留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋依赖强度可调谐的相变超构透镜

李洁 田喜敏 许军伟 武婷 陈霆枫 旷金芝

李洁, 田喜敏, 许军伟, 武婷, 陈霆枫, 旷金芝. 自旋依赖强度可调谐的相变超构透镜[J]. 红外与激光工程, 2022, 51(11): 20220398. doi: 10.3788/IRLA20220398
引用本文: 李洁, 田喜敏, 许军伟, 武婷, 陈霆枫, 旷金芝. 自旋依赖强度可调谐的相变超构透镜[J]. 红外与激光工程, 2022, 51(11): 20220398. doi: 10.3788/IRLA20220398
Li Jie, Tian Ximin, Xu Junwei, Wu Ting, Chen Tingfeng, Kuang Jinzhi. Spin-dependent intensity-adjustable phase-change metalenses[J]. Infrared and Laser Engineering, 2022, 51(11): 20220398. doi: 10.3788/IRLA20220398
Citation: Li Jie, Tian Ximin, Xu Junwei, Wu Ting, Chen Tingfeng, Kuang Jinzhi. Spin-dependent intensity-adjustable phase-change metalenses[J]. Infrared and Laser Engineering, 2022, 51(11): 20220398. doi: 10.3788/IRLA20220398

自旋依赖强度可调谐的相变超构透镜

doi: 10.3788/IRLA20220398
基金项目: 国家自然科学基金(12004347);河南省重点研发与推广专项(科技攻关)(202102310535, 212102310255, 222102210063);航空科学基金(2020Z073055002);郑州航空工业管理学院大学生创新创业训练计划(202210485007, 202210485044)
详细信息
    作者简介:

    李洁,女,本科生,主要从事超构表面成像方面的研究

    通讯作者: 许军伟,男,助理实验师,硕士,主要从事电磁超构材料/超表面方面的研究
  • 中图分类号: O438

Spin-dependent intensity-adjustable phase-change metalenses

  • 摘要: 超表面是一种基于亚波长各向异性单元结构的超薄平面光学器件,能够在微观尺度下调制电磁波相位、偏振和振幅等,从而实现波前的任意调控。超构透镜作为超表面走向实用化的重要代表,凭借其超强的光波操控能力、超紧凑结构、多功能性及与半导体工艺兼容等突出优点,引起了研究学者的极大兴趣。然而,已报道的超构透镜受限于相位分布设计,难以同时实现偏振复用及强度可调谐聚焦功能;且结构一旦确定,其电磁性能就被锁定,在灵活调制电磁波方面受到很大限制。为此,文中从各向异性单元结构的设计和优化入手,协同PB相位和传输相位,设计了两种能够在不同空间取向(横向和纵向)上实现自旋分裂的Ge2Sb2Se4Te1 (GSST) 相变超构透镜。通过改变入射圆偏振光的椭偏度,两超构透镜均可实现强度可调谐聚焦性能;通过调控相变材料Ge2Sb2Se4Te1从非晶态逐渐转变为结晶态,两超构透镜均可实现聚焦性能的连续调谐并最终达到“ON”和“OFF”的动态切换。所设计的自旋依赖强度可调谐相变超构透镜有望在多成像系统、机器视觉和显微成像等领域发挥重要作用。
  • 图  1  (a) GSST超表面及其单元结构示意图;(b) 两方案对应的最优单元结构在波长λ0 = 4200 nm圆偏振光入射下的交叉偏振透射光的振幅和相位;(c)~(f) 线偏振光下,透射率TXX TYY以及相移PXXPYY 对GSST矩形纳米柱面内尺寸ab的扫描图

    Figure  1.  (a) Schematic diagrams of GSST-based metasurface and its constituent; (b) Propagation phase and transmitted amplitude under CP incidence for selected 30 meta-atoms corresponding to the proposed two schemes; Scanning plots of transmission (c), (e) and propagation phase (d), (f) versus dimensions a and b of GSST rectangular nanopillars for LP incidences, respectively

    图  2  (a) TSSM聚焦效果示意图;(b)两焦点光强与入射光椭偏度χ之间的关系曲线;(c)~(g) 波长λ0 = 4200 nm的LCP、椭圆偏振光(χ=−0.5)、LP光、椭圆偏振光(χ=0.5)及RCP光透过TSSM后,在x-z平面上的电场强度分布;(h)~(l) 对应(c)~(g)情形下,在焦距(f ≈90 µm)处沿x轴的电场强度分布

    Figure  2.  (a) Schematic diagram of TSSM focusing performance; (b) Electric field intensity of the two focal points of TSSM versus the incident polarization χ; (c)-(g) Electric field intensity distributions in the x-z plane of TSSM upon incident light with different polarization states at λ0 = 4200 nm; (h)-(l) Electric field intensity of focal points along x axis corresponds to (c)-(g), respectively

    图  3  (a)~(g) 在LCP光入射下,不同GSST结晶度α的TSSM在x-z平面的聚焦电场强度分布;(h) TSSM焦点处电场强度随GSST结晶度α的变化曲线

