-
可调谐单频光纤激光器因其在调谐范围、光信噪比、线宽、噪声和兼容性等方面具有独特的优势,逐渐成为光谱学[1]、光学探测[2]、光学传感[3]、光纤通信[4]等应用领域的主流激光光源。例如:可调谐单频光纤激光器的线宽可达到kHz级,能够满足400 Gb/s及更高速的1 Tbit/s光通信系统对激光光源线宽的要求,在未来全光网络中将起到重要作用[5]。可调谐单频光纤激光器的调谐范围可达数十nm,结合吸收光谱技术以测量气体浓度[6],可广泛用于大气环境监测、工业炉窑节能、能源气回收控制和矿井安全监测等方面。
目前,单频光纤激光器的增益介质是基于不同玻璃基质的稀土离子高掺杂光纤,常见的有:工作于0.9~1.2 μm波段的掺Nd3+或掺Yb3+增益光纤、工作于1.5~1.6 μm波段的掺Er3+增益光纤,以及工作于1.7~2.2 μm波段的掺Tm3+或掺Ho3+增益光纤等。自1991年美国联合技术研究中心的Ball等人[7]首次使用线形短腔在掺Er3+石英光纤中实现单频激光输出以来,经过30余年的发展,研究人员利用不同稀土离子掺杂光纤和谐振腔结构,在单频光纤激光的工作波长拓展方面开展了一系列创新性工作,并取得了显著的进步。
对于一些特殊的应用场合,固定波长的单频光纤激光器已较难满足应用需求。因此,具有波长灵活性的可调谐单频光纤激光器应运而生。若在单频谐振腔内增加波长调谐器件,便可在保证单一纵模(单频)运转的同时,实现波长的可调谐输出。常见的可调谐单频光纤激光器谐振腔一般分为环形腔和线形短腔,而线形短腔又分为分布反馈(DFB)型、分布布拉格反射(DBR)型[8]。其中,线形短腔通常将谐振腔长度限制在厘米量级来增加相邻纵模间隔以选取单一纵模,其结构简单,严格的腔长限制导致其较难实现宽范围调谐;而环形腔和复合腔,可以有效抑制空间烧孔效应,较长的谐振腔使其可以灵活地插入波长可调谐/选模器件,有利于实现单频光纤激光的波长调谐输出。
调谐功能的实现需依赖于波长可调谐器件。常见的波长可调谐器件有光纤布拉格光栅(FBG)[9]、光纤法布里-珀罗(F-P)滤波器[10]、Sagnac环[11]、Lyot型滤波器[12]、马赫-曾德尔(MZI)干涉仪[13]、声光可调滤波器(AOTF)[14]等。通常情况下,由于光路中波长可调谐器件的带宽大,且环形腔腔长较长,使得纵模间隔非常窄,较难直接实现单一纵模工作。因此,选模功能的实现需结合其他措施,例如:插入选模器件或设计合理的腔结构。
文中对实现可调谐单频光纤激光输出的调谐和选模等关键技术进行了简单的介绍,进而总结归纳了1.0、1.5、2.0 μm和中红外等不同波段可调谐单频光纤激光器。从应用背景出发,综述了其国内外研究现状,并展示了在调谐范围、线宽、光信噪比、输出功率、输出功率平坦度等性能指标方面取得的研究成果。此外,阐述了笔者课题组近年来在可调谐单频光纤激光器领域的研究工作,同时介绍了基于复合腔技术实现可调谐单频光纤激光的最新进展,最后展望了可调谐单频光纤激光器未来的发展方向和应用前景。
-
1.0 μm波段可调谐单频光纤激光器通过非线性频率转换可获得蓝绿光[15]、3~5 μm可调谐中红外单频激光,在相干通信[16-17]、医学成像[18]、生物检测[19]、红外对抗和气体探测[20]等方面极具潜力。目前,工作在1.0 μm波段可调谐单频光纤激光器主要基于掺Yb3+或掺Nd3+增益光纤。相比于1.5 μm波段而言,由于波长调谐和选模器件的商用化程度较低,其发展受到一定程度的限制。
线形腔单频光纤激光器因结构简单、紧凑而备受关注,实现其波长可调谐一般通过改变光纤光栅的温度或对光纤光栅加载应力的方式。但由于光纤光栅温度敏感性和机械性能有限,普遍存在调谐范围窄和不利的空间烧孔效应等问题,因而线形腔可调谐单频光纤激光器的研究报道相对较少。2015年,西北大学Lu等人[21]基于动态光栅和环形镜滤波器的线形腔结构,通过调节光纤光栅的温度,获得了调谐范围1063.3~1065.7 nm、功率32 mW的单频激光输出。实验装置如图1所示,通过偏振控制器(PC2)调整腔内两个反向传输波偏振相互垂直以消除空间烧孔效应。
2016年,笔者所在课题组Zhang等人[22]基于厘米量级磷酸盐增益光纤的DBR短腔结构,并对谐振腔进行了精密温控以抑制跳模,通过选择高稳定性的封装材料,在15.8~36.5 ℃温度范围内实现了调谐范围1064.4~1064.6 nm (调谐带宽约149 pm)、功率230 mW的稳定单频激光输出。其实验装置如图2所示。随后2017年,笔者课题组Huang等人[23]同样采用DBR短腔结构,通过自注入锁定和非线性半导体放大器(SOA)降低了激光器的相对强度噪声,在单纵模工作温度范围(>15 ℃)内获得了中心波长978 nm (调谐带宽129 pm)、功率230 mW、线宽10 kHz的低噪声单频激光输出。
尽管基于DBR结构的线形短腔1.0 μm波段可调谐单频光纤激光器通过光纤光栅实现了波长调谐,但制约于腔结构和调谐方式,激光器的调谐范围受到明显限制。常见的1.0 μm波段可调谐单频光纤激光器多采用了工作在行波状态的环形腔或复合腔结构,其较长的腔长不利于选取单一纵模,必须插入选模器件或设计合理的腔结构。再者,要实现宽调谐范围,不仅需要增益介质具有宽的带宽和高的增益系数,而且需要插入合适的器件、优化腔结构以减小腔内损耗。
目前,环形腔或复合腔单频光纤激光技术相对成熟,已有不少通过可饱和吸收体(SA)、光纤光栅滤波器、高精度环形滤波器、环形镜滤波器、梳状滤波器等器件实现单频运转的研究报道。2012年,清华大学Yin等人[11]采用基于未泵浦掺Yb3+光纤的Sagnac环滤波器和可调滤波器的环形腔结构,获得了调谐范围1027~1087 nm、功率2 mW、光信噪比大于50 dB、输出功率波动3 dB以内的单频激光输出。西北大学自2017年始,多次采用未泵浦掺Yb3+光纤的光纤可调滤波器、高精细环形滤波器和环形镜滤波器的复合腔结构,如Lu等人[24]和Ma等人[25]在波长调谐范围1030~1090 nm内分别获得了线宽8.8、8.7 kHz、功率20、18.5 mW的单频激光输出。前者在宽调谐范围内实现了窄线宽激光输出,其实验装置如图3所示。后者由于腔内光器件较多,腔损耗较大,导致激光器的斜率效率偏低。
2018年,澳大利亚查尔斯特大学Honzatko等人[26]采用光纤光栅滤波器和光纤环形谐振滤波器的低损耗环形腔结构,获得了调谐范围1023~1107 nm、线宽600 Hz的单频激光输出,其调谐带宽达74 nm,这是1.0 μm波段目前公开报道的最宽调谐范围。其实验装置图、输出功率与波长的关系曲线分别如图4(a)和(b)所示。
此外,还有依赖游标效应的新型腔结构以实现单频的研究报道,如:采用多环复合腔、双环形器、非对称环形复合腔等腔结构。2011年,清华大学Yin等人[27]采用多个环形腔结构:在主环形腔中插入两个短环形腔作为宽带模式滤波器以确保单频运转,以及可调带通滤波器作为调谐器件,实现了调谐范围1020~1080 nm、功率100 mW、输出功率平坦的单频激光输出,其实验装置如图5所示。2019年,西北大学的Wang等人[28]报道了一种基于新型双环形器干涉仪(DCI)结构的激光器,利用DCI内部的两个环形器和未泵浦增益光纤形成动态光栅,获得了调谐范围1040~1080 nm、线宽2.82 kHz、光信噪比47~54 dB的单频激光输出。2021年,西北大学Ding等人[29]采用光纤环形器、光纤可调滤波器和光纤环形滤波器的非对称环形复合腔,获得了调谐范围1020~1090 nm、线宽3.325 kHz、光信噪比大于50 dB的单频激光器。由于腔内光器件较少,有效缩短了腔长,并减小了腔内损耗。
