留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机载红外成像系统主支撑结构新型轻量化设计方法与应用

李延伟 殷龙海 李玉龙 谢新旺 张景国 谢虹波

李延伟, 殷龙海, 李玉龙, 谢新旺, 张景国, 谢虹波. 机载红外成像系统主支撑结构新型轻量化设计方法与应用[J]. 红外与激光工程, 2022, 51(11): 20220232. doi: 10.3788/IRLA20220232
引用本文: 李延伟, 殷龙海, 李玉龙, 谢新旺, 张景国, 谢虹波. 机载红外成像系统主支撑结构新型轻量化设计方法与应用[J]. 红外与激光工程, 2022, 51(11): 20220232. doi: 10.3788/IRLA20220232
Li Yanwei, Yin Longhai, Li Yulong, Xie Xinwang, Zhang Jingguo, Xie Hongbo. New lightweight design method and application of main support structure in airborne infrared imaging system[J]. Infrared and Laser Engineering, 2022, 51(11): 20220232. doi: 10.3788/IRLA20220232
Citation: Li Yanwei, Yin Longhai, Li Yulong, Xie Xinwang, Zhang Jingguo, Xie Hongbo. New lightweight design method and application of main support structure in airborne infrared imaging system[J]. Infrared and Laser Engineering, 2022, 51(11): 20220232. doi: 10.3788/IRLA20220232

机载红外成像系统主支撑结构新型轻量化设计方法与应用

doi: 10.3788/IRLA20220232
基金项目: 国家重点研发计划(2016YFB0500301)
详细信息
    作者简介:

    李延伟,男,研究员,博士,主要从事光学精密仪器总体设计、光机系统设计方面的研究

    通讯作者: 殷龙海,男,高级工程师,博士,主要从事大口径非球面高效加工工艺方面的研究。
  • 中图分类号: TH761.1

New lightweight design method and application of main support structure in airborne infrared imaging system

  • 摘要: 由于载机负载有限,质量一直是机载成像系统结构设计时的关键指标。主支撑结构作为机载成像系统中光学系统的主承力结构,必须进行轻量化设计。但是,以往机载成像系统主支撑结构轻量化设计方法主要包括选择比刚度高的金属材料、优化框架结构布局、调整壁厚、增加减重槽等具体措施。由于金属材料的密度和线膨胀系数较高,这种轻量化设计方法的轻量化程度不高,且有时无法满足高精度光学系统无热化设计的要求。因此,提出了一种复合材料与金属材料相结合的新型轻量化设计方法,利用更低密度、更低线膨胀系数的碳纤维复合材料作为主支撑结构成型材料,钛合金作为对外接口材料,并以质量最轻为目标、基频为约束进行了参数优化设计,最后采用预浸料制造与铺放方法获得了更高轻量化、更优尺寸稳定性的主支撑结构。通过数值计算、仿真分析与振动试验对新方法的有效性进行了验证,结果表明:新型轻量化主支撑系统基频为425 Hz;质量为10.5 kg,轻量化率为33.5%;60 ℃均匀温升时轴向光学间隔变化量为0.021 mm,降低了84.9%。研究结果表明:新型轻量化设计方法合理、有效,解决了结构轻量化与光学无热化设计的难题,并应用到长焦距大口径机载红外成像系统中。
  • 图  1  主支撑系统安装示意图

    Figure  1.  Schematic diagram of main support system installation

    图  2  主光学系统位置关系示意图

    Figure  2.  Schematic diagram of position relation of main optical system

    图  3  钛合金材料的轻量化主支撑结构

    Figure  3.  Lightweight main support structure of titanium alloy material

    图  4  新型轻量化设计方法流程图

    Figure  4.  Flow diagram of new lightweight design method

    图  5  接口连接示意图

    Figure  5.  Schematic diagram of the interface connection

    图  6  新型轻量化主支撑结构

    Figure  6.  Main support structure of new lightweight design method

    图  7  主支撑结构参数化模型

    Figure  7.  Parametric model of main support structure

    图  8  主支撑系统有限元模型

    Figure  8.  Finite element model of main support system

    图  9  (a) 第一阶振型;(b) 第二阶振型;(c) 第三阶振型

    Figure  9.  (a) First order mode shape; (b) Second order mode shape; (c) Third order mode shape