    Figure  3.  (a)-(g) Distributions of electric field intensity in the x-z plane of TSSM with different crystallinity α of GSST under RCP incidence; (h) Electric field intensity of focal point of TSSM versus crystallinity α of GSST

    图  4  (a) LSSM工作原理示意图;(b) 不同偏振光透过LSSM后两焦点电场强度随椭偏度χ的变化曲线;(c)~(g) 波长λ0 = 4200 nm的LCP、椭圆偏振光(χ=−0.5)、LP光、椭圆偏振光(χ=0.5)及RCP光透过LSSM后,在x-z平面上的电场强度分布;(h)~(l) 对应(c)~(g)沿白虚线的电场强度分布

    Figure  4.  (a) Schematic diagram of LSSM working principle; (b) Electric field intensity of the two focal points of LSSM versus the incident polarization χ; (c)-(g) Electric field intensity distributions in the x-z plane of LSSM upon incident light with different polarization states at λ0 = 4200 nm;(h)-(l) Electric field intensity of focal points along z axis (x=0) corresponds to (c)-(g), respectively

  • [1] Onoda M, Murakami S, Nagaosa N. Hall effect of light [J]. Physical Review Letters, 2004, 93(8): 083901. doi:  10.1103/PhysRevLett.93.083901
    [2] Yin X, Ye Z, Rho J, et al. Photonic spin hall effect at metasurfaces [J]. Science, 2013, 339(6126): 1405-1407. doi:  10.1126/science.1231758
    [3] Berry M V. Quantal phase factors accompanying adiabatic changes [J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1984, 392(1802): 45-57. doi:  10.1098/rspa.1984.0023
    [4] Berry M V. The adiabatic phase and pancharatnam′s phase for polarized light [J]. Journal of Modern Optics, 1987, 34(11): 1401-1407. doi:  10.1080/09500348714551321
    [5] Hosten O, Kwiat P. Observation of the spin hall effect of light via weak measurements [J]. Science, 2008, 319(5864): 787-790. doi:  10.1126/science.1152697
    [6] Bliokh K Y, Niv A, Kleiner V, et al. Geometrodynamics of spinning light [J]. Nature Photonics, 2008, 2(12): 748-753. doi:  10.1038/nphoton.2008.229
    [7] Chu Q, Shen Y, Yuan M, et al. Numerical simulation and optimal design of segmented planar imaging detector for electro-optical reconnaissance [J]. Optics Communications, 2017, 405: 288-296. doi:  10.1016/j.optcom.2017.08.021
    [8] Manhard M K, Stockmann J, Liao C, et al. A multi‐inversion multi‐echo spin and gradient echo echo planar imaging sequence with low image distortion for rapid quantitative parameter mapping and synthetic image contrasts [J]. Magnetic Resonance in Medicine, 2021, 86(2): 866-880. doi:  10.1002/mrm.28761
    [9] Wang Yilin, Fan Qingbin, Xu Ting. Progress of advanced imaging applications based on electromagnetic metalens [J]. Infrared and Laser Engineering, 2021, 50(5): 20211026. (in Chinese)
    [10] Gharghi M, Gladden C, Zentgraf T, et al. A carpet cloak for visible light [J]. Nano Letters, 2011, 11(7): 2825-2828. doi:  10.1021/nl201189z
    [11] Tian X, Xu J, Xu K, et al. Phase-change reconfigurable metasurface for broadband, wide-angle, continuously tunable and switchable cloaking [J]. Optics Express, 2021, 29(4): 5959-5971. doi:  10.1364/OE.418200
    [12] Tian X, Xu J, Xiao T H, et al. Broadband generation of polarization-Immune cloaking via a hybrid phase-change metasurface [J]. Photonics, 2022, 9(3): 156. doi:  10.3390/photonics9030156
    [13] Zhao R, Huang L, Wang Y. Recent advances in multi-dimensional metasurfaces holographic technologies [J]. PhotoniX, 2020, 1(1): 1-24. doi:  10.1186/s43074-020-00006-w
    [14] Mo Haoran, Ji Zitao, Zheng Yidong, et al. Broadband achromatic imaging with metalens (Invited) [J]. Infrared and Laser Engineering, 2021, 50(1): 20211005. (in Chinese)
    [15] Ou Kai, Yu Feilong, Chen Jin, et al. Research progress of broadband achromatic infrared metalens (Invited) [J]. Infrared and Laser Engineering, 2021, 50(1): 20211003. (in Chinese)
    [16] Ling X, Zhou X, Yi X, et al. Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence [J]. Light: Science & Applications, 2015, 4(5): e290.
    [17] Liu Z, Du H, Li Z Y, et al. Invited Article: Nano-kirigami metasurfaces by focused-ion-beam induced close-loop transformation [J]. APL Photonics, 2018, 3(10): 100803. doi:  10.1063/1.5043065
    [18] Ding P, Li Y, Shao L, et al. Graphene aperture-based metalens for dynamic focusing of terahertz waves [J]. Optics Express, 2018, 26(21): 28038-28050. doi:  10.1364/OE.26.028038
