留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

894 nm高温工作氧化限制型基横模VCSEL研究

王秋华 李明 邱平平 庞伟 解意洋 阚强 徐晨

王秋华, 李明, 邱平平, 庞伟, 解意洋, 阚强, 徐晨. 894 nm高温工作氧化限制型基横模VCSEL研究[J]. 红外与激光工程, 2022, 51(5): 2021G007. doi: 10.3788/IRLA2021G007
引用本文: 王秋华, 李明, 邱平平, 庞伟, 解意洋, 阚强, 徐晨. 894 nm高温工作氧化限制型基横模VCSEL研究[J]. 红外与激光工程, 2022, 51(5): 2021G007. doi: 10.3788/IRLA2021G007
Wang Qiuhua, Li Ming, Qiu Pingping, Pang Wei, Xie Yiyang, Kan Qiang, Xu Chen. Study of high-temperature operating oxide-confined 894 nm VCSEL with fundamental transverse mode emission[J]. Infrared and Laser Engineering, 2022, 51(5): 2021G007. doi: 10.3788/IRLA2021G007
Citation: Wang Qiuhua, Li Ming, Qiu Pingping, Pang Wei, Xie Yiyang, Kan Qiang, Xu Chen. Study of high-temperature operating oxide-confined 894 nm VCSEL with fundamental transverse mode emission[J]. Infrared and Laser Engineering, 2022, 51(5): 2021G007. doi: 10.3788/IRLA2021G007

894 nm高温工作氧化限制型基横模VCSEL研究

doi: 10.3788/IRLA2021G007
基金项目: 国家重点研发计划(2018 YFA0209000);国家自然科学基金(62074011, 61604007, 61874145,61774175);北京市自然科学基金(4172009, 4182012);北京市科技新星计划(Z201100006820096)
详细信息
    作者简介:

    王秋华,男,博士生,主要从事半导体垂直腔面发射激光器、超构表面垂直腔面发射激光器方面的研究

    徐晨,男,教授,博士生导师,博士,主要从事半导体垂直腔面发射激光器和石墨烯材料在光子电子器件中的应用研究

  • 中图分类号: TN248.4

Study of high-temperature operating oxide-confined 894 nm VCSEL with fundamental transverse mode emission

  • 摘要: 针对芯片原子钟(铯)用激光光源系统对垂直腔面发射激光器(VCSEL)模式及工作温度的需求,研制出可以高温工作的氧化限制型基横模 894.6 nm VCSEL。通过缩小VCSEL氧化孔直径至3 μm,限制VCSEL高阶横模激射,保证器件基横模低阈值电流工作。通过常温下腔模与材料增益失谐12 nm 的结构设计,使器件能够在50~65 ℃ 高温时,激射波长对准原子能级且工作模式稳定。实验所制备的VCSEL在工作温度为55 ℃、注入电流1.8 mA 时,激射波长达到 894.6 nm,边模抑制比(SMSR)大于35 dB,基横模功率为0.75 mW,具有11.4°的远场发射角。当温度为65 ℃时,器件SMSR大于25 dB,基横模功率大于0.1 mW。该高温基横模工作的VCSEL在芯片原子钟中具有重要的应用前景。
  • 图  1  VCSEL器件结构示意图

    Figure  1.  Structure schematic of VCSEL

    图  2  模拟有源区增益与腔模随温度的变化

    Figure  2.  Simulation results of active region gain and cavity mode changes under different temperatures

    图  3  VCSEL器件显微镜照片

    Figure  3.  Microscope image of VCSEL

    图  4  894 nm 氧化型VCSEL P-I-V特性曲线,内嵌图为氧化孔显微镜图像

    Figure  4.  894 nm oxide-confined VCSEL P-I-V characteristic curve, the inset is the microscopic image of the oxide aperture

    图  5  工作温度为55 ℃时不同电流注入下器件光谱特性

    Figure  5.  Spectral characteristics of the device under different current injection when the ambient temperature is 55 ℃

    图  6  894 nm氧化型VCSEL不同工作温度下,不同电流注入时光谱特性曲线

    Figure  6.  Spectral characteristic curve of 894 nm oxidized VCSEL under different ambient temperatures and different current injection

    图  7  不同温度下器件工作在894.6 nm时的光电特性

    Figure  7.  Optical and electrical characteristics of the device operating at 894.6 nm under different temperatures

