抑制 . 红外与激光工程, 2023, 52(7): 20220823-1-20220823-9. doi: 10.3788/IRLA20220823
    [3] 李英超, 潘泽, 李冠霖, 史浩东, 付强.  分层海水条件下潜艇热尾流机载红外探测性能分析 . 红外与激光工程, 2023, 52(5): 20220741-1-20220741-7. doi: 10.3788/IRLA20220741
    [4] 周志远, 史保森.  基于频谱迁移的红外探测研究进展(特邀) . 红外与激光工程, 2023, 52(5): 20230165-1-20230165-11. doi: 10.3788/IRLA20230165
    [5] 邢占, 陈晓依, 彭志勇, 杨志旺, 张贺龙, 邢忠福, 张宁.  红外气动光学效应研究进展与思考(特邀) . 红外与激光工程, 2022, 51(4): 20220228-1-20220228-17. doi: 10.3788/IRLA20220228
    [6] 司俊杰.  基于InSb的新型红外探测器材料(特邀) . 红外与激光工程, 2022, 51(1): 20210811-1-20210811-19. doi: 10.3788/IRLA20210811
    [7] 朱鹏, 肖磊, 孙泰, 史浩飞.  微纳结构增强型红外探测器研究进展(特邀) . 红外与激光工程, 2022, 51(1): 20210826-1-20210826-16. doi: 10.3788/IRLA20210826
    [8] 李志锋, 李倩, 景友亮, 周玉伟, 周靖, 陈平平, 周孝好, 李宁, 陈效双, 陆卫.  等离激元微腔耦合长波红外量子阱高消光比偏振探测器(特邀) . 红外与激光工程, 2021, 50(1): 20211006-1-20211006-10. doi: 10.3788/IRLA20211006
    [9] 周凯, 李道京, 王烨菲, 姚园, 乔明.  衍射光学系统红外光谱目标探测性能 . 红外与激光工程, 2021, 50(8): 20200371-1-20200371-8. doi: 10.3788/IRLA20200371
    [10] 何伟迪, 苏丹, 王善江, 周桓立, 陈雯, 张晓阳, 赵宁, 张彤.  表面等离激元纳米结构增效的光电探测器进展(特邀) . 红外与激光工程, 2021, 50(1): 20211014-1-20211014-12. doi: 10.3788/IRLA20211014
    [11] 李一涵, 胡海洋, 王强.  高超声速飞行器红外探测窗口辐射透射特性研究 . 红外与激光工程, 2020, 49(4): 0404002-0404002-7. doi: 10.3788/IRLA202049.0404002
    [12] 周军, 陈守谦, 甄政, 欧文, 熊健.  基于波前编码的大焦深弹载双色红外探测系统 . 红外与激光工程, 2020, 49(4): 0404001-0404001-5. doi: 10.3788/IRLA202049.0404001
    [13] 付秀华, 张功, 张静, 刘冬梅, 杨伟声, 木锐.  短中波红外探测系统宽波段高透过率薄膜 . 红外与激光工程, 2019, 48(10): 1017001-1017001(6). doi: 10.3788/IRLA201948.1017001
    [14] 王莹莹, 何苹, 孟常亮.  星载红外探测器对高超声速飞行器探测距离的计算 . 红外与激光工程, 2019, 48(7): 704003-0704003(7). doi: 10.3788/IRLA201948.0704003
    [15] 黄智国, 王建立, 殷丽梅, 李宏壮, 刘俊池, 刘祥意.  多波段冷光学红外成像终端研制 . 红外与激光工程, 2018, 47(9): 904001-0904001(9). doi: 10.3788/IRLA201847.0904001
    [16] 白瑜, 廖志远, 李华, 程习敏, 邢廷文, 蒋亚东.  折反射中波红外探测无热化成像系统设计分析 . 红外与激光工程, 2015, 44(2): 407-412.
    [17] 吴鑫, 张建奇, 杨琛.  JetsonTK1平台实现快速红外图像背景预测算法 . 红外与激光工程, 2015, 44(9): 2615-2621.
    [18] 张士成, 杨立, 石恒.  基于射线跟踪算法的舰船尾迹波红外特征与探测 . 红外与激光工程, 2015, 44(5): 1450-1455.
    [19] 周炜, 欧阳程, 吴敬, 高艳卿, 黄志明.  锰钴镍铜氧薄膜红外探测器制备与性能研究 . 红外与激光工程, 2014, 43(4): 1073-1079.
    [20] 欧阳程, 吴敬, 周炜, 高艳卿, 侯云, 黄志明.  磁控溅射制备Mn-Co-Ni-O热敏红外探测薄膜 . 红外与激光工程, 2014, 43(4): 1068-1072.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  501
  • HTML全文浏览量:  349
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-10
  • 修回日期:  2020-12-15
  • 网络出版日期:  2021-01-22
  • 刊出日期:  2021-01-22