    [19] Xu J, Tian X, Ding P, et al. Ge2Sb2Se4Te1-based multifunctional metalenses for polarization-independent, switchable and dual-mode focusing in the mid-infrared region [J]. Optics Express, 2021, 29(26): 44227-44238. doi:  10.1364/OE.446148
    [20] Li T, Li X, Yan S, et al. Generation and conversion dynamics of dual bessel beams with a photonic spin-dependent dielectric metasurface [J]. Physical Review Applied, 2021, 15(1): 014059. doi:  10.1103/PhysRevApplied.15.014059
    [21] Zhang Y, Chou J B, Li J, et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics [J]. Nature communications, 2019, 10(1): 4279. doi:  10.1038/s41467-018-07882-8
    [22] Tang L, Jin R, Cao Y, et al. Spin-dependent dual-wavelength multiplexing metalens [J]. Optics Letters, 2020, 45(18): 5258-5261. doi:  10.1364/OL.401782
    [23] Jin R, Tang L, Li J, et al. Experimental demonstration of multidimensional and multifunctional metalenses based on photonic spin hall effect [J]. ACS Photonics, 2020, 7(2): 512-518. doi:  10.1021/acsphotonics.9b01608
    [24] Jia Y. Focal shift in metasurface based lenses [J]. Optics Express, 2018, 26(7): 8001-8015.
    [25] Tian X, Xu J, Xu K, et al. Wavelength-selective, tunable and switchable plasmonic perfect absorbers based on phase change materials Ge2Sb2Te5 [J]. EPL (Europhysics Letters), 2020, 128(6): 67001.
  • [1] 孙旭, 赵建行, 周姚, 曹英浩, 周见红.  硫系玻璃Ge28Sb12Se60薄膜光学非线性增强色散特性 . 红外与激光工程, 2022, 51(7): 20210609-1-20210609-6. doi: 10.3788/IRLA20210609
    [2] 刘梦霖, 赵坤, 闫炜, 王丽莎, 刘民哲, 王勇, 孙松松.  1 015~1 046 nm可调谐飞秒掺镱光纤激光器 . 红外与激光工程, 2022, 51(6): 20210444-1-20210444-5. doi: 10.3788/IRLA20210444
    [3] 邓三泳, 岳嵩, 张东亮, 刘昭君, 李慧宇, 柳渊, 张紫辰, 祝连庆.  固体浸没式红外超表面透镜设计 . 红外与激光工程, 2022, 51(3): 20210360-1-20210360-10. doi: 10.3788/IRLA20210360
    [4] 杨青元, 王维, 田祥.  聚焦强度可调的高数值孔径的双焦点超透镜 . 红外与激光工程, 2022, 51(5): 20210602-1-20210602-8. doi: 10.3788/IRLA20210602
    [5] 邓人隽, 史坦, 李向平, 邓子岚.  基于全局拓扑优化深度学习模型的超构光栅分束器 . 红外与激光工程, 2021, 50(5): 20211028-1-20211028-4. doi: 10.3788/IRLA20211028
    [6] 莫昊燃, 纪子韬, 郑义栋, 梁文耀, 虞华康, 李志远.  超表面透镜的宽带消色差成像(特邀) . 红外与激光工程, 2021, 50(1): 20211005-1-20211005-10. doi: 10.3788/IRLA20211005
    [7] 欧凯, 郁菲茏, 陈金, 李冠海, 陈效双.  宽带消色差红外光学超构透镜研究进展(特邀) . 红外与激光工程, 2021, 50(1): 20211003-1-20211003-9. doi: 10.3788/IRLA20211003
    [8] 孙海竹, 张建心, 樊心民, 孙永志, 李森森.  狭缝型全介质共振单元频率选择超表面 . 红外与激光工程, 2020, 49(S1): 20200108-20200108. doi: 10.3788/IRLA20200108
    [9] 刘艺超, 周姚, 赵建行, 周见红, 宋瑛林.  表面增强硫系玻璃Ge28Sb12Se60薄膜非线性吸收(特邀) . 红外与激光工程, 2020, 49(12): 20201071-1-20201071-5. doi: 10.3788/IRLA20201071
    [10] 张鹏泉, 项铁铭, 史屹君.  绿光泵浦的黄光波段可调谐窄线宽光学参量振荡器 . 红外与激光工程, 2020, 49(11): 20200275-1-20200275-5. doi: 10.3788/IRLA20200275
    [11] 齐慧欣, 王晓晓, 胡小永, 龚旗煌.  超表面中的奇异点 . 红外与激光工程, 2020, 49(9): 20201029-1-20201029-12. doi: 10.3788/IRLA20201029
    [12] 李冬冬, 吕迪, 韩冬冬, 梁猛, 佘江波.  光微流控可调谐渐变折射率透镜特性研究 . 红外与激光工程, 2020, 49(1): 0116002-0116002(6). doi: 10.3788/IRLA202049.0116002
    [13] 陈瑞, 柳夏, 王虹, 石伟怡, 刘伟男, 江绍基, 董建文.  从亚波长光栅到超构光栅:原理、设计及应用 . 红外与激光工程, 2020, 49(9): 20201039-1-20201039-22. doi: 10.3788/IRLA20201039
    [14] 赵云, 杨原牧.  非线性超构表面:谐波产生与超快调控 . 红外与激光工程, 2020, 49(9): 20201037-1-20201037-14. doi: 10.3788/IRLA20201037
    [15] 胡跃强, 李鑫, 王旭东, 赖嘉杰, 段辉高.  光学超构表面的微纳加工技术研究进展 . 红外与激光工程, 2020, 49(9): 20201035-1-20201035-19. doi: 10.3788/IRLA20201035
    [16] 石鸣谦, 刘俊, 陈卓, 王漱明, 王振林, 祝世宁.  基于超构表面的非线性光学与量子光学 . 红外与激光工程, 2020, 49(9): 20201028-1-20201028-22. doi: 10.3788/IRLA20201028
    [17] 解格飒, 王红军, 王大森, 田爱玲, 刘丙才, 朱学亮, 刘卫国.  超光滑表面缺陷的分类检测研究 . 红外与激光工程, 2019, 48(11): 1113003-1113003(7). doi: 10.3788/IRLA201948.1113003
    [18] 史朝龙, 孙红胜, 王加朋, 孙广尉, 吴柯萱.  光谱可调谐式高分辨率光学载荷校准技术 . 红外与激光工程, 2016, 45(11): 1117007-1117007(6). doi: 10.3788/IRLA201645.1117007
    [19] 米仁杰, 万助军, 汪涵.  MEMS可调谐平顶窄带光学滤波器 . 红外与激光工程, 2016, 45(7): 720001-0720001(5). doi: 10.3788/IRLA201645.0720001
    [20] 翟文超, 徐骏, 郑小兵, 丁蕾, 陆俊桦.  应用于超光谱定标的光谱可调光源光学设计 . 红外与激光工程, 2014, 43(3): 950-955.
  • 加载中
图(4)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  32
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-08-24
  • 刊出日期:  2022-11-30