    图  10  (a) 振动分析结果曲线;(b) 振动分析应力云图

    Figure  10.  (a) Curve of vibration analysis result; (b) Stress figure of sine vibration analysis

    图  11  新型轻量化主支撑结构成型工艺流程图

    Figure  11.  Forming process flow chart of new lightweight main support structure

    图  12  热熔预浸线实物图

    Figure  12.  Figure of hot melt prepreg line

    图  13  新型轻量化主支撑结构实物图

    Figure  13.  Figure of new lightweight main support structure

    图  14  振动试验结果曲线

    Figure  14.  Curve of vibration test result

    表  1  材料参数

    Table  1.   The material parameters

    MaterialDensity/
    103 kg·m−3
    Elastic modulus/GPaPoisson's ratioLinear expansion coefficient/10−6 K−1
    SiC3.054000.182.5
    Glass-ceramics2.53910.240.05
    4J368.11410.250.05
    ZTC44.401120.298.9
    ZL1142.80700.3323.6
    下载: 导出CSV

    表  2  改性氰酸酯树脂浇铸体物理力学性能对比

    Table  2.   Comparison of physical and mechanical properties of modified cyanate resin castings

    PerformanceUnmodified cyanate estersModified cyanate esters
    Bending strength/MPa90127
    Bending modulus/GPa3.83.2
    Tensile strength/MPa5273
    Tensile modulus/GPa3.43.2
    Elongation at break1.2%3.4%
    Impact strength/kJ·m−27.316.4
    下载: 导出CSV

    表  3  M40碳纤维复合材料性能参数

    Table  3.   Performance parameters of M40 carbon fiber composites

    PerformanceValue
    Longitudinal modulus/GPa90
    Transverse modulus/GPa3.8
    Shear modulus/GPa52
    Poisson’s ratio3.4
    Density/103 kg·m−31.6
    Axial linear expansion coefficient/10−6 K−10.76 e-6
    下载: 导出CSV

    表  4  质量点的质量

    Table  4.   Weight of mass points

    NameWeight/kg
    Image preprocessor 4.5
    Third and fourth mirrors 3.0
    Reflective optical system 14.5
    Detector assembly 4.5
    下载: 导出CSV

    表  5  模态分析结果

    Table  5.   Result of modal analysis

    ItemValue
    First order frequency/Hz415
    Second order frequency/Hz610
    Third order frequency/Hz793
    下载: 导出CSV