    图  8  器件的远场光斑分布

    Figure  8.  Far-field spot distribution of the device

  • [1] Iga K. Surface-emitting laser Its birth and generation of new optoelectronics field [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1201-1215. doi:  10.1109/2944.902168
    [2] Zhao Z B, Xu C, Xie Y Y, et al. Single-mode low threshold current multi-hole vertical-cavity surface-emitting lasers [J]. Chinese Physics B, 2012, 21(3): 232-235.
    [3] Hamad W, Sanayeh M B, Hamad M M, et al. Impedance characteristics and chip-parasitics extraction of high-performance VCSELs [J]. IEEE Journal of Quantum Electronics, 2020, 56(1): 1-11.
    [4] Tong H T, Tong C Z, Wang Z Y, et al. Advances in the technology of 850 nm high-speed vertical cavity surface emitting lasers (Invited) [J]. Infrared and Laser Engineering, 2020, 49(12): 20201077. (in Chinese) doi:  10.3788/IRLA20201077
    [5] Zang J Y, Li X, Zhang J W, et al. Research progress of vertical-cavity surface-emitting laser [J]. Chinese Journal of Luminescence, 2020, 41(12): 1443-1459. doi:  10.37188/CJL.20200339
    [6] Liu K, Wei Q, Huang Y Q, et al. Integrated optoelectronic chip pair for transmitting and receiving optical signals simultaneously [J]. Chinese Optics Letters, 2019, 17(4): 56-60.
    [7] Zhang R, Rahul M, Ken S, et al. Portable intrinsic gradiometer for ultra-sensitive detection of magnetic gradient in unshielded environment [J]. Applied Physics Letters, 2020, 116(14): 143501.
    [8] Isoe G, Karembera R S, Gibbon T B. Advanced VCSEL photonics: Multi-level PAM for spectral efficient 5 G wireless transport network [J]. Optics Communications, 2020, 461: 125273.
    [9] Jin X, Xiao X, Sun Y, et al. Monolithic transformer and its application in a high-speed optical interconnect VCSEL driver[J]. Analog Integrated Circuits and Signal Processing, 2019, 99(3): 645-654.
    [10] Serkland D K, Geib K M. VCSELs for atomic clocks [C]//Proceedings of SPIE-The International Society for Optical Engineering, 2006, 6132: 647095.
    [11] Al-Samaneh A, Renz S, Strodl A, et al. Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications [C]//Proceedings of SPIE-The International Society for Optical Engineering , 2010, 7720: 853181.
    [12] Zhang J, Zhang X, Zhu H, et al. High-temperature operating 894.6 nm-VCSELs with extremely low threshold for Cs-based chip scale atomic clocks [J]. Optics Express, 2015, 23(11): 14763-14773. doi:  10.1364/OE.23.014763
    [13] Zhang X, Zhang Y, Zhang J W, et al. 894 nm high temperature operating vertical-cavity surface-emitting laser and its application in Cs chip-scale atomic-clock system [J]. Acta Physica Sinica, 2016, 65(13): 134204. (in Chinese)
    [14] Kroemer E, Rutkowski J, Maurice V, et al. Characterization of commercially available vertical-cavity surface-emitting lasers tuned on Cs D_1 line at 894.6 nm for miniature atomic clocks[J]. Applied Optics, 2016, 55(31): 008839.
    [15] Yanagimachi S, Harasaka K, Suzuki R, et al. Reducing frequency drift caused by light shift in coherent population trapping-based low-power atomic clocks [J]. Applied Physics Letters, 2020, 116(10): 104102. doi:  10.1063/1.5143377
    [16] Zhang H, Herdian H, Narayanan A T, et al. ULPAC: A miniaturized ultralow-power atomic clock[J]. IEEE Journal of Solid-State Circuits, 2019, 54(11): 3135-3148.