由此可见,环形腔或复合腔可调谐单频光纤激光器得益于较长的腔长,可灵活地插入调谐与选模器件或设计合适的腔结构以实现可调谐单频激光输出;但也不可避免地导致了腔结构复杂、腔内损耗大,从而使调谐范围难以进一步加宽。因此,需要继续优化腔结构、减小腔内损耗来提升激光器的输出性能。
掺Yb3+光纤在1.0 μm波长附近具有近100 nm的宽增益带宽,是可调谐激光产生的理想增益介质。1.0 μm波段可调谐单频光纤激光器的研究成果如表1所示。从表中可以发现,基于光纤光栅的线形短腔结构简单,但可调谐带宽较窄、输出功率较低;基于环形腔或复合腔其结构复杂,但调谐范围相对较宽。
表 1 1.0 μm波段可调谐单频光纤激光器的研究成果
Table 1. Research results of tunable single-frequency fiber lasers in 1.0 μm band
Year System structure Tuning range/nm Power/mW Reference 2015 DBR cavity; Tunable fiber grating 1063.3-1065.7 32 [21] 2016 DBR cavity; Tunable fiber grating 1064.4-1064.6 30 [22] 2017 DBR cavity; SOA 977.856-977.985 230 [23] 2012 Annular cavity; Sagnac loop 1027-1087 2 [11] 2017 Compound cavity; Sagnac loop 1030-1090 20 [24] 2019 Compound cavity; Tunable bandpass filter 1030-1090 18.5 [25] 2018 Compound cavity; FRRF 1023-1107 - [26] 2011 Passive multiple-ring cavity 1020-1080 100 [27] 2020 Annular cavity; Tunable filter 1030-1085 1.09 [28] 2021 Tunable filter; Compound cavity 1020-1090 - [29] -
目前,1.5 μm波段单频光纤激光器主要使用掺Er3+或Er3+/Yb3+共掺光纤作为增益介质,其在高分辨率分子光谱学[30]、激光雷达[31]和全息成像[32]等方面具有广泛的应用前景。尤其是其波长覆盖了光纤通信的C窗口,使得宽调谐范围的1.5 μm波段可调谐单频光纤激光在相干通信领域亦有着重要意义[33]。
尽管线形短腔1.5 μm波段可调谐单频光纤激光器的研究早有报道[34-35],但同样面临受限于腔结构的问题,此后发展缓慢。值得注意的是与前面厘米量级线形短腔不同,早在2001年,韩国科学技术院Chang等人[36]采用基于AOTF和SA的线形腔结构(腔长21 m),获得了调谐范围1522~1562 nm、光信噪比大于50 dB的单频激光输出。其实验装置如图6所示,其中AOTF同时作为移频器,起到了消除空间烧孔效应的作用。
环形腔或复合腔1.5 μm波段可调谐单频光纤激光器的研究与发展尤为迅速,且技术更为成熟。其主要工作波段包括:S波段(1460~1530 nm)、C波段(1530~1565 nm)和L波段(1565~1605 nm)等。
早期,实现S波段可调谐单频激光输出的装置结构复杂,如多个环形腔或插入复杂器件,引入了较大的腔损耗。2007年,台湾交通大学Yeh等人[37]采用光纤F-P可调滤波器的三环腔结构,通过控制不同腔的长度来选择单一纵模,获得了调谐范围1481~1521 nm、功率3.6 dBm的单频激光输出。2012年,马来西亚马来亚大学Ahmad等人[38]采用SA和光纤光栅的环形腔结构,获得了调谐范围1496~1507 nm、功率−0.7 dBm的单频激光输出。由于增益光纤在S波段增益较低,难以实现高稳定、高功率的可调谐单频激光输出。
C波段可调谐单频光纤激光器在相干光通信领域有着重要应用。由于增益介质在C波段表现出较高的增益和最低的损耗,相关研究报道中调谐范围可基本覆盖C波段,在此基础上进一步提升激光性能(低噪声、窄线宽、高功率、高调谐精度等)还有巨大的空间。2016年,笔者课题组Zhang等人[39]基于短腔自注入锁定的复合腔结构,通过使用啁啾光纤光栅F-P干涉仪和光纤F-P可调滤波器获得了调谐范围1527~1563 nm、线宽小于700 Hz、输出功率平坦的低噪声、线偏振单频激光输出。为进一步提高调谐精度,2021年,课题组Huang等人[40]采用基于自注入锁定和光纤布拉格光栅F-P腔的复合腔结构,通过拉伸光纤光栅获得了调谐范围1550.28~1560.40 nm、调谐精度小于54 pm、功率5 mW的单频激光输出,调谐范围亦受限于光纤光栅。
可调带通滤波器作为一种常见的调谐器件被用于可调谐光纤激光器,如:2018和2021年,马来西亚博特拉大学Mohamed等人[41]和肇庆学院Wang等人[42]均采用可调带通滤波器实现了波长可调谐,分别获得了调谐范围1522~1563、1535~1565 nm、线宽1.19、8.5 kHz的单频激光输出。前者级联不同锥形光纤作为窄带滤波器,且通过高增益的Ga3+/Er3+共掺光纤缩短了腔长,有利于实现单频运转。后者实验装置如图7所示,复合腔增加了纵模间距,简化了腔结构,并且加宽了波长可调谐范围。
基于未泵浦增益光纤的SA作为一种常见的选模器件,被广泛用于可调谐单频光纤激光器中,如:2017年,台湾逢甲大学Yeh等人[43]采用未泵浦掺Er3+光纤和可调带通滤波器的自注入锁定环形腔结构,获得了调谐范围1525.0~1574.0 nm、功率−7.1~2.1 dBm的单频激光输出。另外,在其他波段都有采用类似器件的研究报道[11,24,44]。随着石墨烯的发现,作为SA的二维材料得到了飞速发展,二维材料亦可作为可调谐单频光纤激光器的选模器件。自2012年始,马来西亚马来亚大学Ahmad等人[45]和伊斯兰大学Li等人[46]分别采用石墨烯和单壁碳纳米管作为SA,先后获得了调谐范围1547.88~1559.88、1525~1561 nm的单频光纤激光输出。与传统的未泵浦增益光纤相比,二维材料的宽吸收光谱、光热效应和非线性吸收更有利于获得线宽窄、单色性好、相干性高的可调谐单频激光输出。
随着应用领域的不断拓展,要在实现单频运转的同时覆盖C+L波段的更宽调谐范围成为一大技术挑战。2018年,重庆大学Huang等人[47]采用窄带滤波器和光纤光栅的新型微球谐振腔结构,获得了调谐范围1530~1570 nm、线宽5 kHz、输出功率波动约4 dB的单频激光输出。2021年,笔者课题组Huang等人[48]采用F-P可调滤波器、光纤F-P干涉仪和动态光栅的复合腔结构,获得了调谐范围1535.50~1612.19 nm、线宽小于310 Hz的单频激光输出。其实验装置如图8所示。除了增益光纤具有足够的增益能力之外,宽的调谐范围还得益于使用的集成光器件和较短的未泵浦掺Er3+光纤,它们共同起到了缩短腔长和减小腔内损耗的作用。