自旋依赖强度可调谐的相变超构透镜

doi: 10.3788/IRLA20220398
    作者简介:

    李洁,女,本科生,主要从事超构表面成像方面的研究

    通讯作者: 许军伟,男,助理实验师,硕士,主要从事电磁超构材料/超表面方面的研究
基金项目:  国家自然科学基金(12004347);河南省重点研发与推广专项(科技攻关)(202102310535, 212102310255, 222102210063);航空科学基金(2020Z073055002);郑州航空工业管理学院大学生创新创业训练计划(202210485007, 202210485044)
  • 中图分类号: O438

摘要: 超表面是一种基于亚波长各向异性单元结构的超薄平面光学器件,能够在微观尺度下调制电磁波相位、偏振和振幅等,从而实现波前的任意调控。超构透镜作为超表面走向实用化的重要代表,凭借其超强的光波操控能力、超紧凑结构、多功能性及与半导体工艺兼容等突出优点,引起了研究学者的极大兴趣。然而,已报道的超构透镜受限于相位分布设计,难以同时实现偏振复用及强度可调谐聚焦功能;且结构一旦确定,其电磁性能就被锁定,在灵活调制电磁波方面受到很大限制。为此,文中从各向异性单元结构的设计和优化入手,协同PB相位和传输相位,设计了两种能够在不同空间取向(横向和纵向)上实现自旋分裂的Ge2Sb2Se4Te1 (GSST) 相变超构透镜。通过改变入射圆偏振光的椭偏度,两超构透镜均可实现强度可调谐聚焦性能;通过调控相变材料Ge2Sb2Se4Te1从非晶态逐渐转变为结晶态,两超构透镜均可实现聚焦性能的连续调谐并最终达到“ON”和“OFF”的动态切换。所设计的自旋依赖强度可调谐相变超构透镜有望在多成像系统、机器视觉和显微成像等领域发挥重要作用。