    [17] Yano Y, Kajita M, Ido T, et al. Coherent population trapping atomic clock by phase modulation for wide locking range [J]. Applied Physics Letters, 2017, 111(20): 201107.
    [18] Zhang J P, Petermann K. Numerical analysis of transverse mode in gain-guided vertical cavity surface emitting lasers[J]. IEE Proceedings, Part J, 1995, 142(1): 29-35.
    [19] Michalzik R. VCSELs: Fundamentals, Technology and Applications of Vertical-cavity Surface-emitting Lasers[M]. Berlin: Springer, 2013.
    [20] Agrawal G P. Fiber-Optic Communication Systems[M]. New York: Wiley, 2004.
    [21] Marcuse D. Theory of Dielectric Optical Waveguides[M]. 2nd ed. San Diego, CA: Academic Press, 1991.
    [22] Buck J A. Fundamentals of Optical Fibers[M]. New York: Wiley, 1995.
  • [1] 刘俊杰, 齐岳, 盛泉, 王思佳, 王盟, 徐德刚, 史伟, 姚建铨.  分布式猫眼腔免调试激光器发射端视场的优化 . 红外与激光工程, 2022, 51(3): 20211108-1-20211108-6. doi: 10.3788/IRLA20211108
    [2] 陈加伟, 李豫东, 玛丽娅, 李钰, 郭旗.  850 nm垂直腔面发射激光器的辐射效应 . 红外与激光工程, 2022, 51(5): 20210326-1-20210326-6. doi: 10.3788/IRLA20210326
    [3] 孙红胜, 梁新刚, 马维刚, 郭靖, 王加朋, 邱超, 黄亮.  弥散介质条件下辐射测温方法(特邀) . 红外与激光工程, 2022, 51(4): 20210985-1-20210985-10. doi: 10.3788/IRLA20210985
    [4] 李明, 李耀斌, 邱平平, 颜伟年, 贾瑞雯, 阚强.  表面光栅垂直腔面发射激光器偏振特性研究 . 红外与激光工程, 2022, 51(5): 20210332-1-20210332-6. doi: 10.3788/IRLA20210332
    [5] 佟海霞, 佟存柱, 王子烨, 陆寰宇, 汪丽杰, 田思聪, 王立军.  850 nm高速垂直腔面发射激光器技术研究进展(特邀) . 红外与激光工程, 2020, 49(12): 20201077-1-20201077-8. doi: 10.3788/IRLA20201077
    [6] 王鑫, 朱凌妮, 赵懿昊, 孔金霞, 王翠鸾, 熊聪, 马骁宇, 刘素平.  915 nm半导体激光器新型腔面钝化工艺 . 红外与激光工程, 2019, 48(1): 105002-0105002(5). doi: 10.3788/IRLA201948.0105002
    [7] 尚金铭, 张宇, 杨成奥, 谢圣文, 黄书山, 袁野, 张一, 邵福会, 徐应强, 牛智川.  GaSb基光泵浦半导体碟片激光器的研究进展(特邀) . 红外与激光工程, 2018, 47(10): 1003004-1003004(9). doi: 10.3788/IRLA201847.1003004
    [8] 谢圣文, 杨成奥, 黄书山, 袁野, 邵福会, 张一, 尚金铭, 张宇, 徐应强, 倪海桥, 牛智川.  2 μm GaSb基大功率半导体激光器研究进展 . 红外与激光工程, 2018, 47(5): 503003-0503003(9). doi: 10.3788/IRLA201847.0503003
    [9] 陈霞飞, 张凯伦, 陈子阳, 李小燕, 蒲继雄.  直接输出高阶横模激光器的实验研究 . 红外与激光工程, 2018, 47(6): 606002-0606002(5). doi: 10.3788/IRLA201847.0606002
    [10] 袁浚, 张正平, 解意洋.  新型正方晶格基横模光子晶体面发射激光器 . 红外与激光工程, 2018, 47(6): 606005-0606005(6). doi: 10.3788/IRLA201847.0606005
    [11] 马慧娟, 茹宁, 王宇.  用于原子重力仪的外腔半导体激光器的两种稳频方法比较 . 红外与激光工程, 2017, 46(1): 106002-0106002(9). doi: 10.3788/IRLA201746.0106002
    [12] 安志斌, 沈晓骏, 高山, 姚晨光, 汪诚.  激光冲击强化K403镍基高温合金表面纳米化 . 红外与激光工程, 2016, 45(9): 921002-0921002(6). doi: 10.3788/IRLA201645.0921002
    [13] 蒋国庆, 徐晨, 解意洋, 荀孟, 曹亚鹏, 陈弘达.  质子注入型光子晶体垂直腔面发射激光器制备 . 红外与激光工程, 2016, 45(12): 1205001-1205001(5). doi: 10.3788/IRLA201645.1205001
    [14] 吴飞, 董杰, 田海霞, 蔡璐璐.  黑体腔高温传感器结构设计 . 红外与激光工程, 2015, 44(9): 2609-2614.
    [15] 张连东, 冯刘, 刘晖, 程宏昌, 高翔, 张晓辉.  高温退火对GaAs光阴极表面状态的影响 . 红外与激光工程, 2014, 43(4): 1226-1229.
    [16] 李想, 吴钢, 周刚, 毕柯, 汤智胤, 张青枝, 马计.  激光光热法测试YBCO 高温超导带材热扩散率 . 红外与激光工程, 2014, 43(6): 1740-1744.
    [17] 何莹, 张玉钧, 王立明, 尤坤, 高彦伟.  高温氨逃逸激光原位监测的浓度反演算法 . 红外与激光工程, 2014, 43(3): 897-901.
    [18] 李绍良, 徐静, 张志强, 吴亚明.  一种微型化制造的双腔结构芯片原子钟87Rb蒸汽腔 . 红外与激光工程, 2014, 43(5): 1463-1468.
    [19] 严兵, 李建彬, 孙红胜, 张虎, 李世伟, 魏建强, 任小婉.  动态高温温场测量装置研究 . 红外与激光工程, 2014, 43(4): 1312-1315.
    [20] 高飞, 陈飞, 谢冀江, 张来明, 李殿军, 杨贵龙, 郭劲.  半导体泵浦铯蒸汽激光器工作特性分析 . 红外与激光工程, 2013, 42(9): 2386-2391.
  • 加载中
图(8)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  14
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-09
  • 修回日期:  2022-04-08
  • 刊出日期:  2022-06-08