基于等离激元纳米结构非对称集成的二维材料自驱动光响应增强的研究进展(特邀)

doi: 10.3788/IRLA20211011
    作者简介:

    郭尚坤(1993−),男,2016年于青岛大学获应用物理学专业学士学位, 2016年至今,进入中国科学院大学攻读微电子学与固体电子学专业博士研究生,在中国科学院上海技术物理研究所红外物理国家重点实验室,师从陈效双老师和周靖老师从事基于微纳光子结构的二维材料红外探测器的研究

    周靖(1984−),男,研究员,博士。2006年本科毕业于复旦大学光科学与工程系;2011年在复旦大学光科学与工程系获得理学博士学位;2007~2009年获国家留学基金委资助在德国德累斯顿研究中心(FZD)离子束物理与材料研究所作交换博士生;2011~2015年在美国密西根大学安娜堡校区电子工程和计算科学系任博士后研究员。2015年至今,为中国科学院上海技术物理研究所研究员。主要从事微纳光子学以及红外物理方面的研究,发表SCI 论文33 篇,第一及通信作者发表Phys. Rev. Lett.、Adv. Mater.、ACS Photonics、Adv. Opt. Mater.、Nanoscale 等国际权威期刊论文16 篇,其中5 篇他引超过20 次,单篇最高111 次。多次在国际学术会议上作邀请报告和口头报告

    通讯作者: 周靖
基金项目:  国家重点研究开发项目(2018YFA0306200);国家自然科学基金(U1737111, 61975223, 91850208, 61991442, 61521005, 61874126, 61805267);中国科学院百人计划(20181214);上海市科学技术基金(18ZR1446000, 18JC1420401, 18ZR1445400,185907810019590780100);青年创新促进会资助(2019241)
  • 中图分类号: O47

摘要: 金属-二维材料-金属是最常见的二维材料光探测器件的结构。由于结构简单、易于集成,该类器件受到最广泛的关注和研究。其自驱动光探测的模式具有很低的暗电流,有望成为高性能红外探测的新途径。然而金属-二维材料-金属的自驱动光探测存在两个瓶颈问题:(1)反对称的金属-二维材料结区引起的泛光照射下光响应的抵消;(2)二维材料有限光吸收导致的低响应率。文中介绍了利用等离激元纳米结构的非对称集成引入非对称的光耦合,从而打破泛光照射下二维材料与两端电极接触区域产生的光电流的对称性,实现净的自驱动光响应;同时利用等离激元纳米结构产生的局域强光场提高二维材料光吸收率和光响应率的一系列研究进展。在石墨烯等离激元纳米谐振腔复合结构中,实现两个电极附近的光响应对比度超过100倍,突破了对称光耦合导致的光响应抵消的难题。由于具有将入射光耦合成局域模式的优越能力,等离激元纳米谐振腔比亚波长金属光栅更有效地提高石墨烯响应率一个数量级以上。