English Abstract

    • 光自旋霍尔效应(Photonic Spin Hall Effect, PSHE)是指光束经过非均匀介质后,自旋相反的光子与非均匀介质相互作用,光束分裂成两束圆偏振光并分布在入射面两侧的现象[1-2]。该概念由日本Onoda等人于2004年首次提出[1],他们从理论上证明了自旋相反的光在不同介质分界面上反射或折射时,会在垂直于介质折射率梯度方向产生自旋分裂现象。光自旋霍尔效应被认为是光子自旋-轨道相互作用(Spin-Orbit Interactions, SOIs)的结果。对光子而言,自旋相反的角动量对应着光束的左旋和右旋圆偏振态;而光束波矢和波前则与轨道角动量密切相关。研究表明,光自旋霍尔效应中的自旋分裂现象与光的相位紧密相关。调控光波前相位主要通过改变各向异性结构的方位角或者几何参数,即几何相位和传输型相位来实现。几何相位是与自旋相关的相位,主要包含Ryto-Vladimirskii-Berry (RVB) 相位[3],即自旋重定向相位,和Pancharatnam-Berry (PB) 相位[4]两类。前者与光传播方向密切相关,可使光束在介质分界面反射和折射时产生自旋相关的分裂;后者则与光场偏振态和空间变化有关,主要通过旋转各向异性结构的方位角来实现。然而通过上述方法所得到的自旋相关分裂场的强度非常弱,并且引起的自旋相关亚波长偏移非常小(仅在入射波长的一小部分的数量级上),这需要弱测量技术[5]或多次反射[6]来观察 PSHE,严重阻碍了其在光子自旋相关器件的进一步发展和应用。

      超表面,也称二维超材料,其本质特征是利用超表面单元结构与入射电磁波耦合产生相位空间变化来调控波阵面,是一种基于亚波长各向异性结构的功能膜层器件。由于可在平面化亚波长结构内产生异常相位突变,同时兼具亚波长尺度相位、振幅、偏振任意调控,轻薄、易集成、低损耗、表面可共形设计等诸多优点,超表面为包括大口径平面成像[7-9]、电磁虚拟赋形[10-12]、大视场全息显示[13]及消色差成像[14-15]等应用提供了有效手段。最近几年,在微纳技术的进步支持下,人们开始挑战利用超表面对PSHE的实验研究和直接观测。2015年,Ling等人利用PB相位介质型超构表面获得了可直接观测PSHE现象[16]。2018年,Liu等人基于聚焦离子束纳米剪纸技术,发展了一种原位、片上三维微纳加工技术,并利用不同手性结构在交叉偏振相位上的差异,构建了左右旋结构交替排列的线性二元光栅超表面结构,成功实现了对透射光偏振的衍射调制,并观测到了清晰的PSHE[17]。尽管基于超表面实现PSHE的研究已经取得了重大进展,但传统的超表面大多缺乏设计灵活性,结构一旦确定,其电磁性能即被锁定,在灵活调制电磁波方面受到很大限制。

      主动调控(Active control)意味着可在不改变器件几何结构基础上自动产生和保持新的功能和状态,这对高稳定、长效低功耗和抗干扰能力强的高性能可重构光子系统不可或缺。目前,可重构超表面主要通过将光学超构表面与功能化材料系统相结合,利用功能材料系统的内秉变化来实现器件功能多样化和实时调控。常见的功能材料主要包括二维材料石墨烯[18]、电致变色氧化物、液晶材料及光学相变材料[19]等。常见相变材料主要包括硫系相变材料和钒氧化物。其中,新型硫系相变材料以Ge2Sb2Se4Te1(GSST)为代表,由于以下非凡特性而受到力捧:(1)相变温度较低,存在低折射率非晶态和高折射率结晶态;(2)在近中红外波段呈现宽波段低损耗特性;(3)独特非易失性;(4)固态相转变是“多级”发生的。基于以上分析,将相变材料GSST与超表面有机结合,调控激光脉冲,可实现具备多功能化、主动调控的可重构超表面光子器件,同时兼具极强的设计灵活性和广阔的应用前景,为实现光自旋霍尔效应动态调控提供了很好的设计思路。

      基于此,文中从Ge2Sb2Se4Te1各向异性单元结构的设计和优化入手,协同PB相位和传输相位,设计了两种能够在不同空间取向(横向和纵向)上实现自旋分裂的超构透镜 (Transverse and longitudinal spin-dependent split metalenses, i.e., TSSM and LSSM)。通过改变入射圆偏振光的椭偏度,两超构透镜均可实现强度可调谐聚焦性能;通过调控相变材料Ge2Sb2Se4Te1从非晶态逐渐转变为结晶态,两超构透镜均可实现聚焦性能的连续调谐并最终达到了“ON”和“OFF”的动态切换。所设计的自旋依赖强度可调谐相变超构透镜有望在多成像系统、机器视觉和显微成像等领域发挥重要作用。

    • 为实现自旋依赖的光学响应,所设计超构表面在相互正交的圆偏振光垂直入射下,满足下列关系式[20]

      $$ {J_0}(x)\left| {LCP} \right\rangle = \exp \left[ {i{\varphi ^ + }(x)} \right]\left| {RCP} \right\rangle $$ (1)
      $$ {J_0}(x)\left| {RCP} \right\rangle = \exp \left[ {i{\varphi ^ - }(x)} \right]\left| {LCP} \right\rangle $$ (2)