此外,高功率1.5 μm波段单频光纤激光器广泛应用于在相干合成、非线性频率转换等领域[49],但可调谐单频光纤振荡器(种子源)的功率限制在毫瓦级。为提升输出功率常采用种子源结合主振荡功率放大(MOPA)结构,如:2021年,法国波尔多大学Darwich等人[50]采用MOPA结构,获得了调谐范围1533~1571 nm、功率10 W的单频激光输出。
基于掺Er3+光纤的增益介质,其宽的发射谱有利于实现波长的调谐,特别是在光纤通信中最低损耗窗口(1550 nm处)具有很高的增益。从上述研究报道可以看出:S波段受到增益介质本身增益光谱的限制,难以低成本地实现高性能的可调谐单频光纤激光器;C波段应用最为广泛,商用器件制备和腔结构设计技术都较为成熟,通过优化腔结构、减小腔内损耗来获得宽调谐、高功率输出,同时高性能的可调谐单频光纤激光输出也成为重要的研究方向;C+L波段,需要选择合适的调谐/选模器件和腔结构,从而减小腔内损耗以获得超宽调谐范围输出。1.5 μm波段可调谐单频光纤激光器的研究成果如表2所示。从表中可以发现,1.5 μm波段可调谐单频光纤激光器一直受到国内外研究学者的广泛关注。
表 2 1.5 μm波段可调谐单频光纤激光器的研究成果
Table 2. Research results of tunable single-frequency fiber lasers in 1.5 μm band
Year System structure Tuning range/nm Power/mW Reference 2001 Tunable filter; SA 1522-1562 - [36] 2007 Passive three ring cavity; Tunable filter 1481-1521 2.3 [37] 2012 Ring cavity; SA 1496-1507 - [38] 2016 F-P cavity filter; SA 1527-1563 - [39] 2021 Self injection locking; FBG 1550.28-1560.40 5 [40] 2018 Cascaded fiber; Tunable filter 1522-1563 - [41] 2020 Composite cavity; Chirped fiber grating 1535-1565 - [42] 2017 Unpumped fiber SA 1525.0-1574.0 1.6 [43] 2012 Graphene SA 1547.88-1559.88 - [45] 2020 Single wall carbon nanotube SA 1525-1561 - [46] 2018 Silicon-micro-ring-resonator 1530-1570 - [47] 2021 Composite cavity; F-P tunable filter 1535.50-1612.19 - [48] -
目前,2.0 µm波段可调谐单频光纤激光器主要使用掺Tm3+或Tm3+/Ho3+共掺光纤作为增益介质,该波段处于人眼安全波段,对应很多化学气体和水的吸收峰以及大气透过窗口[51],在医学[52,53]、激光雷达[54]、大气遥感[55]以及通信[56]等领域有着非常广泛的应用。
受限于调谐/选模器件的缺乏,2.0 µm波段可调谐单频光纤激光器的研究起步较晚。2013年,笔者课题组He等人[44]采用未泵浦掺Tm3+光纤的环形腔结构,通过加载应力于光纤光栅上,获得了调谐范围1949.55~1951.23 nm、线宽7 kHz、功率200 mW的单频激光输出,调谐范围受限于光纤光栅。其实验装置如图9所示。2017年,浙江大学Yin等人[57]采用超窄滤波器和F-P可调谐光纤滤波器的环形腔结构,获得了调谐范围1920~2020 nm、功率40 mW、输出功率较平坦的单频激光输出。2020年,西北核技术研究院Tao等人[53]采用Tm3+/Ho3+共掺光纤和可调谐F-P滤波器的环形腔结构,获得了调谐范围1 840~1 900 nm、线宽0.05 nm的单频激光输出。与此前该课题组研究[58]相比,其调谐范围一致,但采用SA后,线宽明显压缩,且通过偏振控制可实现了单频输出。
此外,高功率2.0 µm波段可调谐单频光纤激光器在非线性频率转换领域亦有着重要的应用。2019年,美国佛罗里达大学Roumayah等人[59]采用了可调谐振荡器结合MOPA结构,获得了调谐范围1 900~2 000 nm、线宽100 kHz、功率100 W的单频光纤激光输出。
从目前的研究报道来看,基于掺Tm3+增益光纤已成为2.0 μm波段可调谐单频光纤激光器的主流方向之一,其具有增益带宽宽而易调谐的优点。2.0 μm波段调谐单频光纤激光器的研究结果如表3所示。从表中可以发现,该波段调谐范围较宽,主要得益于具有较宽光谱范围的掺Tm3+增益光纤;但工作于该波段的调谐/选模器件其制备工艺还不够成熟、商业化程度不高,在一定程度上限制了2.0 μm波段调谐单频光纤激光器的输出性能。
-
中红外波段可调谐单频激光器在材料加工[60]、激光外科[61]、远程光谱传感[62]和非线性中红外光子学[63]等领域的应用日益广泛,越来越受到人们的关注。与光参量振荡单频激光器[64]和量子级联半导体激光器[65]相比,基于氟化物(ZBLAN)光纤的中红外波段单频光纤激光器具有光束质量好、转换效率高、散热性能好、封装紧凑等优点。
2015年,加拿大拉瓦尔大学Vincent等人[66]采用掺Er3+的ZBLAN双包层光纤和π相移均匀光纤光栅的DFB腔结构,获得了调谐范围2794.1~2795 nm、线宽20 kHz、功率12 mW的单频激光输出。直至2021年,浙江大学Lu等人[67]采用掺Er3+的ZBLAN光纤和衍射光栅的复合腔结构,通过旋转光栅,获得了调谐范围2705~2806 nm、功率450 mW、输出功率平坦的单频激光输出。其实验装置如图10所示,该结构具有制作简单、成本低、调谐范围宽、输出功率高的优点。
由此可见,中红外波段可调谐单频光纤激光器通常采用稀土离子掺杂的ZBLAN光纤作为激光增益介质。中红外波段可调谐单频光纤激光器相比于前面三种波段的激光器段研究报道更少,但应用广泛,极具潜力成为未来可调谐光纤激光器的研究与发展热点之一。
-
自单频光纤激光器出现以来,其激光波长的可调谐成为了研究的热点之一。具有波长调谐性能的单频光纤激光器在相干光谱合成、原子冷却、相干多普勒激光雷达、分布式光纤传感等诸多方面具有重要应用价值。当前可调谐单频光纤激光器正朝着更宽调谐范围、极窄线宽、低噪声、高输出功率等方面深入发展,并取得了不错的成果,但也存在一些不足:(1)线形短腔结构,受到腔结构和调谐方式的限制,难以获得宽的调谐范围,需进一步完善技术来实现调谐功能;(2)环形腔或复合腔,须插入调谐/选模器件,腔内损耗较大,需优化腔结构和减小腔内损耗以期获得更大调谐范围、高稳定性的激光输出;(3)对于2.0 μm波段可调谐单频光纤激光器,调谐/选模器件的制备工艺还不够成熟、商业化程度不高,需进一步推动其技术的研究;(4)中红外波段可调谐单频光纤激光器中采用的ZBLAN光纤由于掺杂浓度低和存在的热效应问题,影响其激光输出性能,需进一步优化光纤以提高调谐性能。
总之,未来发展方向是实现更宽调谐范围、更窄线宽、更高功率的可调谐单频光纤激光技术,这些方向也必将为光纤激光器提供更广阔的应用前景,获得更高的应用价值。
Research progress of tunable single-frequency fiber lasers (Invited)