English Abstract

    • 在过去的十几年里,新兴的二维层状材料促进了新型光电探测器的发展[1]。不同的二维材料通常具有不同带隙,覆盖了目前传统块状半导体材料所不能达到的几乎所有感兴趣的波长[1]。二维材料超薄的厚度使其静电调控的效果突出,局域栅压能够耗尽绝大多数本征载流子,抑制暗电流。另外,二维材料能够与绝大多数衬底以及其他二维材料进行集成和堆叠,而不用考虑传统材料晶格匹配的苛刻限制。再加上其制造工艺与目前的半导体技术兼容,二维材料在光电探测领域具有很大的应用前景。作为第一种被广泛研究的二维材料光电探测器[1],金属-二维材料-金属(Metal-2D Material-metal, M2M)光电探测器的结构类似于二维材料场效应晶体管。在零偏压操作下,自驱动光响应通常由金属-二维材料边界的局部光照产生,因为那里存在肖特基结[25]。其机制可能是光伏(PV)或光热电效应(PTE),这取决于入射波长以及二维材料的掺杂情况[25]。简单的体系结构允许这种类型的器件与其他系统兼容集成。因此,M2M光电探测器在实际应用中得到了广泛的研究。虽然这种器件的优点是显而易见的,但其自驱动模式存在两个瓶颈问题:1)在均匀的泛光照明下,没有净的自驱动光响应;2)由于结区的低光吸收,光响应有限。第一个问题是由于两个对称的电极-二维材料肖特基结区处的光电流大小相近,方向相反。许多研究致力于打破对称性,包括在沟道中进行不同的掺杂以形成结、使二维材料与异种金属接触、使二维材料与另一种材料形成异质结[610]。到目前为止,还没有可靠的二维材料掺杂方法,而且所有其他结构都需要复杂的制造工艺,从而增加二维材料损伤的风险。第二个问题来自于入射光的波长与二维材料原子厚度之间的巨大不匹配,这严重限制了光与物质相互作用的光学长度。纳米光子结构具有在亚波长尺度上产生强光场的能力,已被证明有望增强二维材料的吸收和光响应[1116]。随着对器件工作原理的深入理解,笔者将根据光响应机理对器件结构上的光与物质相互作用进行更精细的控制,以获得更好的性能改进。对于M2M器件,需要一种能够增强光与物质在一个电极的相互作用而抑制光与物质在另一个电极的相互作用的纳米光子结构。此外,纳米光子结构应与器件很好地兼容,不应干扰其他功能,如栅控。近年来,人们尝试使用非对称集成的等离激元纳米结构同时解决这两个瓶颈问题。如表1所示,Echtermeyer T J等人通过在石墨烯上制备亚波长金属光栅,将石墨烯与等离激元纳米结构结合,在可见光波段获得了20倍的两端电极处光响应的差异[14];Shautsova V等人制备了等离激元纳米天线通过非对称分布,从而在石墨烯沟道上产生较大的电子温度梯度,极大地增强了PTE产生的光电流,在天线集成的电极附近的响应率得到了明显提高,比没有天线集成的电极附近的光响应提高了约5倍[16];Hou C等人通过光学纳米五聚体天线集成少层二硫化钼,实现了增强少层二硫化钼的近红外探测,通过研究光学纳米天线的位置分布,发现了光学天线集成的金属电极与无光学天线集成的金属电极处的光响应对比度为2.54倍[17]。结果表明,M2M器件在泛光照明下具有显著的自驱动光响应。与增强石墨烯光吸收的其他光子结构相比[1115, 1822],等离激元纳米谐振腔可以提供更有效的耦合、不灵敏的角度依赖性以及与M2M器件结构更好的兼容性[2326]。近期,笔者课题组提出并实现了二维材料与等离激元纳米谐振腔的复合结构,并获得了两个电极处的光响应对比度超过100倍。其在泛光照射下的净响应率比金属光栅集成石墨烯的响应率高出一个数量级以上。后者是石墨烯吸收增强的常用结构。