    表  6  正弦振动分析条件

    Table  6.   Conditions of sine vibration analysis

    Frequency/HzMagnitude (Y direction)/g
    5−5000.2
    下载: 导出CSV
  • [1] Peng Jianwei, Chen Weining, Zhang Gaopeng, et al. Design of wide view aerial camera system in low-light [J]. Infrared and Laser Engineering, 2021, 50(12): 20210312. (in Chinese) doi:  10.3788/IRLA20210312
    [2] Zhao Haitao, Yang Hong, Pang Jie, et al. Development status and trends of airborne remote sensing optical cameras [C]//Proceedings of the 7th China High Resolution Earth Observation Conference, 2020: 2-25. (in Chinese)
    [3] Li Yanwei. Research on thermal control technology of altitude optical sensor mounted on unmanned aerial vehicle [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2013. (in Chinese)
    [4] Chen Wei, Ding Yalin, Hui Shouwei, et al. Design of kinematic mount for SiC scanning reflective mirror [J]. Chinese Optics, 2012, 5(2): 161-166. (in Chinese)
    [5] Wang Chunyu, Wang Cong, Niu Jinchuan, et al. Passive athermal integrated design and verification analysis for the optical lens of aerial camera [J]. Infrared and Laser Engineering, 2021, 50(3): 20200220. (in Chinese) doi:  10.3788/IRLA20200220
    [6] Liao Jinfeng. Athermalization design of an airborne telephoto visible system [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019. (in Chinese)
    [7] Wang Pengpeng, Xin Hongwei, Zhu Junqing, et al. Parametric optimization design of rectangular reflective mirror and flexible component [J]. Infrared and Laser Engineering, 2021, 50(8): 20200493. (in Chinese) doi:  10.3788/IRLA20200493
    [8] Du Tao. Analysis and experiment study of lay-up process parameters based on carbon fiber prepreg lay-up [D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
    [9] Shu Zhan. Characterization of prepreg tack behavior and its regulation by placement process parameters [D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
    [10] Li Yanwei, Yuan Guoqin, Geng Qixian, et al. Study on dynamic characteristics of truss support structure in a TMA space remote sensor [J]. Computer Simulation, 2010, 27(9): 20-23. (in Chinese)
  • [1] 高凡, 杨小冈, 卢瑞涛, 王思宇, 高久安, 夏海.  Anchor-free轻量级红外目标检测方法(特邀) . 红外与激光工程, 2022, 51(4): 20220193-1-20220193-9. doi: 10.3788/IRLA20220193
    [2] 熊钟洋, 朱晨光, 端木凡顺, 李经纬.  薄片型红外/被动毫米波复合诱饵的研究 . 红外与激光工程, 2022, 51(2): 20210455-1-20210455-7. doi: 10.3788/IRLA20210455
    [3] 蔡仁昊, 程宁, 彭志勇, 董施泽, 安建民, 金钢.  基于深度学习的轻量化红外弱小车辆目标检测算法研究 . 红外与激光工程, 2022, 51(12): 20220253-1-20220253-11. doi: 10.3788/IRLA20220253
    [4] 史泽林, 冯斌, 冯萍.  基于波前编码的无热化红外成像技术综述(特邀) . 红外与激光工程, 2022, 51(1): 20210454-1-20210454-11. doi: 10.3788/IRLA20210454
    [5] 孙悦悦, 王玄玉, 董文杰, 姚伟召, 刘志龙, 李凯.  碳纤维粒子尺度对红外/毫米波复合干扰性能研究 . 红外与激光工程, 2022, 51(3): 20210254-1-20210254-7. doi: 10.3788/IRLA20210254
    [6] 曲慧东, 魏加立, 董得义, 胡海飞, 关英俊.  长条形空间反射镜组件轻量化结构设计 . 红外与激光工程, 2021, 50(6): 20200404-1-20200404-11. doi: 10.3788/IRLA20200404
    [7] 张超杰, 习兴华, 王永宪, 朱俊青, 关英俊.  空间遥感相机大口径反射镜结构优化设计 . 红外与激光工程, 2020, 49(2): 0214002-0214002. doi: 10.3788/IRLA202049.0214002
    [8] 徐云飞, 张笃周, 王立, 华宝成.  非合作目标局部特征识别轻量化特征融合网络设计 . 红外与激光工程, 2020, 49(7): 20200170-1-20200170-7. doi: 10.3788/IRLA20200170
    [9] 汪奎, 辛宏伟, 徐宏, 任天赐.  空间相机快速反射镜的结构轻量化设计 . 红外与激光工程, 2019, 48(4): 418001-0418001(7). doi: 10.3788/IRLA201948.0418001
    [10] 张丽敏, 韩西达, 吕天宇, 赵宏超.  大口径望远镜次镜系统的拓扑优化设计 . 红外与激光工程, 2018, 47(8): 818008-0818008(6). doi: 10.3788/IRLA201847.0818008
    [11] 罗世魁, 成桂梅.  基于高导热碳纤维的HgCdTe大面阵探测器热适配结构在空间红外遥感相机中的应用 . 红外与激光工程, 2016, 45(7): 704001-0704001(6). doi: 10.3788/IRLA201645.0704001
    [12] 付世欣, 周超, 曹玉岩, 范磊, 韩西达.  基于拓扑优化的4 m 望远镜底座结构设计 . 红外与激光工程, 2015, 44(8): 2441-2447.
    [13] 伞兵, 李景林, 孙斌.  空间相机大口径反射镜轻量化技术及应用 . 红外与激光工程, 2015, 44(10): 3043-3048.
    [14] 姜波, 吴越豪, 戴世勋, 张巍, 张培晴, 王训四, 沈祥, 聂秋华.  硫系玻璃在民用红外车载成像系统中的应用 . 红外与激光工程, 2015, 44(6): 1739-1745.
    [15] 付强, 张新.  基于硫系玻璃的中波红外光学系统无热化设计 . 红外与激光工程, 2015, 44(5): 1467-1471.
    [16] 曹佃生.  紫外-近红外高光谱探测仪扫描镜拓扑优化设计 . 红外与激光工程, 2014, 43(11): 3813-3819.
    [17] 徐宏, 关英俊.  大口径SiC轻量化反射镜组件的结构设计 . 红外与激光工程, 2014, 43(S1): 83-88.
    [18] 齐光, 许艳军, 刘炳强.  空间相机反射镜SiC/Al 支撑板轻量化结构优化设计 . 红外与激光工程, 2014, 43(7): 2214-2218.
    [19] 陈洪达, 陈永和, 史婷婷, 刘晓华, 傅雨田.  空间反射镜的轻量化及支撑设计研究 . 红外与激光工程, 2014, 43(2): 535-540.
    [20] 于洋, 蹇毅, 潘兆鑫, 金亚平, 汤心溢.  红外二次成像无热化光学系统设计与实测 . 红外与激光工程, 2013, 42(12): 3180-3184.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  37
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2022-04-11
  • 刊出日期:  2022-11-30