      式中:J0(x)为入射光的琼斯矩阵; $\left| {LCP} \right\rangle {\text{ = }}\dfrac{1}{{\sqrt 2 }}{\left[ {1{\text{, i}}} \right]^{\rm{T}}}$为左旋圆偏振光矢量;$\left| {RCP} \right\rangle {\text{ = }}\dfrac{1}{{\sqrt 2 }}{\left[ {1, - i} \right]^{\rm{T}}}$为右旋圆偏振光矢量;φ+(x)和φ(x)分别为LCP和RCP光对应的柱状透镜空间双曲相位分布。结合公式(1)、(2)和左/右旋圆偏振光矢量,琼斯矩阵J0(x)可以表示为:

      $$ {J_0}\left( x \right){\text{ = }}\frac{1}{2}\left[ {\begin{array}{*{20}{c}} {\exp \left[ {i{\varphi ^ + }(x)} \right]}&{\exp \left[ {i{\varphi ^ - }(x)} \right]} \\ { - \exp \left[ {i{\varphi ^ + }(x)} \right]}&{ - \exp \left[ {i{\varphi ^ - }(x)} \right]} \end{array}} \right]{\left[ {\begin{array}{*{20}{c}} 1&1 \\ i&{ - i} \end{array}} \right]^{ - 1}} $$ (3)

      由公式(3)可得J0(x)的本征值和本征向量。将圆坐标转换为笛卡尔坐标,通过推导,得到如下关系:

      $$ {P_{XX}}(x) = \left| {{\varphi ^ + }(x) + {\varphi ^ - }(x)} \right|/2 $$ (4)
      $$ {P_{YY}}(x) = \left| {{\varphi ^ + }(x) + {\varphi ^ - }(x)} \right|/2 - \pi $$ (5)
      $$ \theta (x){\text{ = |}}{\varphi ^ + }{\text{(}}x{\text{) + }}{\varphi ^ - }{\text{(}}x{\text{)|/4}} $$ (6)

      式中:PXXPYYTXXTYY分别代表xy方向线偏振入射光透过各向异性矩形纳米柱后沿矩形纳米柱长轴和短轴方向的透射相移和透射率。PXXPYY决定透射光的传输相位,旋转角θ决定透射光的PB相位。

      为满足琼斯矩阵J0(x),需要建立一个覆盖0~2π相移库;同时,为提高偏振转化效率,实现高清晰、少混沌的聚焦效果,组成超构透镜的所有矩形纳米柱单元结构应满足半波片或准半波片要求,即:

      $$ \left| {{P_{XX}}(x) - {P_{YY}}(x)} \right| \approx \pi $$ (7)
      $$ {T_{XX}} \approx {T_{YY}} \approx 1 $$ (8)

      基于以上分析,从GSST各向异性单元结构的设计入手,采用具备高深宽比、高折射率GSST矩形纳米柱(ng≈3.19 + 0.001i)作为基本结构,并以低折射率无损介质CaF2(nc=1.47)作为衬底,如图1(a)所示。高折射率对比度使得单元结构在中红外波段内(λ0=4200 nm)获得了类似截断波导的响应,将大部分入射光限制在矩形纳米柱内。通过优化,最终确定单元结构周期p=3000 nm,GSST矩形纳米柱高度h=2800 nm。同时为获得0~2π相位覆盖,GSST矩形纳米柱长轴a和短轴b是变化的,变化范围均为300~2800 nm。

      图  1  (a) GSST超表面及其单元结构示意图;(b) 两方案对应的最优单元结构在波长λ0 = 4200 nm圆偏振光入射下的交叉偏振透射光的振幅和相位;(c)~(f) 线偏振光下,透射率TXX TYY以及相移PXXPYY 对GSST矩形纳米柱面内尺寸ab的扫描图

      Figure 1.  (a) Schematic diagrams of GSST-based metasurface and its constituent; (b) Propagation phase and transmitted amplitude under CP incidence for selected 30 meta-atoms corresponding to the proposed two schemes; Scanning plots of transmission (c), (e) and propagation phase (d), (f) versus dimensions a and b of GSST rectangular nanopillars for LP incidences, respectively

      文中所有的结果均通过仿真商业软件Comsol Multiphysics 5.5得到。对于超构透镜单元结构,仿真时在x轴和y轴方向设置周期性边界条件(Periodic boundary conditions,PBCs),沿z轴在单元结构的上下设置两周期性端口(Ports),且激励源设置在单元结构的下端口。对于超构透镜,完美匹配层(Perfectly matched layer,PML)包围在模型四周,并且通过背景场设置激励源。模型中CaF2折射率设置为常数1.47,所采用的波长依赖的Ge2Sb2Se4Te1光学常数[21]。此外,所提方案易于制备及性能表征。在制备方面,可首先通过控制Ge2Sb2Te5靶和Ge2Sb2Se5靶的蒸镀速率,用热蒸镀法在CaF2基底上沉积2800 nm厚的Ge2Sb2Se4Te1薄膜;之后在薄膜上方旋涂1000 nm 的ZEP520A光刻胶,经过电子束曝光(或光刻)、显影及反应离子刻蚀等工艺获得微结构图案;最后用N-甲基-2-吡咯烷酮去除残留的ZEP光刻胶,即完成制备。在表征方面,使超连续准直激光依次经过半波片、1/4玻片、样品、物镜、1/4玻片、偏振片、CCD等即可实现对光场分布的研究。