      表 1  非对称集成等离激元结构器件比较

      Table 1.  Comparison between asymmetrically integrated plasmonic structures

      Plasmonic structuresPhotoresponse contrast ratio at the
      two contact-graphene junctions
      Ref.
      Subwavelength metal grating20[14]
      Plasmonic nano-patch5[16]
      Nano pentamer antenna2.54[17]
      Plasmonic-nanocavity105This work
    • 由于石墨烯和金属功函数不同,在电极接触区域会产生p-n结。当两端电极对称分布时,泛光照射下,石墨烯与金属接触区域产生大小相近、方向相反的光电流,相互抵消,导致器件净响应为零。利用亚波长金属光栅结构放置在一端电极附近,如图1(a)1(b)所示,是一种克服泛光照射下器件净响应为零的方法。入射光被这种亚波长金属光栅集成结构吸收后,可以有效地转化为等离激元共振,从而导致局部光场的显著增强。这种增强的局域光场正好位于金属-石墨烯形成的p-n结区域,显著提高了石墨烯光电探测器的性能。用波长为514 nm的激光对亚波长金属光栅集成结构进行光响应表征,光电压分布如图1(c)所示。激光偏振方向为图1(b)中的TR方向。当激光光束照射在亚波长金属光栅尖端时,器件产生最大光电压。这是因为在这个区域既具有较大的电子能带弯曲,同时又实现了光场增强。在金属条带中间虽然存在光场的增强,但是光响应较金属条带尖端弱很多,这是由于相邻金属较近的距离引起能带弯曲明显减小。对器件响应最大位置处进行进一步的不同波长电学表征发现,入射波长为514 nm时光响应最大,如图1(d)所示,两端电极处光响应的差异最高可达到20倍[14]

      图  1  (a)等离激元纳米结构集成石墨烯器件的SEM图像(蓝色为石墨烯;紫色为SiO2(300 nm);黄色为Ti/Au电极。比例尺为20 μm);(b)金属条带阵列的SEM图像(L和TR 为入射光的偏振方向。比例尺为1 μm);(c)纳米结构处的光电压分布图(入射波长514 nm,偏振为TR方向,线宽110 nm,周期300 nm);(d)归一化光电流和最大增强系数[14]

      Figure 1.  (a) Scanning electron microscopy micrographs of the graphene devices with plasmonic nanostructures (Blue, graphene; purple, SiO2 (300 nm); yellow, Ti/Au electrodes. Scale bar, 20 μm); (b) SEM image of the metal strip array (L and TR incident light polarizations are indicated. Scale bar, 1 μm); (c) Photovoltage maps of one of the nanostructured contacts (The incident wavelength is 514 nm, TR polarization, the line width is 110 nm and the period is 300 nm); (d) Normalized photocurrent and maximum enhancement coefficient[14]

    • 石墨烯结区的光响应具有两种相互竞争的光电流产生机制:一种是传统的光伏效应,另一种是更为主要的热载流子辅助PTE效应。一般而言,PTE效应依赖于通过石墨烯掺杂引起的塞贝克系数的变化。但是在电子温度梯度存在的条件下,第二种PTE效应可以发生在均匀石墨烯沟道上。理论上,当金属-石墨烯-金属器件的一侧被光照射时,跨沟道的电子温度梯度就会出现。Shautsova V等人设计了一种非对称电极分布的石墨烯器件,如图2(a)2(b)所示,其中一个电极集成等离激元纳米天线,用来产生贯穿石墨烯沟道的电子温度梯度。在纳米天线结构等离激元激发下,纳米天线周围产生局域增强的电磁场,如图2(c)所示,这极大地改善了纳米天线周围石墨烯的光吸收,引起了石墨烯局部载流子加热。这种等离激元纳米天线在偏振光作用下,分别支持纵向(L)共振和横向(TR)共振。其中,研究数据基于L共振,共振波长发生在700 nm左右,如图2(e)所示。在电极集成等离激元纳米天线处出现散射增强。从图2(d)所示的暗场显微图像可以明显看出这一点。在500~900 nm的不同激发波长下重复测量光电压。在波长为700 nm的入射光照射到等离激元纳米天线时,石墨烯光响应最大。这些实验结果也与积分电磁场的计算结果非常吻合,如图2(f)所示。在器件的探测性能方面,在等离激元纳米天线的作用下,器件在共振波长处的响应率得到了很大的提高,在纳米天线集成电极附近的响应率比没有纳米天线集成的电极附近的光响应提高了约5倍[16]