894 nm高温工作氧化限制型基横模VCSEL研究

doi: 10.3788/IRLA2021G007
    作者简介:

    王秋华,男,博士生,主要从事半导体垂直腔面发射激光器、超构表面垂直腔面发射激光器方面的研究

    徐晨,男,教授,博士生导师,博士,主要从事半导体垂直腔面发射激光器和石墨烯材料在光子电子器件中的应用研究

基金项目:  国家重点研发计划(2018 YFA0209000);国家自然科学基金(62074011, 61604007, 61874145,61774175);北京市自然科学基金(4172009, 4182012);北京市科技新星计划(Z201100006820096)
  • 中图分类号: TN248.4

摘要: 针对芯片原子钟(铯)用激光光源系统对垂直腔面发射激光器(VCSEL)模式及工作温度的需求,研制出可以高温工作的氧化限制型基横模 894.6 nm VCSEL。通过缩小VCSEL氧化孔直径至3 μm,限制VCSEL高阶横模激射,保证器件基横模低阈值电流工作。通过常温下腔模与材料增益失谐12 nm 的结构设计,使器件能够在50~65 ℃ 高温时,激射波长对准原子能级且工作模式稳定。实验所制备的VCSEL在工作温度为55 ℃、注入电流1.8 mA 时,激射波长达到 894.6 nm,边模抑制比(SMSR)大于35 dB,基横模功率为0.75 mW,具有11.4°的远场发射角。当温度为65 ℃时,器件SMSR大于25 dB,基横模功率大于0.1 mW。该高温基横模工作的VCSEL在芯片原子钟中具有重要的应用前景。

English Abstract

    • 垂直腔面发射激光器(vertical cavity surface-emitting lasers, VCSEL)自概念被提出以来便受到研究人员的广泛关注,具有体积小、圆形输出光斑、单纵模激射、低阈值电流、低功率损耗、易于形成阵列和集成等特点[1-3],被广泛应用于光通信、光传感、显示技术及激光雷达等领域[4-6]。近年来,随着芯片级原子钟(chip scale atomic clock, CSAC)、磁力计和陀螺仪等在通讯、导航、制导等方面运用,新一代低功耗芯片级原子微系统已成为研究热点[7-9]。易于芯片级集成的VCSEL微器件作为半导体激光器中重要的一员也逐渐运用到原子微系统中。2006年,美国Sandia国家实验室报道了原子钟用VCSEL的器件相关研究结果[10];2010年,美国Symmetricom公司研制出基于VCSEL商用化的CSAC[11]。在国内方面,中国科学院长春光学精密机械与物理研究所研制出用于铯原子钟的VCSEL,实现了低阈值下器件高温稳定工作[12-13]