机载红外成像系统主支撑结构新型轻量化设计方法与应用

doi: 10.3788/IRLA20220232
    作者简介:

    李延伟,男,研究员,博士,主要从事光学精密仪器总体设计、光机系统设计方面的研究

    通讯作者: 殷龙海,男,高级工程师,博士,主要从事大口径非球面高效加工工艺方面的研究。
基金项目:  国家重点研发计划(2016YFB0500301)
  • 中图分类号: TH761.1

摘要: 由于载机负载有限,质量一直是机载成像系统结构设计时的关键指标。主支撑结构作为机载成像系统中光学系统的主承力结构,必须进行轻量化设计。但是,以往机载成像系统主支撑结构轻量化设计方法主要包括选择比刚度高的金属材料、优化框架结构布局、调整壁厚、增加减重槽等具体措施。由于金属材料的密度和线膨胀系数较高,这种轻量化设计方法的轻量化程度不高,且有时无法满足高精度光学系统无热化设计的要求。因此,提出了一种复合材料与金属材料相结合的新型轻量化设计方法,利用更低密度、更低线膨胀系数的碳纤维复合材料作为主支撑结构成型材料,钛合金作为对外接口材料,并以质量最轻为目标、基频为约束进行了参数优化设计,最后采用预浸料制造与铺放方法获得了更高轻量化、更优尺寸稳定性的主支撑结构。通过数值计算、仿真分析与振动试验对新方法的有效性进行了验证,结果表明:新型轻量化主支撑系统基频为425 Hz;质量为10.5 kg,轻量化率为33.5%;60 ℃均匀温升时轴向光学间隔变化量为0.021 mm,降低了84.9%。研究结果表明:新型轻量化设计方法合理、有效,解决了结构轻量化与光学无热化设计的难题,并应用到长焦距大口径机载红外成像系统中。

English Abstract

    • 机载成像系统[1-3]是安装在载机平台上通过光学系统获得地面信息的光电设备。随着科技进步及现代更多细节信息的迫切需求,大口径、长焦距、高分辨率、多波段、实时传输的机载成像系统成为了研究热点。而大口径、长焦距、高分辨率的机载成像系统意味着成像系统体积尺寸与质量的大幅增加,但载机负载是十分有限的。因此,机载成像系统在整体结构设计时必须进行轻量化设计[4]