-
摘要: 可调谐单频光纤激光器具有调谐范围宽、光信噪比高、线宽窄、噪声低和兼容性好等特点,在光谱学、光学探测、光学传感、光纤通信等领域有着重要的应用价值,引起了国内外研究者的广泛关注。简单介绍了可调谐单频光纤激光的调谐和选模关键技术,对1.0、1.5、2.0 μm和中红外等不同波段的可调谐单频光纤激光器进行了总结与归纳,综述了其国内外研究现状,并展示了其在调谐范围、激光线宽、光信噪比、输出功率、输出功率平坦度等性能指标方面取得的成果。此外,结合笔者课题组近年来在可调谐单频光纤激光器方面的研究工作,介绍了基于复合腔结构实现可调谐单频光纤激光的最新进展,并展望了可调谐单频光纤激光器的未来发展趋势。Abstract: Tunable single-frequency fiber lasers (TSFFLs) possess the characteristics of wide tuning range, high optical signal-to-noise ratio (OSNR), narrow linewidth, low noise, and excellent compatibility. They also have attracted extensive attention from researchers at home and abroad because of their important application value in the spectroscopy, optical detection, optical sensing, fiber communication and so on. In this paper, the tuning and longitudinal-mode selection key techniques of TSFFLs were introduced briefly. The TSFFLs with different wavelengths of 1.0 μm, 1.5 μm, 2.0 μm, and mid-infrared were summarized and their research status at home and abroad was reviewed. The results obtained in tuning range, laser linewidth, OSNR, power scaling, flatness of output power, and other output performances were also shown. In addition, combined with our new progress, the recent development of TSFFLs based on compound cavity structure was introduced. Furthermore, the future development trend of TSFFLs was also forecasted.
-
Key words:
- tunable /
- single-frequency /
- fiber laser /
- filter
-
表 1 1.0 μm波段可调谐单频光纤激光器的研究成果
Table 1. Research results of tunable single-frequency fiber lasers in 1.0 μm band
Year System structure Tuning range/nm Power/mW Reference 2015 DBR cavity; Tunable fiber grating 1063.3-1065.7 32 [21] 2016 DBR cavity; Tunable fiber grating 1064.4-1064.6 30 [22] 2017 DBR cavity; SOA 977.856-977.985 230 [23] 2012 Annular cavity; Sagnac loop 1027-1087 2 [11] 2017 Compound cavity; Sagnac loop 1030-1090 20 [24] 2019 Compound cavity; Tunable bandpass filter 1030-1090 18.5 [25] 2018 Compound cavity; FRRF 1023-1107 - [26] 2011 Passive multiple-ring cavity 1020-1080 100 [27] 2020 Annular cavity; Tunable filter 1030-1085 1.09 [28] 2021 Tunable filter; Compound cavity 1020-1090 - [29] 表 2 1.5 μm波段可调谐单频光纤激光器的研究成果
Table 2. Research results of tunable single-frequency fiber lasers in 1.5 μm band
Year System structure Tuning range/nm Power/mW Reference 2001 Tunable filter; SA 1522-1562 - [36] 2007 Passive three ring cavity; Tunable filter 1481-1521 2.3 [37] 2012 Ring cavity; SA 1496-1507 - [38] 2016 F-P cavity filter; SA 1527-1563 - [39] 2021 Self injection locking; FBG 1550.28-1560.40 5 [40] 2018 Cascaded fiber; Tunable filter 1522-1563 - [41] 2020 Composite cavity; Chirped fiber grating 1535-1565 - [42] 2017 Unpumped fiber SA 1525.0-1574.0 1.6 [43] 2012 Graphene SA 1547.88-1559.88 - [45] 2020 Single wall carbon nanotube SA 1525-1561 - [46] 2018 Silicon-micro-ring-resonator 1530-1570 - [47] 2021 Composite cavity; F-P tunable filter 1535.50-1612.19 - [48] -