      根据相干布局囚禁(CPT)原理,设计的芯片级原子钟光源必须满足多种条件,如激射波长与碱金属原子共振吸收峰能级一致,具备高温工作等特点[14-17]。VCSEL以其性能优势,在基于CPT原理的微型原子钟系统中具有重要应用价值[14]。文中设计并制备了能够实现高温基横模稳定工作的 894.6 nm VCSEL。利用外延结构腔模温漂速率小于增益温漂速率,常温下器件腔模与增益失谐设计,实现器件高温下 894.6 nm 稳定工作,并以小氧化孔限制高阶模激射。通过该结构设计制备的器件,当环境及工作温度为60 ℃ 左右时,能够在 894.6 nm 保持稳定的工作状态且边模抑制比大于 25 dB,具有很好的模式输出特性,满足铯原子D1线跃迁需求。

    • VCSEL器件结构设计需要满足铯原子钟在高温下稳定工作并获得较低阈值电流,器件外延结构主要包括:底部反射镜为 37.5 对Si掺杂Al0.12Ga0.88As/Al0.9Ga0.1As N型DBR层;有源区为 3 对未掺杂的 AlGaAs/GaInAs 量子阱层;氧化层厚度为 30 nm 的Al0.98Ga0.02As层;顶部反射镜为 22.5 对C掺杂的Al0.12Ga0.88As/Al0.9Ga0.1As P型DBR层。整体外延结构是在N型GaAs衬底上通过金属有机化学气相沉积(MOCVD)制备获得。器件结构示意图如图1所示。

      图  1  VCSEL器件结构示意图

      Figure 1.  Structure schematic of VCSEL

      将量子阱阱宽设计为 5 nm,势垒宽 8 nm, 以满足其低阈值激射条件。采用常温下腔模增益与材料增益失谐设计,保证在高温下实现器件稳定工作。通过 Crosslight 公司的 PICS3D软件进行腔模与增益仿真,结果如图2 所示,图2(a)为不同腔模失配下有源区增益随温度变化的特性曲线,常温下设置材料增益波长为 880 nm,在不同失谐量(∆λ = 0~28 nm)下其增益峰值将随温度增加而发生红移,增益峰值波长温漂速度为 0.3 nm/℃。图2(b)中蓝色线为腔模随温度漂移的变化曲线,可得腔模温漂速度约为 0.063 nm/℃。当腔模与有源区增益失谐量为 12 nm 时,在环境工作温度约为 60 ℃ (340 K)时材料增益具有最大值。此时,对应的腔模为 894.6 nm,峰值材料增益波长与腔模波长的一致性保证了器件在高温下能够稳定工作,且输出波长约为 894.6 nm。因此,将外延结构设计为失谐 12 nm以满足器件工作需求,获得稳定的铯原子吸收谱线。

      图  2  模拟有源区增益与腔模随温度的变化

      Figure 2.  Simulation results of active region gain and cavity mode changes under different temperatures

      此外,分析VCSEL器件模式以满足基横模输出,通过麦克斯韦方程组及边界条件,可以得到圆柱坐标下光波在Z轴传播方向的电场Ez的波动方程[18-20]

      $$ \frac{{\partial }^{2}{E}_{{\textit{z}}}}{\partial {r}^{2}}+\frac{1}{r}\frac{\partial {E}_{{\textit{z}}}}{\partial r}+\frac{1}{{r}^{2}}\frac{{\partial }^{2}{E}_{{\textit{z}}}}{\partial {r\varphi }^{2}}+\frac{{\partial }^{2}{E}_{{\textit{z}}}}{\partial {{\textit{z}}}^{2}}+{n}^{2}{{k}_{0}}^{2}{E}_{{\textit{z}}}=0 $$ (1)