      主支撑结构是机载成像系统的重要组成部分,一是作为系统主承力结构,必须具有较好的结构刚度,保持良好的结构动态特性,以适应复杂的载机振动环境;二是作为光学系统的支撑结构,要具有较好的尺寸稳定性,保持光学系统中光学元件的相对位置,以适应宽温度工作范围,满足光学无热化设计要求[5-6]。以往机载成像系统的主支撑结构轻量化设计方法主要包括选择比刚度高的金属材料、优化框架结构布局、调整壁厚、增加减重槽等具体措施,常用的金属材料为铝合金或钛合金,但这两种材料的密度和线膨胀系数较高,会导致轻量化程度不够,且有时无法满足高精度光学系统无热化设计的要求。

      对长焦距大口径机载红外成像系统主支撑结构的无热化设计要求进行了详细分析,提出了一种复合材料与金属材料相结合的新型轻量化设计方法,利用更低密度、更低线膨胀系数的碳纤维作为主支撑结构内部材料,钛合金作为对外接口材料;并以质量最轻为目标、基频为约束进行了参数优化设计[7],采用预浸料制造与铺放方法[8-9]获得了更高轻量化、更优尺寸稳定性的主支撑结构。采用壳单元与实体单元相结合的方法,建立了主支撑结构仿真模型,进行了模态分析、正弦振动分析、数值计算与振动试验,验证了新型轻量化设计方法的有效性,解决了结构轻量化与光学无热化设计的难题。

    • 机载红外成像系统采用折反混合式光学系统,在中波红外波段成像,主要包括扫描反射镜、主反射镜、次反射镜、三反射镜、四反射镜以及折射式光学系统等。主支撑结构作为整体结构主承力支撑,安装三反射镜、四反射镜、折射式光学系统、探测器组件以及图像预处理器等组件,并用于连接主次镜组件与后支撑组件;结构需具备良好的结构刚度,极高的尺寸稳定性,并满足光学系统无热化的要求,其系统安装示意图如图1所示。

      图  1  主支撑系统安装示意图

      Figure 1.  Schematic diagram of main support system installation

      当环境温度变化时,会直接引起光学元件、尤其是反射镜的曲率半径以及折射率改变,同时也会引起结构件尺寸改变,导致光学元件之间的相对位置发生改变;这将产生离焦等一系列光学像差,最终影响系统成像质量。因此,为了消除或降低温度对光学系统的影响,要采用有效的无热化设计方法,补偿离焦量,使光学系统在宽温度范围内维持焦距基本不变,保证成像性能。常用的无热化方法主要有主动式和被动式两种:主动式主要采取主动控制补偿机构弥补温度变化带来的离焦量,确保在允许的误差范围内;被动式主要优化配置光学材料与支撑结构材料,以达到自动补偿温度变化所带来的离焦量,确保系统成像质量。由于系统焦距较长、工作温度范围较宽(−40~+60 ℃),单纯地依靠主动式或被动式均不易满足补偿要求,采用了CCD焦面调焦、优化配置光学材料与支撑结构材料两种方式组合来实现焦面补偿,主光学系统(主、次、三、四反射镜)位置关系如图2所示。

      图  2  主光学系统位置关系示意图

      Figure 2.  Schematic diagram of position relation of main optical system

      主光学系统的无热化设计主要是依据材料线膨胀系数匹配来控制由温度变化$ \Delta T $带来的轴向光学间隔变化量$ \Delta {S_1} $$ \Delta {S_2} $$ \Delta {S_3} $趋近于零。次反射镜与三反射镜之间的轴向光学间隔计算公式为:

      $$ \Delta {S_3}{\text{ = }}\Delta {S_1} + \Delta {X_3} + \Delta {X_4} = \Delta {S_1} + \Delta T \cdot {X_3} \cdot {\alpha _{X_3}} + \Delta T \cdot {X_4} \cdot {\alpha _{X_4}} $$