      图1(b)~(f)表示对单元结构透射性能的仿真结果,其中图1(c)~(f)表示波长λ0=4200 nm的xy方向线偏振入射光透过各向异性矩形纳米柱后,沿矩形纳米柱长轴和短轴的透射相移(PXX, PYY)和透射率(TXX, TYY),图1(b)表示根据公式(7)、(8)为所设计两种方案选取的所有优化单元结构在波长λ0=4200 nm的圆偏振光入射下对应的交叉偏振透射光的振幅和相移。可知,两种方案所选的30个矩形纳米柱结构均可以保证完整的 2π(−π~π)动态相位调制,并且透射振幅均保持在0.7以上(均值大于0.8),即满足半波片的设计。值得一提的是,利用超表面方案实现光自旋霍尔效应在参考文献[22-23]中早已提出并证实,然而由于采用等离子体超表面方案,不可避免地会引入欧姆损耗,因此两工作的聚焦效率并没有提及或者很小。而所提两种方案均采用了全介质超表面方案,即用GSST介质柱代替金属微纳结构,可有效避免因金属吸收导致的欧姆损耗,不仅显著提高了所选单元结构的透射振幅(效率),而且可有效地提高器件的聚焦效率和整体性能,因此具有一定的研究价值。

    • 图2(a)为TSSM聚焦效果示意图。由图可知,LCP或RCP光垂直透过TSSM后在相反横向偏移处实现单焦点聚焦;左旋椭圆偏振(Left-handed elliptically polarized, LEP)或右旋椭圆偏振(Right-handed elliptically polarized, REP)光垂直透过TSSM后形成两个强度不同的焦点,且分布在横向偏移相反的位置上;当线偏振(Linearly-polarized, LP)光垂直透过TSSM后形成两个同强度焦点,同时也分布在横向偏移相反的位置上。

      图  2  (a) TSSM聚焦效果示意图;(b)两焦点光强与入射光椭偏度χ之间的关系曲线;(c)~(g) 波长λ0 = 4200 nm的LCP、椭圆偏振光(χ=−0.5)、LP光、椭圆偏振光(χ=0.5)及RCP光透过TSSM后,在x-z平面上的电场强度分布;(h)~(l) 对应(c)~(g)情形下,在焦距(f ≈90 µm)处沿x轴的电场强度分布

      Figure 2.  (a) Schematic diagram of TSSM focusing performance; (b) Electric field intensity of the two focal points of TSSM versus the incident polarization χ; (c)-(g) Electric field intensity distributions in the x-z plane of TSSM upon incident light with different polarization states at λ0 = 4200 nm; (h)-(l) Electric field intensity of focal points along x axis corresponds to (c)-(g), respectively

      为验证TSSM方案的可行性,设计了一个60×1(沿xy轴的各向异性单元结构的数量,且沿x轴的60个各向异性单元结构关于原点对称分布)的超构透镜,LCP和RCP入射光对应的双曲相位分布分别为:

      $$ {\varphi ^ + }(x) = \frac{{2\pi }}{{{\lambda _0}}}\left( {\sqrt {{{\left( {x - \Delta x} \right)}^2} + f_0^2} - {f_0}} \right) $$ (9)
      $$ {\varphi ^ - }(x) = \frac{{2\pi }}{{{\lambda _0}}}\left( {\sqrt {{{\left( {x{\text{ + }}\Delta x} \right)}^2} + f_0^2} - {f_0}} \right) $$ (10)

      式中:入射波长λ0=4200 nm;横向偏移Δx=20 μm;焦距f0=90 µm。图2(c)~(g)给出了GSST为非晶态时,不同形式的偏振光透过TSSM,在x-z平面内的聚焦电场强度分布图。χ表示入射偏振光的椭偏度,χ=−1, −0.5, 0, 0.5和1分别对应LCP、LEP光(椭偏度为−0.5)、LP、REP(椭偏度为0.5)和RCP光。可以看到,对于LCP(图2(c))和RCP(图2(g))入射光(χ=−1或1),TSSM将透射光聚焦为一个亮斑,焦距均为90 µm,且分布在横向偏移相反的位置上;对于LP(χ=0)入射光(图2(e)),TSSM使透射光“一分为二”,产生横向偏移相反的两个独立焦点,且聚焦强度基本相同,这主要是由于任何LP光都可以看成是LCP和RCP分量的等量叠加。而χ=±0.5的椭圆偏振入射光透过TSSM后,同样产生横向偏移相反的两个独立焦点,但聚焦强度出现显著差异,这主要归因于任何椭圆偏振入射光均可以看成是LCP和RCP分量的非等量叠加。以上研究与理论预测完全吻合。图2(h)~(l)给出了对应上述情形下焦距处沿x轴的光强分布,可以发现,LCP(图2(h))或RCP(图2(l))光透过TSSM后,在焦距处沿x轴各自只产生一个显著的光强峰(两强度近似相等),并且分别位于−Δx和+Δx处;当换为LP光入射时(图2(j)),在焦距处沿x轴形成两个强度几乎完全相同的独立光强峰,并且分别位于−Δx和+Δx处;而对于椭圆偏振入射光(图2(i)和(k)),在焦距处沿x轴同样形成两个独立光强峰,分别位于−Δx和+Δx处,但是两光强峰值却显著不同;这进一步证实了预测的准确性。由于衍射透镜的菲涅耳常数相对较小,模拟和理论之间的焦距差异可忽略不计[24]