[1] Yan Z Y, Sun B, Li X H, et al. Widely tunable Tm-doped mode-locked all-fiber laser [J]. Scientific Reports, 2016, 6(1): 27245. doi: https://doi.org/10.1038/srep27245 [2] Grassani D, Tagkoudi E, Guo H, et al. Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum [J]. Nature Communications, 2019, 10(1): 1553. doi: 10.1038/s41467-018-07882-8 [3] Jeon M Y, Kim N, Shin J, et al. Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation [J]. Optics Express, 2010, 18(12): 12291-12297. doi: 10.1364/OE.18.012291 [4] Ahmad H, Albaqawi H S, Yusoff N, et al. 56 nm wide-band tunable Q-switched erbium doped fiber laser with tungsten ditelluride (WTe2) saturable absorber [J]. Scientific Reports, 2020, 10(1): 9860. doi: https://doi.org/10.1038/s41598-020-66664-9 [5] Ripin D J, Goldberg L. High efficiency side-coupling of light into optical fibres using imbedded v-grooves [J]. Electronics Letters, 1995, 31(25): 2204-2205. doi: 10.1049/el:19951429 [6] Pal A, Sen R, Bremer K, et al. “All-fiber” tunable laser in the 2 μm region, designed for CO2 detection [J]. Applied Optics, 2012, 51(29): 7011-7015. doi: 10.1364/AO.51.007011 [7] Ball G A, Morey W W, Glenn W H. Standing-wave monomode erbium fiber laser [J]. IEEE Photonics Technology Letters, 1991, 3(7): 613-615. doi: 10.1109/68.87930 [8] Zhang J S, Pei L, Wei D P, et al. Review of single-frequency DBR and DFB fiber lasers [J]. Journal of Optoelectronics·Laser, 1998, 9(4): 352-355. (in Chinese) [9] Liaw S K, Jang W Y, Wang C J, et al. Pump efficiency improvement of a C-band tunable fiber laser using optical circulator and tunable fiber gratings [J]. Applied Optics, 2007, 46(12): 2280-2285. doi: 10.1364/AO.46.002280 [10] Zheng L, Vaillancourt J, Lu X. Thermo-optically tunable fiber ring laser without any mechanical moving parts [J]. Optical Engineering, 2006, 45(7): 070503. doi: 10.1117/1.2219737 [11] Yin F F, Yang S G, Chen H W, et al. Tunable single-longitudinal-mode ytterbium all fiber laser with saturable-absorber-based auto-tracking filter [J]. Optics Communications, 2012, 285(10): 2702-2706. [12] Bai H Y, Yin T C, Jiang X G, et al. A widely tunable single-longitudinal-mode ytterbium-doped fiber laser based on fiber Lyot filter [J]. Laser Physics, 2018, 28(9): 95105. doi: 10.1088/1555-6611/aac8be [13] Wang X Z, Li Y, Bao X Y, et al. C- and L-band tunable fiber ring laser using a two-taper Mach–Zehnder interferometer filter [J]. Optics Letters, 2010, 35(20): 3354-3356. doi: 10.1364/OL.35.003354 [14] Kang M S, Lee M S, Yong J C, et al. Characterization of wavelength-tunable single-frequency fiber laser employing acoustooptic tunable filter [J]. Journal of Lightwave Technology, 2006, 24(4): 1812-1823. doi: 10.1109/JLT.2006.871031 [15] Dang W J, Gao Q, Li Z, et al. Research progress of tunable fiber light sources with wavelength near 1 μm [J]. Chinese Optics, 2021, 14(5): 1120. (in Chinese) doi: 10.37188/CO.2021-0125 [16] Sheth R, Balesh E R, Zhang Y S, et al. Three-dimensional printing: an enabling technology for IR [J]. Journal of Vascular and Interventional Radiology, 2016, 27(6): 859-865. doi: 10.1016/j.jvir.2016.02.029 [17] Fletcher A S, Hamilton S A, Moores J D. Under sea laser communication with narrow beams [J]. IEEE Communications Magazine, 2015, 53(11): 49-55. doi: 10.1109/MCOM.2015.7321971 [18] Dang W J, Li Z, Lu N, et al. Research progress of 0.9~1.0 μm near-infrared continuous-wave fiber lasers [J]. Chinese Optics, 2021, 14(2): 264. (in