      同理也可得到对应Hz的波动方程。

      定义参数:$ {u}_{mn}\;=\;{({\left({n}_{eff1}{k}_{0}\right)}^{2}\;-\;{\beta }^{2})}^{1/2} $$ {\nu }_{mn}\;=\; {({\beta }^{2}\;-} {{{n}_{eff2}}^{2}{k}_{0}^{2})}^{1/2} $$ {k}_{0} $为真空中的传播常数,$ {n}_{eff1} $为芯层有效折射率,$ {n}_{eff2} $为包层有效折射率,$\; \beta $为传播常数。

      通过分离变量及边界方程求解,可得波导模式在不同介质层上的电磁场分布:

      $$\begin{split}& \left[\begin{array}{c}{E}_{{\textit{z}}1}\\ {H}_{{\textit{z}}1}\end{array}\begin{array}{c}{E}_{{\textit{z}}2}\\ {H}_{{\textit{z}}2}\end{array}\right]=\left[\begin{array}{cc}A& B\\ C& D\end{array}\right]\cdot\\ &\left[\begin{array}{c}{J}_{m}\left(ur\right)\mathrm{exp}\left(im\varphi \right)\mathrm{exp}\left(i\beta {\textit{z}}\right)\\ 0\end{array}\begin{array}{c}0\\ {K}_{m}\left(vr\right)\mathrm{exp}\left(im\varphi \right)\mathrm{exp}\left(i\beta {\textit{z}}\right)\end{array}\right]\end{split} $$ (2)

      式中:$ {E}_{z1} $,$ {H}_{z1} $为芯层($ r\leqslant {r}_{OA} $)场分布;$ {E}_{z2} $,$ {H}_{z2} $为包层 ($ {r}_{OA} < r < R $)场分布,$ {r}_{OA} $为氧化孔径大小,R为VCSEL大台面半径;$ {J}_{m} $$ {K}_{m} $分别为第一类贝塞尔函数和第二类贝塞尔函数,m为阶数。ABCD四个常数过EH的切向分量在芯、包层界面的连续性边界条件来确定。通过麦克斯韦方程组,用EzHz表示柱坐标下芯层电磁场的分量:

      $$ {E}_{r}=\frac{i}{{u}^{2}}\left(\beta \frac{\partial {E}_{{\textit{z}}}}{\partial r}+{\mu }_{0}\frac{\omega }{r}\frac{\partial {H}_{{\textit{z}}}}{\partial \phi }\right),{E}_{\phi }=\frac{i}{{u}^{2}}\left(\frac{\beta }{r}\frac{\partial {E}_{{\textit{z}}}}{\partial \phi }-{\mu }_{0}\omega \frac{\partial {H}_{{\textit{z}}}}{\partial r}\right) $$
      $$ {H}_{r}=\frac{i}{{u}^{2}}\left(\beta \frac{\partial {H}_{{\textit{z}}}}{\partial r}-{\epsilon }_{0}{n}^{2}\frac{\omega }{r}\frac{\partial {E}_{{\textit{z}}}}{\partial \phi }\right),{H}_{\phi }=\frac{i}{{u}^{2}}\left(\frac{\beta }{r}\frac{\partial {H}_{{\textit{z}}}}{\partial \phi }+{\epsilon }_{0}{n}^{2}\omega \frac{\partial {E}_{{\textit{z}}}}{\partial r}\right) $$ (3)

      同理,以$ -{v}^{2} $代替$ {u}^{2} $取值,可得包层电磁场分布。通过求解EH分量在包、芯层界面的连续性,得到ABCD满足的四个齐次方程,当系数矩阵行列式相互抵消时才可获得特殊解,该条件下可得特征方程[21-22]

      $$ \begin{split}&\left[ \frac{{J}_{m}'\left(u{r}_{OA}\right)}{u{J}_{m}\left(u{r}_{OA}\right)} + \frac{{K}_{m}'\left(v{r}_{OA}\right)}{v{K}_{m}\left(v{r}_{OA}\right)} \right]\left[ \frac{{J}_{m}'\left(u{r}_{OA}\right)}{u{J}_{m}\left(u{r}_{OA}\right)} + \frac{{n}_{eff2}^{2}}{{n}_{eff1}^{2}}\frac{{K}_{m}'\left(v{r}_{OA}\right)}{v{K}_{m}\left(v{r}_{OA}\right)} \right] =\\& \frac{{m}^{2}}{{{r}_{OA}}^{2}}\Bigg(\frac{1}{{u}^{2}}+\frac{1}{{v}^{2}}\Bigg)\Bigg(\frac{1}{{u}^{2}}+\frac{{n}_{eff2}^{2}}{{n}_{eff1}^{2}}\frac{1}{{v}^{2}}\Bigg)\\[-12pt] \end{split} $$ (4)

