-
光频梳,是指由一系列均匀间隔且具有稳定相位关系的离散频率分量组成的光谱[1],根据傅里叶变换,同时提供稳定间隔的时域脉冲,是天然的时频基准和高度稳定的脉冲激射源。其中心频率工作在光学波段(比如193 THz),梳间隔为数十MHz到数十GHz(微波射频波段),也是光子学和微波的天然桥梁,向世人展示了其前所未有的精密测量能力、时频基准能力和能量汇聚特性,已在大量基础研究及工程应用中发挥着重要作用。
面向直接接入光纤系统的需求,近期,来自电子科技大学和南京大学的研究者们先后独立发展出了一类新的光纤微腔频率梳器件。其具有几个独特的优势:多种增益兼备、材料控制灵活,能够在微腔中实现布里渊诱导激射和耗散孤子锁模激射等新的激发方式;超高Q值(最高>108)、超低插损(最低<0.2 dB),大大降低了光子能量的浪费,使得微腔光频梳的输出能效大大提升;成本优势突出、结构简单、便于加工和推广,其单个器件成本低于10美元,成为集成光频梳的一种新选择。
图1(a)展示了南京大学谢臻达教授课题组提出的非线性光纤法布里珀罗微腔的“光子飞轮”级别克尔孤子光频梳[1]。在该工作中,课题组研究人员利用光纤微腔内受激布里渊激光(SBL)间接泵浦产生光孤子光频梳,该光频梳的噪声可以突破泵浦激光的噪声限制并实现热稳定孤子产生,逼近光纤微腔本身较低的量子噪声极限。自由运转状态下的微腔光频梳线宽仅为22 Hz,时间抖动低于一个光学周期,达到了“光子飞轮”级别。在此基础上,南京大学姜校顺教授课题组提出并实现了利用光纤芯内微腔中多种非线性光学效应的相互作用的新型的布里渊-克尔孤子光频梳,如图1(b)所示[2]。该光频梳具有易锁模、窄梳齿线宽、低噪声等优点,特别是其相位噪声指标具有国际先进性(−49 dBc/Hz @ 10 Hz, −130 dBc/Hz @ 10 kHz, −149 dBc/Hz @ 1 MHz)。利用该结构,研究者们还展示了超低相噪的X波段光生微波源。最后,图1(c)展示了由笔者所在课题组实现的石墨烯电控铒镱共掺光纤微腔激光锁模频率梳[3]。其利用石墨烯光电子反馈完成重频、脉冲调控和主动反馈稳定,实现了全光纤输出的激光频率梳,重频10~80 GHz可控,光谱范围1300~1 900 nm,最大有效频率梳线>5 000根,相位噪声<−130 dBc/Hz@10 kHz。特别是,随着石墨烯光纤工业化生产的成功[4],其有望实现大规模的器件制备。
这些新的成果展示了新型材料、新型光纤结构和新物理机制的交叉结合,能带来激光源器件的新功能和新性能。将来,这些具有独特性质的新型微频率梳技术将对下一代的光纤传感系统、微波光子系统、光纤测量系统潜在需求提出新的解决方案。
图 1 光纤微腔光频梳。(a),(b),(c)三种不同结构的光频梳器件, 分别为基于高非线性光纤法珀微腔的微梳飞轮[1]、基于布里渊辅助稳定的频率梳微波发生器[2],以及基于石墨烯电光调控的光纤微腔锁模频梳源[3]
Figure 1. Fiber microresonator based frequency combs. (a), (b), (c) Three recently reported devices, they are microcomb flywheel based on high nonlinear fiber Fabry-Perot microcavity, frequency comb microwave generator based on Brillouin assisted stabilization, and optical fiber microcavity mode-locked frequency comb source based on graphene electro-optic regulation
Novel functionalized frequency combs based on fiber microcavities
-
摘要: 微腔光频梳以其独特的时频输出特性和集成化优势,正逐渐成为当代信息系统的基石。近期,全光纤的微腔光频梳迎来了新的进展。来自电子科技大学和南京大学的研究者们,以超高Q值光纤法珀谐振腔为载体,实现了激光、克尔和布里渊光频梳的产生。凭借其低损耗、可调谐、强稳定的独特优势,将有望在服务光纤系统的正时、通信、微波和感知应用中发挥新的潜力。Abstract: With its unique time-frequency characteristics and integrated advantages, micro combs have gradually become the cornerstone of modern information system. Recently, all fiber microcavity combs made a progress. Researchers from the University of Electronic Science and Technology of China and Nanjing University realized the generation of laser, Kerr and Brillouin optical frequency combs by using ultra-high Q-value fiber Fabry Perot resonators. They demonstrate unique advantages such as low loss, dynamic tunability and ultrahigh stability, may play new potentials in timing-standard, communication, microwave and sensing applications for fiber systems.
-
Key words:
- frequency comb /
- optical fiber /
- microresonator
-
图 1 光纤微腔光频梳。(a),(b),(c)三种不同结构的光频梳器件, 分别为基于高非线性光纤法珀微腔的微梳飞轮[1]、基于布里渊辅助稳定的频率梳微波发生器[2],以及基于石墨烯电光调控的光纤微腔锁模频梳源[3]
Figure 1. Fiber microresonator based frequency combs. (a), (b), (c) Three recently reported devices, they are microcomb flywheel based on high nonlinear fiber Fabry-Perot microcavity, frequency comb microwave generator based on Brillouin assisted stabilization, and optical fiber microcavity mode-locked frequency comb source based on graphene electro-optic regulation
-
[1] Jia Kunpeng, Wang Xiaohan, Kwon Dohyeon, et al. Photonic flywheel in a monolithic fiber resonator [J]. Physical Review Letters , 2020, 125(14): 143902. doi: 10.1103/PhysRevLett.125.143902 [2] 白燕、张孟华、施琪, 等. 光学微谐振器中的布里渊-克尔孤子频率梳[J]. 物理评论快报, 2020, 125(14): 143902. Bai Yan, Zhang Menghua, Shi Qi, et al. Brillouin-Kerr soliton frequency combs in an optical microresonator[J]. Physical Review Letters, 2021, 126(6): 063901. [3] Qin Chenye, Jia Kunpeng, Li Qianyuan, et al. Electrically controllable laser frequency combs in graphene-fibre microresonators [J]. Light: Science & Applications, 2020, 9(1): 1-9. doi: 10.1038/s41377-020-00419-z [4] Guo Yiyong, Han Bing, Du Junting, et al. Kilometers long graphene-coated optical fibers for fast thermal sensing [J]. Research, 2021: 1-9. -