Chinese) doi: 10.37188/CO.2020-0193 [19] Hansen A K, Christensen M, Noordegraf D, et al. Efficient generation of 1.9 W yellow light by cascaded frequency doubling of a distributed Bragg reflector tapered diode [J]. Applied Optics, 2016, 55(32): 9270-9274. doi: 10.1364/AO.55.009270 [20] Jia K P, Wang X H, Guo J, et al. Midinfrared tunable laser with noncritical frequency matching in box resonator geometry [J]. Physical Review Letters, 2021, 127: 213902. doi: 10.1103/PhysRevLett.127.213902 [21] Lu B L, Huang S H, Yin M J, et al. Wavelength-tunable single frequency ytterbium-doped fiber laser with loop mirror filter [J]. Chinese Physics Letters, 2015, 32(4): 54-57. [22] Zhang Y L, Li C, Xu S H, et al. A broad continuous temperature tunable DBR single-frequency fiber laser at 1064 nm [J]. IEEE Photonics Journal, 2016, 8(2): 1-7. [23] Huang Z P, Deng H Q, Yang C S, et al. Self-injection locked and semiconductor amplified ultrashort cavity single-frequency Yb3+-doped phosphate fiber laser at 978 nm [J]. Optics Express, 2017, 25(2): 1535-1541. doi: 10.1364/OE.25.001535 [24] Lu B L, Kang J, Qi X Y, et al. High-stability broadband wavelength-tunable single-frequency ytterbium-doped all-fiber compound ring cavity [J]. IEEE Photonics Journal, 2017, 9(2): 1-8. [25] Ma X X, Lu B L, Wang K L, et al. Tunable broadband single-frequency narrow-linewidth fiber laser [J]. Acta Optica Sinica, 2019, 39(1): 0114001. (in Chinese) doi: 10.3788/AOS201939.0114001 [26] Honzatko P, Baravets Y, Myakalwar A K, et al. Single-frequency fiber laser based on a fiber ring resonator filter tunable in a broad range from 1023 nm to 1107 nm [J]. Optics Letters, 2018, 43(6): 1339-1342. doi: 10.1364/OL.43.001339 [27] Yin F F, Yang S G, Chen H W, et al. 60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity [J]. IEEE Photonics Technology Letters, 2011, 23(22): 1658-1660. doi: 10.1109/LPT.2011.2166112 [28] Wang K L, Lu B L, Qi X Y, et al. Wavelength-tunable single-frequency ytterbium-doped fiber laser based on a double-circulator interferometer [J]. Laser Physics Letters, 2019, 16(1): 015104. doi: 10.1088/1612-202X/aaf175 [29] Ding J Y, Chen H W, Bai J T. Research of tunable single-frequency fiber laser based on ring filter [J]. Progress in Laser and Optoelectronics, 2021, 58(13): 1314003. (in Chinese) doi: 10.3788/LOP202158.1314003 [30] Deng Y, Yao B Q, Ju Y L, et al. A diode-pumped 1617 nm single longitudinal mode Er: YAG laser with intra-cavity etalons [J]. Chinese Physics Letters, 2014, 31(7): 074202. doi: 10.1088/0256-307X/31/7/074202 [31] Chen Y E, Wang Y. Ultralow-noise tunable single-frequency fiber laser [J]. Optics and Precision Engineering, 2013, 21(5): 1110-1115. (in Chinese) doi: 10.3788/OPE.20132105.1110 [32] Dubois F, Requena M, Minetti C, et al. Partial spatial coherence effects in digital holographic microscopy with a laser source [J]. Applied Optics, 2004, 43(5): 1131-1139. doi: 10.1364/AO.43.001131 [33] Jia X J, Guo Z C, Fu S G, et al. Experimental investigation on Er3+/Yb3+ co-doped double-clad high-power fiber laser in L-band [J]. Optics and Precision Engineering, 2006, 14(3): 341-345. (in Chinese) [34] Ball G A, Morey W W. Continuously tunable