      图  2  (a)具有等离激元纳米结构非对称分布的石墨烯器件原理图;(b)器件以及石墨烯/金纳米结构的SEM图像(上标尺代表2 μm,下标尺代表300 nm);(c)计算了入射波长740 nm时纵向(L)极化和横向(TR)极化的电磁场分布;(d)具有等离激元纳米结构(左)和无等离激元纳米结构(右)的石墨烯器件的暗场显微图像;(e)在不同的激发波长下,光电压以(d)箭头所示的方向扫描整个器件;(f)计算积分电磁场的线扫描[16]

      Figure 2.  (a) Schematic of the graphene device with plasmonic and nonplasmonic contacts; (b) Scanning electron microscopic image of the device (upper panel, scale bar is 2 μm) and graphene/Au nanostructures (lower panel, scale bar is 300 nm); (c) Calculated electromagnetic field distributions for longitudinal (L) and transverse (TR) polarization at 740 nm; (d) Dark field microscopic image of the graphene device with plasmonic (left) and nonplasmonic contacts (right); (e) Photovoltage line scans across the device in the direction indicated by the arrow in (d) taken at different excitation wavelengths; (f) Calculated line scan of the integrated electromagnetic field[16]

    • 设计光学纳米天线用于提高光能的收集效率在光探测方面具有重要的应用价值。光学纳米天线在光激发后形成的表面等离激元,在深亚波长体积中具有强烈的光聚焦特性,能够将自由传播的辐射能量转换为纳米尺度的局域能量。因此,可以利用光学纳米五聚体天线来增强光电器件中的光耦合效率。然而,如何优化单个光学纳米天线和二维层状材料的集成结构以实现更有效的光电探测,这一关键问题仍处于探索阶段。任意和全沟道布置光学纳米天线对光电探测是不利的,要合理地将纳米天线放置到能够产生自驱动光响应的区域,以便能更有效地收集热载流子。Hou C等人通过制备光学纳米五聚体天线阵列来研究不同天线位置对少层二硫化钼近红外光探测的敏感性。图3(a)所示为近红外五聚体天线阵列集成少层二硫化钼器件的SEM图像,其中光学纳米五聚体天线是由四个轴对称的金纳米圆盘以及围绕在中心的单个圆盘组成,每个小圆盘之间存在一定小间隙,如图3(b)所示。利用波长为830 nm的近红外激光激发光学纳米五聚体天线的表面等离激元共振。理论仿真发现通过激发五聚体纳米间隙的局域表面等离激元共振可以进一步增强光学天线的光吸收,如图3(c)所示。用激光对器件不同位置进行精确扫描发现,其光电流对位置的变化是反对称的,如图3(d)所示,在有纳米五聚体天线附近的耗尽区(位置3: ~165 nA)产生的光电流是没有纳米天线另一端电极(位置7:~65 nA)的2.54倍。这种对比差异使其能在泛光照射下产生净电流[17]

      图  3  (a) MoS2光电探测器的SEM图像(刻度条代表5.0 μm);(b)放大的单个光学纳米天线的SEM俯视图(标尺代表100 nm);(c) 830 nm波长激发下单元Au纳米天线阵列处的电场分布俯视图(xy平面);(d)比较入射激光束在不同位置激发的光电流[26]

      Figure 3.  (a) SEM image of the MoS2 photodetector (The scale bar represents 5.0 μm); (b) Enlarged SEM top view of a single optical nano-antenna (The scale bar represents 100 nm); (c) Top view (xy plane) of the electric field distribution of an Au nano-antenna array under light excitation at 830 nm; (d) Comparison of the photocurrents measured with the incident laser beam at different positions[26]