      式中:$ {\alpha _{X_3}} $为主支撑结构材料的线膨胀系数;$ {\alpha _{X_4}} $为三四镜连接筒材料的线膨胀系数。

      为匹配微晶玻璃材料的三、四反射镜,三四镜连接筒采用线膨胀系数很小的殷钢材料,通过增材制造方式实现最佳轻量化结构。

      表1为金属材料与光学材料参数表。若主支撑采用钛合金时,经过计算可知,在60 ℃温差时,由主支撑结构造成的轴向光学间隔变化量$ \Delta {X_3} = 0.139 $ mm,数值较大,不能满足无热化设计要求(轴向光学间隔变化量不超过0.05 mm)。因此,选择适当线膨胀系数的材料作为主支撑结构材料是实现被动无热化设计的关键。同时,主支撑结构材料还必须具备高弹性模量与良好的复杂环境适应性等优点。

      表 1  材料参数

      Table 1.  The material parameters

      MaterialDensity/
      103 kg·m−3
      Elastic modulus/GPaPoisson's ratioLinear expansion coefficient/10−6 K−1
      SiC3.054000.182.5
      Glass-ceramics2.53910.240.05
      4J368.11410.250.05
      ZTC44.401120.298.9
      ZL1142.80700.3323.6
    • 以往机载成像系统的主支撑结构轻量化设计方法包括选用比刚度高的金属材料、优化框架结构布局、调整壁厚、增加减重槽等具体措施,主要依据设计经验、辅助仿真分析验证来实现。图3为钛合金材料的轻量化主支撑结构,主要采用了框架式结构形式,通过减重孔、减重槽等降低结构质量;内部筋板厚度为3.5 mm,整体采用铸造成型,质量为15.8 kg。

      图  3  钛合金材料的轻量化主支撑结构

      Figure 3.  Lightweight main support structure of titanium alloy material

      依据对机载红外成像系统无热化设计要求进行详细分析,结合整体结构刚度的实际要求,提出了一种复合材料与金属材料相结合的新型轻量化设计方法。首先利用更低密度、更低线膨胀系数的碳纤维作为主支撑结构内部材料,钛合金作为对主支撑结构外接口材料;其次利用胶粘与螺接工艺方法实现接口设计,完成整体模型;然后进行参数化建模,并以质量最轻为目标、基频为约束优化确定最佳筋板厚度;最后利用振动分析验证主支撑结构系统结构刚度优劣。新型轻量化设计方法流程图如图4所示。

      图  4  新型轻量化设计方法流程图

      Figure 4.  Flow diagram of new lightweight design method

    • 传统碳纤维复合材料所用树脂基体多为环氧树脂,存在耐温等级较低、尺寸稳定性差、吸湿性大、真空逸气性差等缺点,不能满足目前高端装备对先进复合材料的需求;而目前国内工业上常用的双酚A型氰酸酯树脂由于在常温下固态、熔点较高(79~81 ℃)、结晶能力强、溶解性差,也限制了其应用于高性能复合材料的制备。因此,为提升碳纤维复合材料的力学性能且便于工艺制备,从聚合物分子结构设计方面对氰酸酯进行了改性突破,开发了适用于热熔预浸料制造与铺放工艺的氰酸酯树脂,其力学性能如表2所示。

      表 2  改性氰酸酯树脂浇铸体物理力学性能对比

      Table 2.  Comparison of physical and mechanical properties of modified cyanate resin castings

      PerformanceUnmodified cyanate estersModified cyanate esters
      Bending strength/MPa90127
      Bending modulus/GPa3.83.2
      Tensile strength/MPa5273
      Tensile modulus/GPa3.43.2
      Elongation at break1.2%3.4%
      Impact strength/kJ·m−27.316.4

      表2可知,通过对氰酸酯树脂的改性可提高材料综合力学性能,降低固化过程中产生的内应力,避免应力集中产生的裂纹或层间破坏,提高碳纤维复合材料稳定性。因此,主支撑结构材料选用了M40改性氰酸酯基复合材料,设计后材料性能参数如表3所示。

      表 3  M40碳纤维复合材料性能参数

      Table 3.  Performance parameters of M40 carbon fiber composites

      PerformanceValue
      Longitudinal modulus/GPa90
      Transverse modulus/GPa3.8
      Shear modulus/GPa52
      Poisson’s ratio3.4
      Density/103 kg·m−31.6
      Axial linear expansion coefficient/10−6 K−10.76 e-6