single-mode erbium fiber laser [J]. Optics Letters, 1992, 17(6): 420-422. doi: 10.1364/OL.17.000420 [35] Ball G A, Morey W W. Compression-tuned single-frequency Bragg grating fiber laser [J]. Optics Letters, 1994, 19(23): 1979-1981. doi: 10.1364/OL.19.001979 [36] Chang S H, Hwang I K, Kim B Y, et al. Widely tunable single-frequency Er-doped fiber laser with long linear cavity [J]. IEEE Photonics Technology Letters, 2001, 13(4): 287-289. doi: 10.1109/68.917827 [37] Yeh C H, Huang T T, Chien H C, et al. Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation [J]. Optics Express, 2007, 15(2): 382-386. doi: 10.1364/OE.15.000382 [38] Ahmad H, Zulkifli M Z, Latif A A, et al. Tunable single longitudinal mode S-band fiber laser using a 3 m length of erbium-doped fiber [J]. Journal of Modern Optics, 2012, 59(3): 268-273. doi: 10.1080/09500340.2011.626900 [39] Zhang Y N, Zhang Y F, Zhao Q L, et al. Ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser [J]. Optics Express, 2016, 24(23): 26209-26214. doi: 10.1364/OE.24.026209 [40] Huang L H, Guan Z, Yang C S, et al. High-precision tunable single-frequency fiber laser at 1.5 μm based on self-injection locking [J]. IEEE Photonics Technology Letters, 2021, 34(12): 633-636. [41] Mohamed Halip N H, Abu Bakar M H, Latif A A, et al. A narrow linewidth tunable single longitudinal mode Ga-EDF fiber laser [J]. Optics and Laser Technology, 2018, 101: 413-418. doi: 10.1016/j.optlastec.2017.11.044 [42] Wang L, Shen Z K, Feng X H, et al. Tunable single-longitudinal-mode fiber laser based on a chirped fiber Bragg grating [J]. Optics & Laser Technology, 2020, 121: 105775. [43] Yeh C H, Huang T J, Yang Z Q, et al. Stable single-longitudinal-mode erbium fiber ring laser utilizing self-injection and saturable absorber [J]. IEEE Photonics Journal, 2017, 9(6): 1-6. [44] He X, Xu S, Li C, et al. 1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber [J]. Optics Express, 2013, 21(18): 20800-20805. doi: 10.1364/OE.21.020800 [45] Ahmad H, Muhammad F D B, Zulkifli M Z, et al. Radio frequency generation using a graphene-based single longitudinal mode fiber laser [J]. Lightwave Technology, 2012, 30(13): 2097-2102. doi: 10.1109/JLT.2012.2192099 [46] Zulkifli M Z, Muhammad F D, Mohd Azri M F, et al. Tunable passively Q-switched ultranarrow linewidth erbium-doped fiber laser [J]. Results in Physics, 2020, 16: 102949. doi: 10.1016/j.rinp.2020.102949 [47] Huang L G, Chang P F, Li X T, et al. All-fiber narrow-linewidth ring laser with continuous and large tuning range based on microsphere resonator and fiber Bragg grating [J]. Optics Express, 2018, 26(25): 32652-32661. doi: 10.1364/OE.26.032652 [48] Huang L H, Yang C S, Tan T Y, et al. Sub-kHz-linewidth wavelength-tunable single-frequency ring-cavity fiber laser for C- and L-band operation [J]. Journal of Lightwave Technology, 2021, 39(14): 4794-4799. doi: 10.1109/JLT.2021.3074824 [49] Tang N, Zhou Z Y, Li Z X, et al. 10 Watt-level tunable narrow linewidth 1.5 μm all-fiber amplifier [J]. High Power Laser Science and Engineering, 2018, 6(2): 154-158. [50] Darwich D, Bardin Y V, Goeppner M, et al. Ultralow-intensity noise, 10 W all-fiber single-frequency tunable laser