    • 由于等离激元纳米谐振腔可以提供更有效的耦合、不灵敏的角度依赖性以及与M2M器件结构更好的兼容性[2326],笔者课题组提出并实现了二维材料与等离激元纳米谐振腔的复合结构。一个典型的等离激元纳米谐振腔由金属底面、介质间隔层和顶部金属条带组成。当石墨烯层插入介质间隔层上方和顶部金属条带下方,该结构与M2M晶体管一致,如图4(a)所示。底部金属平面作为等离激元纳米谐振腔的反射镜,也作为晶体管的栅极。这两种情况下都需要介质间隔层。顶部金属条带可同时作为电极的延伸部分。如图4(b)所示,当由介质间隔层隔开的两个金属表面之间的等离激元波导模式满足法布里-珀罗共振条件,等离激元纳米谐振腔与入射光发生共振,在腔内产生增强的局域场[27-28]。介电间隔层上方的石墨烯会与局域光场发生强烈的相互作用,因此,石墨烯的吸收会显著增强。通过适当调整条带宽度、周期和介电层厚度,入射光可以被石墨烯或金属完全捕获(无反射)和吸收。在笔者的器件[29-30]中,底部金属平面是由金制成的。介质间隔层是30 nm厚的Al2O3层,顶部条带由Cr(5 nm)/Au(40 nm)组成。如图4(a)所示,在x方向上伸长的条带阵列仅与漏极电极集成。

      图  4  (a)石墨烯与等离激元纳米谐振腔复合器件示意图;(b)单个等离激元纳米谐振腔集成石墨烯的示意图(器件的沟道长度为20 μm);(c)光响应率作为垂直和平行于x轴偏振的激光光斑照明位置的函数(激光波长为1.55 μm,光斑尺寸约为2.25 μm,功率为2.18 mW);(d)测量了两种器件的自驱动光响应光谱(两种器件的沟道长度均为10 μm);(e)光电压作为栅控电压的函数;(f)四种器件的光响应光谱(这四种复合结构器件都有不同的金属条带宽度:215、237、256、283 nm。周期保持不变:~590 nm)[29]

      Figure 4.  (a) Sketch of the graphene and plasmonic nanocavity hybrid structure; (b) Sketch of a single plasmonic nanocavity with graphene (The channel length of the device is 20 μm); (c) Photoresponsivity as a function of the laser spot illuminating position for polarizations perpendicular and parallel to the x-axis (The laser wavelength is 1.55 μm, the spot size is about 2.25 μm, and the power is 2.18 mW); (d) Measured self-driven photoresponse spectra of the two devices (The channel lengths of both devices are 10 μm); (e) Photovoltage as a function of the gating voltage; (f) Photoresponse spectra of the four devices (Each of the four hybrid devices has a different metal patch width: 215, 237, 256 and 283 nm. The period is kept the same: ~590 nm)[29]

      利用激光诱导的光电压扫描测量技术对复合结构的光响应进行了表征。为了对器件结构精细表征,制备了大尺寸长沟道器件,如图4(c)中的SEM图像所示,器件沟道为20 μm。利用显微镜将激光束聚焦到一个小光斑上,以实现局部光激发,激光光斑直径为2.25 μm。通过激光点扫描沟道,记录光电压作为照明位置的函数,如图4(c)所示。红线表示入射光垂直于x轴的偏振,黑线表示平行于x轴的偏振。在每种情况下,在石墨烯肖特基结附近观察到更强的光响应,例如源极电极与石墨烯接触边界在x=−10 μm左右,而漏极电极由天线延伸与石墨烯接触边界在x=0 μm左右。作为两种主要机制,PV和PTE效应都需要能带弯曲。由于金属和石墨烯的功函数不同,通常在接触面附近产生能带弯曲区,因此在电极石墨烯肖特基结处通常观察到较强的光响应。当入射光垂直于x轴偏振时,等离激元纳米谐振腔可以被有效地激发,入射光被有效地转换成与石墨烯强烈相互作用的局域模式。根据光电压扫描(图4中的红线),天线集成电极触点处的光响应(约x=0 μm)比没有顶部金属条带的另一个电极接触点的光响应高100多倍(约x=−10 μm)。这种高对比度不仅是由于天线集成电极触点处增强的光响应,而且是由于在没有顶部金属条带的另一侧电极处抑制光响应。在没有顶部金属条带的情况下,等离激元纳米谐振腔(图4(b))不再存在,因为金属平面附近不允许存在切向电场,底部金属平面显著抑制石墨烯层的光场。此外,100倍的对比度也是由等离激元纳米谐振腔集成电极接触处的边界延长造成的。这种效应是由入射光沿x轴偏振的光响应扫描揭示的(图4(c)中的黑线)。在这种情况下,等离激元纳米谐振腔不工作。因此,纳米谐振腔集成电极(约x=0 μm)处的光响应与另一侧电极接触处(约x=−10 μm)的光响应之间的3~4倍差异归因于延长的边界线效应。