      式中:当$ v=0 $$ \; \beta /{k}_{0}={n}_{eff2} $时模式达到截止频率,可得到$ u $ 的值,此时定义为一个参数V,由公式:

      $$ V=k{r}_{OA}\sqrt{{n}_{eff1}^{2}-{n}_{eff2}^{2}} $$ (5)

      该参数称为归一化频率$ V $参数。此外,引入一个归一化传播常数:

      $$ F=\frac{\beta /{k}_{0}-{n}_{eff2}}{{n}_{eff1}-{n}_{eff2}} $$ (6)

      取不同mn值求解上述特征方程(4),可以得到不同阶数模式下FV变化的函数,单模条件下的导波模式只有HE11模式存在,即基模状态,此时TE01和TM01模式的截止由V值决定。在公式(4)中取m=0,得到两模态特征值方程为:

      $$ \left\{\begin{array}{l}u{J}_{0}\left(u{r}_{OA}\right){K}_{0}'\left(v{r}_{OA}\right)+v{J}_{0}'\left(u{r}_{OA}\right){K}_{0}\left(v{r}_{OA}\right)=0\\ u{{n}_{eff2}^{2}J}_{0}\left(u{r}_{OA}\right){K}_{0}'\left(v{r}_{OA}\right)+v{n}_{eff1}^{2}{J}_{0}'\left(u{r}_{OA}\right){K}_{0}\left(v{r}_{OA}\right)=0\end{array}\right. $$ (7)

      $ v=0 $$ u\cdot {r}_{OA}=V $时,两种模式都将被抑制,截止条件为$ {J}_{0}\left(V\right)=0 $,此时$ V $的最小值为2.405。所以需要满足归一化频率$ V < 2.405 $,此为单模态条件。

      $ {n}_{eff1} $取值约为3.3,包层与芯层有效折射率差$ {\Delta n}_{eff} $为0.01~0.02,因此,通过公式可得氧化孔直径需满足3 μm以内。在器件制备氧化工艺过程中将严格控制氧化孔径,以实现VCSEL器件基横模稳定工作。

    • 器件主要制备工艺有:采用电感耦合等离子体刻蚀(ICP)将圆形VCSEL大台面刻蚀过Al0.98Ga0.02As高铝氧化层(H=3.4 μm );通过湿法氧化工艺(400 ℃ 通入水蒸气)严格控制氧化时间,使氧化孔径达到3 μm;采用等离子体增强型化学气相沉积(PECVD)形成 500 nm SiO2 使侧壁钝化;采用磁控溅射法及Lift-off工艺形成P型电极(Ti/Au 15 nm/300 nm)。

      最后对器件进行减薄、溅射背面电极(AuGeNi/Au 50 nm/300 nm),使用快速热退火形成合金以减小器件表面接触电阻 (T=430 ℃,t=35 s)。最终制备的VCSEL器件显微镜照片如图3所示。

      图  3  VCSEL器件显微镜照片

      Figure 3.  Microscope image of VCSEL

    • 对器件工作温度进行精确控制,测试并获得了不同温度下的P-I-V特性曲线,如图4所示。此外,在氧化工艺过程中,将氧化孔径控制在 3 μm,理想情况下氧化孔为标准圆形,而实际受晶向氧化速率差影响,其形状并非完全的圆对称,如内嵌图所示为长轴 3 μm、短轴 2 μm的椭圆形分布。

      图  4  894 nm 氧化型VCSEL P-I-V特性曲线,内嵌图为氧化孔显微镜图像

      Figure 4.  894 nm oxide-confined VCSEL P-I-V characteristic curve, the inset is the microscopic image of the oxide aperture

      由实验测试数据可知,常温25~70 ℃工作时,器件在整个温区下均具有较低的阈值电流 Ith< 0.5 mA (0.27~0.47 mA)。在不同温度下对比输出功率,工作温度为25 ℃时,具有最大输出功率值2.7 mW,此时注入电流为6.8 mA。随着器件工作温度升高,饱和光功率峰值对应的注入电流将减小,工作温度达到70 ℃ 时,饱和功率为2.1 mW,注入电流为5.8 mA。