      由于碳纤维复合材料成型的主支撑结构加工后表面质量较差且加工后的螺纹孔承力不佳,必须在主支撑结构所有连接处进行接口设计,将钛合金材料的接口结构单独加工成型,再通过胶粘连接和螺纹连接两种方式固定在碳纤维主支撑结构上,后续整体二次加工,满足对外接口的表面粗糙度及形位公差要求。胶粘连接主要采用环氧树脂胶,在钛合金接口结构与碳纤维主支撑结构的接触表面实施。螺纹连接时,碳纤维主支撑结构采用光孔,钛合金接口结构采用螺纹孔,如图5所示,主支撑整体结构如图6所示。

      图  5  接口连接示意图

      Figure 5.  Schematic diagram of the interface connection

      图  6  新型轻量化主支撑结构

      Figure 6.  Main support structure of new lightweight design method

    • 将主支撑结构进行参数化建模,其中碳纤维结构采用壳单元,设置为内部筋板厚度$ {t_1} $与外部连接法兰厚度$ {t_2} $两个变量;钛合金结构采用实体单元,不进行参数优化。为提升优化效率,将安装在主支撑结构上的各组件简化为质量点,质心加载于各组件质心位置,约束位置为两个法兰连接面,模型共划分32720个单元,参数化模型如图7所示,各质量点质量如表4所示。

      图  7  主支撑结构参数化模型

      Figure 7.  Parametric model of main support structure

      表 4  质量点的质量

      Table 4.  Weight of mass points

      NameWeight/kg
      Image preprocessor 4.5
      Third and fourth mirrors 3.0
      Reflective optical system 14.5
      Detector assembly 4.5

      建立了主支撑结构优化数学模型:

      minimize:$ f({t_1},{t_2}) $

      subject to: $ 400 - g({t_1},{t_2}) \leqslant 0 $

      式中:$ f({t_1},{t_2}) $为目标函数,为主支撑结构的质量;$ g({t_1},{t_2}) $为状态变量,为约束条件下的主支撑结构系统基频;$ {t_1} $$ {t_2} $为设计变量:$ 3 \;{\rm{mm}} \leqslant {t_1} \leqslant 10 \;{\rm{mm}} $$ 6 \;{\rm{mm}} \leqslant {t_2} \leqslant 12 \;{\rm{mm}} $

      运用ANSYS分析软件,采用零阶和一阶方法,处理后得到了最佳内部筋板厚度$ {t_1} = 5 \;{\rm{mm}} $,最佳外部连接法兰厚度$ {t_2} = 9 \;{\rm{mm}} $,主支撑结构质量为10.5 kg。

      根据上述优化结果重新建立主支撑组件的实体有限元模型,如图8所示,计算出主支撑系统基频为415 Hz,基频较高,满足设计要求。前三阶频率如表5所示,振型图如图9所示。

      图  8  主支撑系统有限元模型

      Figure 8.  Finite element model of main support system

      表 5  模态分析结果

      Table 5.  Result of modal analysis

      ItemValue
      First order frequency/Hz415
      Second order frequency/Hz610
      Third order frequency/Hz793

      图  9  (a) 第一阶振型;(b) 第二阶振型;(c) 第三阶振型

      Figure 9.  (a) First order mode shape; (b) Second order mode shape; (c) Third order mode shape

      为进一步考察主支撑结构的动态刚度[10],保证机载成像系统能够经受复杂力学环境的考验,进行了正弦振动分析,力学条件如表6所示,坐标系定义如图8所示,分析结果如图10所示。

      表 6  正弦振动分析条件

      Table 6.  Conditions of sine vibration analysis

      Frequency/HzMagnitude (Y direction)/g
      5−5000.2

      图  10  (a) 振动分析结果曲线;(b) 振动分析应力云图

      Figure 10.  (a) Curve of vibration analysis result; (b) Stress figure of sine vibration analysis