      基于两个电极的高对比度,可以预期泛光照明下的自驱动光响应。用大激光光斑(~12 μm)来表征具有非对称集成等离激元纳米谐振腔的M2M结构器件的特征。为了实现激光覆盖整个器件,制备了沟道长度为10 μm的器件,这样入射光斑将完全覆盖两个电极。如4(d)所示,获得了相当大的自驱动光响应。由于纳米谐振腔的影响,光响应表现出共振行为。相比之下,在SiO2(300 nm)/Si衬底上非对称集成亚波长金属光栅的M2M结构在大光斑的照射下也表现出了净的自驱动光响应,但其响应率远低于石墨烯和等离激元纳米谐振腔复合结构。在等离激元纳米谐振腔复合结构共振波长处,两种器件的响应率相差10倍以上。对于具有对称结构的普通M2M器件,该测量没有信号。

      通过栅控光电压测量,发现等离激元纳米谐振腔复合结构器件的光响应机理可以用光激发热载流子的PTE效应来解释。依赖Vg的光电压(Vph)如图4(e)所示。随着Vg的增加,Vph先增加,在达到最大值后,Vph迅速下降到接近零的最小值,然后它会迅速反弹,这种现象可以用光激发热载流子的PTE效应来解释[29]。通过调节决定腔长的金属条带的宽度,可以调节等离激元纳米谐振腔集成石墨烯的光响应光谱。图4(f)展示了四种具有不同金属条宽度的复合结构所对应的光响应光谱。随着金属条宽度从215 nm增加到283 nm,光响应峰由1.30 μm红移到1.65 μm,这充分表明该复合结构的共振行为是可控的[29]

    • 金属-二维材料-金属(M2M)作为最常见的二维材料光探测器件的结构,其自驱动光响应模式受到广泛关注。为了解决泛光照射下净光响应为零以及二维材料光吸收率过低的两个瓶颈问题,人们把亚波长金属光栅、纳米天线等离激元纳米结构与M2M结构进行非对称集成,通过激发局域强光场提高等离激元纳米结构附近的二维材料的光吸收率和响应率,形成非对称光耦合,打破泛光照射下二维材料与两端电极接触区域产生的光电流的对称性,并且同时改善二维材料光吸收率低的问题,给此类器件的自驱动光探测模式提供了新的发展思路。笔者课题组提出并实现了二维材料与等离激元纳米谐振腔的复合结构,并获得了两个电极处的光响应对比度超过100倍,超越了之前的所有的等离激元结构非对称光耦合的效果。该器件在泛光照射下等离激元纳米谐振腔集成石墨烯的净响应率比金属光栅集成石墨烯的响应率高出一个数量级以上。

      近年来,利用光子结构调控二维材料光耦合,从而改善器件性能,甚至实现新的功能,正成为研究热点。基于等离激元纳米结构把入射光转化成为空间尺度与二维材料匹配的深亚波长局域光场的特性,通过等离激元纳米结构与二维材料的集成根据器件的特性调控光耦合是高性能二维材料光探测器件的发展方向。未来如何在光调控的基础上兼顾电调控,使集成的等离激元结构具有光-电联合调控的能力,从而实现二维材料红外探测技术的革新式发展是具有挑战性、也是具有重要意义的问题。

参考文献 (30)

目录

    /

    返回文章
    返回