system around 1550 nm [J]. Applied Optics, 2021, 60(27): 8550-8555. doi: 10.1364/AO.435274 [51] Jackson S D. The spectroscopic and energy transfer characteristics of rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared [J]. Laser & Photonics Reviews, 2009, 3(5): 466-482. [52] Fried N M, Dawson J W, Blackmon R L, et al. A review of thulium fiber laser ablation of kidney stones [C]//Fiber Lasers VIII: Technology, Systems, and Applications, 2011, 7914: 791402. [53] Tao M M, Tao B, Ye J F, et al. Linewidth compression of tunable Tm-doped fiber laser and its hyperspectral absorption application [J]. Acta Physica Sinica, 2020, 69(3): 034205. (in Chinese) doi: 10.7498/aps.69.20191515 [54] Young R, Barnes N P. Profiling atmospheric water vapor using a fiber laser lidar system [J]. Applied Optics, 2010, 49(4): 562-567. doi: 10.1364/AO.49.000562 [55] Bremer K, Pal A, Yao S, et al. Sensitive detection of CO2 implementing tunable Tm-doped all fiber laser [J]. Applied Optics, 2013, 52(17): 3957-3963. doi: 10.1364/AO.52.003957 [56] Li Z, Heidt A M, Daniel J, et al. Thulium doped fiber amplifier for optical communication at 2 μm [J]. Optics Express, 2013, 21(8): 9289-9297. doi: 10.1364/OE.21.009289 [57] Yin T C, Wei Y Z, Mei W D. Widely wavelength-tunable single-longitudinal-mode thulium-doped fiber laser incorporating a saturable absorber [C]//2017 Asia Communications and Photonics Conference (ACP). IEEE, 2017: 1-3. [58] Tao M M, Tao B, Yu T, et al. Output characteristics of tunable Tm-doped fiber lasers [J]. Infrared and Laser Engineering, 2016, 45(12): 1205002. (in Chinese) doi: 10.3788/IRLA201645.1205002 [59] Roumayah P, Cook J, Sincore A, et al. Single frequency widely tunable high power thulium fiber laser (Conference Presentation) [C]//Fiber Lasers XVI: Technology and Systems, 2019, 10897. [60] Geng J H, Jiang S B. Fiber lasers: the 2 μm market heats up [J]. Optics & Photonics News, 2014, 25(7): 34. [61] Boulnois J L. Photophysical processes in recent medical laser developments: A review [J]. Lasers in Medical Science, 1986, 1: 47. [62] Li J, Parchatka U, Fischer H. A formaldehyde trace gas sensor based on a thermoelectrically cooled CW-DFB quantum cascade laser [J]. Analytical Methods, 2014, 6: 5483-5488. doi: 10.1039/C3AY41964A [63] Kang Z, Mei C, Zhang L Q, et al. Advanced progress on χ(3) nonlinearity in chip-scale photonic platforms (Invited Review) [J]. Progress in Electromagnetics Research, 2021, 170: 17-62. doi: 10.2528/PIER20122108 [64] Lai J Y, Guo H T, Chen Y C, et al. Single-frequency mod-hop free tunable 3 μm laser pumped by a 2 W diode for isotopic gas sensing [C]//CLEO: Applications and Technology, 2018: 13-18. [65] Meng W, Hosoda T, Shterengas L, et al. External cavity cascade diode lasers tunable from 3.05 to 3.25 μm [J]. Optical Engineering, 2017, 57(1): 011012. [66] Michaudbelleau V, Bernier M, Fortin V, et al. Tunable single-frequency DFB fiber laser at 2.8 μm [C]//Lasers & Electro-optics. IEEE, 2015: SW1 L. 4. [67] Lu Y, Jiang X G, Chen F H, et al. Widely wavelength-tunable high power single-longitudinal-mode fiber laser in mid-infrared waveband [J]. Applied Sciences, 2021, 11(5): 2073. doi: 10.3390/app11052073 -