      图10可知,主支撑系统在Y向正弦振动时加速度最大响应值为3.3 g,发生在系统基频处,其他低频处加速度响应值较小,能够适应载机机载环境;最大应力出现在碳纤维主体上,最大应力值为0.015 MPa,远小于材料的许用应力。因此,该主支撑系统具有较高的稳定性和结构刚度,满足使用要求。

    • 新型轻量化主支撑结构成型工艺主要包括预浸料制造工艺、预浸料铺放工艺、金属对模加压工艺及胶接螺接工艺等,其成型流程如图11所示。

      图  11  新型轻量化主支撑结构成型工艺流程图

      Figure 11.  Forming process flow chart of new lightweight main support structure

      热熔预浸料成型工艺是保证复合材料制品纤维体积含量最稳定、有效的办法,也是生产预浸料的第一选择,先制备出胶膜,然后通过压延将胶膜压入增强材料并均匀分布制得预浸料。这种方法一是可以保证预浸料制备过程的工艺质量,能有效地控制预浸料的树脂含量和其分布的均匀性;二是有利于控制增强纤维分布的均匀性及其方向性,确保复合材料及其制件的性能和质量;三是有利于树脂中低分子组分和吸收的水分排出,使复合材料中的气泡和孔洞等缺陷减少。图12为热熔预浸线实物图。

      图  12  热熔预浸线实物图

      Figure 12.  Figure of hot melt prepreg line

      预浸料铺放工艺是指按工艺样板下料,按照工艺文件铺层角度和铺层顺序,逐层铺叠到模具上,铺放完成后采用真空袋、热压罐或金属对模等成型工艺对铺贴好的预浸料进行加压,在保持压力状态下进行加热固化。金属对模加压成型工艺采用机械加压的方式,通过控制型腔尺寸加压,其优点是产品尺寸精度高,内外表面光洁,可以实现复杂加强筋结构的产品成型,使复合材料的可设计性、性能取向性和铺层设计的多样性得到最大化的体现。经以上工艺成型后得到了新型轻量化主支撑结构,其实物图如图13所示。

      图  13  新型轻量化主支撑结构实物图

      Figure 13.  Figure of new lightweight main support structure

    • 根据2.1节轴向光学间隔变化量的计算公式,在60 ℃温差工况条件下,由新型轻量化主支撑造成的轴向光学间隔变化量$ \Delta {X_3} = 0.021 $ mm,相比铸钛合金主支撑结构的轴向光学间隔变化量减少了84.9%,可以满足光学无热化的要求(轴向光学间隔变化量不超过0.05 mm)。

    • 振动试验主要用于鉴定结构的力学环境适应性,可以暴露结构缺陷,验证结构的可靠性。将新型轻量化主支撑系统利用工装按实际安装方式放置在振动试验台上,进行了正弦振动分析,力学条件如表6所示,振动试验结果曲线如图14所示。

      图  14  振动试验结果曲线

      Figure 14.  Curve of vibration test result

      图14可知,主支撑系统结构基频为425 Hz,与模态分析结果吻合,误差值为2.4%,误差值较小;峰值加速度为3.27 g,与分析结果基本一致。振动试验结果既验证了有限元分析结果的正确性,也说明主结构系统具有较高的稳定性和结构刚度,可以满足整机使用要求。

    • 针对以往机载成像系统主支撑结构轻量化程度低与无法满足高精度光学系统无热化设计要求的问题,提出了一种复合材料与金属材料相结合的新型轻量化设计方法,采用参数化优化途径,利用碳纤维复合材料与钛合金材料实现了更高轻量化、更优尺寸稳定性的主支撑结构。分析及试验结果表明,新型轻量化主支撑结构在60 ℃均匀温升时轴向光学间隔变化量为0.021 mm,质量为10.5 kg,系统基频为425 Hz,有效地解决了结构轻量化与光学无热化设计的难题,保证了结构动态刚度。该主支撑结构已成功应用于某机载红外成像系统中。研究结果表明:新型轻量化设计方法正确、有效,能够替代以往结构轻量化设计方法,可以作为其他机载成像系统主支撑结构设计技术参考。

参考文献 (10)

目录

    /

    返回文章
    返回