      除此之外,器件适用于铯原子钟的要求,工作波长需要满足894.6 nm。使用横河公司生产的AQ6370D光谱分析仪进行了光谱测试,图5所示为工作温度55 ℃时不同电流注入下器件的光谱分布。可以看出,在整个电流注入0.4~2.0 mA下,器件保持较好的单模特性, SMSR均大于20 dB。此外,随着注入电流增加,光谱将发生红移现象,当注入电流为1.8 mA时,器件激射波长达到894.6 nm,满足铯原子钟共振峰要求。

      图  5  工作温度为55 ℃时不同电流注入下器件光谱特性

      Figure 5.  Spectral characteristics of the device under different current injection when the ambient temperature is 55 ℃

      VCSEL在894.6 nm处稳定工作的温度范围决定了器件的环境适应性。测试了VCSEL在不同工作温度下的光谱特性,如图6所示,器件虽然在较低温度时激射波长也能达到894.6 nm,但是由于大注入电流下,满足激射条件的波长已不是单一波长,出现多模激射状态,此时低温工作下器件单模稳定性差。随着温度逐渐升高,光谱侧峰被削弱,当温度大于50 ℃时可明显观察到器件的单模特性。器件工作温度范围覆盖50~65 ℃。此外,除了温度控制以外,满足一定的电流注入是保证器件在特定波长稳定工作的重要条件,当电流注入为 1.8 mA,器件在55 ℃工作环境下激射波长为894.6 nm,且单模特性最好,这与外延结构所预设的在60 ℃附近峰值增益波长与腔模波长均为894.6 nm相吻合。

      图  6  894 nm氧化型VCSEL不同工作温度下,不同电流注入时光谱特性曲线

      Figure 6.  Spectral characteristic curve of 894 nm oxidized VCSEL under different ambient temperatures and different current injection

      图7总结了不同工作温度下器件满足894.6 nm波长激射时的SMSR(图7(a))以及不同工作温度时器件激射波长894.6 nm 的电流以及输出光功率值(图7(b))。图7(a)中,器件从常温状态到较高工作温度变化时,单模特性逐渐变好,常温25 ℃时SMSR仅为 5.6 dB,当温度升高到55 ℃时,SMSR达到最大值为35.16 dB,此时,器件的出光功率为 0.75 mW;随后温度增加,器件SMSR有所下降,当温度为65 ℃时器件 894.6 nm处SMSR为27.39 dB。从图7(b)中可以看出,随着工作温度的增加,器件需要满足894.6 nm波长激射时注入电流逐渐减小,从4 mA降到0.7 mA,出光功率从2.03 mW降到0.13 mW。器件在高温工作下也满足出光功率大于 0.1 mW,确保了器件在铯原子系统中具有足够的能量。

      图  7  不同温度下器件工作在894.6 nm时的光电特性

      Figure 7.  Optical and electrical characteristics of the device operating at 894.6 nm under different temperatures

      此外,使用光束质量分析仪对器件远场进行了测试,如图8所示,由器件工作在55 ℃的远场光斑归一化强度分布、高斯拟合以及三维远场分布可知,器件的发散角约为11.4°,远场光斑符合高斯分布,具有很好的基横模特性。

      图  8  器件的远场光斑分布

      Figure 8.  Far-field spot distribution of the device

    • 通过采用常温下腔模与增益材料失谐12 nm的器件结构设计缩小氧化孔直径至3 μm的方法,研制出可以高温工作的894 nm氧化限制型低阈值电流基横模VCSEL。所制备的VCSEL器件常温下最大输出功率为2.7 mW。当工作温度为55 ℃、注入电流为1.8 mA时,边模抑制比最大为35.16 dB,此时输出功率为0.75 mW。当温度为 65 ℃时,在工作波长894.6 nm处,其边模抑制比大于25 dB,功率大于0.1 mW。环境工作温度55 ℃下,远场发射角为11.4°,具有很好的模式特性。器件能够在高温环境下低阈值、稳定波长工作,验证了在芯片结构上的正确性。该研究为国产激光芯片用于满足芯片原子钟(铯)中应用提供了新的思路和可能。

参考文献 (22)

目录

    /

    返回文章
    返回