      图2(b)还给出了两焦点光强与椭偏度χ之间的关系曲线。当χ=−1时,x=−Δx处焦点光强最大(≈34),x=Δx处焦点光强最小;随着χ逐渐增大,x=−Δx处焦点光强近乎线性减小,而x=Δx处焦点光强却近乎线性增加;当χ=0时,两焦点光强度基本相等;随着χ进一步增大,x=Δx处焦点光强呈现出明显优势,并在χ=1时光强达到最大(≈34),而x=−Δx处焦点光强此时最小。表明通过调控入射光的椭偏度可实现焦斑光强连续可调谐性能。

      综上,可知TSSM不仅能够有效地将入射光在横向空间上进行分离,实现显著的横向光自旋霍尔效应;并且通过调控入射光的椭偏度还可实现类似旋转偏振片功能,对焦斑光强连续实时调谐。

      与Ge2Sb2Te5类似,Ge2Sb2Se4Te1的相变同样是一个渐变过程,产生了许多中间态,这为可重构超表面的设计提供了一种崭新的自由度。GSST中间态被认为是由不同比例的非晶态和晶体组分构成,其有效介电常数可表示为[25]

      $$ \frac{{{\varepsilon _{{\rm{eff}}}}(\lambda ) - 1}}{{{\varepsilon _{{\rm{eff}}}}(\lambda ) + 2}} = m \times \frac{{{\varepsilon _{\rm{c}}}(\lambda ) - 1}}{{{\varepsilon _{\rm{c}}}(\lambda ) + 2}} + (1 - m) \times \frac{{{\varepsilon _{\rm{a}}}(\lambda ) - 1}}{{{\varepsilon _{\rm{a}}}(\lambda ) + 2}} $$ (11)

      式中:m代表GSST的结晶度,变化范围0~1;εc(λ)和εa(λ)分别为cGSST和aGSST的介电常数。为阐明GSST相变对TSSM聚焦性能的影响,图3(a)~(g)给出了在LCP光入射下,TSSM在不同GSST结晶水平时(为简单起见,m=0、0.2、0.4、0.5、0.6、0.8和1.0)在x-z平面上的电场强度分布。可知,从aGSST逐渐演变为cGSST的过程中,TSSM聚焦光斑是逐渐变暗的,直至完全消失。图3(h)给出了焦点强度随结晶度m的变化曲线,m=0时,聚焦光斑电场强度最大,随着结晶度m增大,聚焦光斑电场强度逐渐减小,并在m=1时达最小。上述结果有效地证明了TSSM通过调谐GSST相态,不仅可以实现对聚焦光斑亮度的连续调谐,还能实现对聚焦功能“ON”和“OFF”的动态切换。因此,该方案可显著提升超表面的多功能性。GSST相态可以通过加热、加偏压以及光学调制等手段进行调控。

      图  3  (a)~(g) 在LCP光入射下,不同GSST结晶度α的TSSM在x-z平面的聚焦电场强度分布;(h) TSSM焦点处电场强度随GSST结晶度α的变化曲线

      Figure 3.  (a)-(g) Distributions of electric field intensity in the x-z plane of TSSM with different crystallinity α of GSST under RCP incidence; (h) Electric field intensity of focal point of TSSM versus crystallinity α of GSST

    • 文中还设计了一种自旋相关纵向分裂的超构透镜LSSM。对于LSSM,LCP和RCP入射光对应的双曲相位φ+(x)和φ(x)遵循以下形式:

      $$ {\varphi ^ + }(x) = \frac{{2\pi }}{{{\lambda _0}}}\left( {\sqrt {{x^2} + f_ + ^2} - {f_ + }} \right) $$ (12)
      $$ {\varphi ^ - }(x) = \frac{{2\pi }}{{{\lambda _0}}}\left( {\sqrt {{x^2} + f_ - ^2} - {f_ - }} \right) $$ (13)

      式中:入射波长λ0=4 200 nm,对应的焦距f+f分别设置为70 µm和110 µm。图4(a)为LSSM的原理示意图。可以看出,LCP或RCP光透过LSSM后以不同焦距实现聚焦。由于任何椭圆偏振光和线偏振光都可以看作是LCP和 RCP光的有机叠加,LSSM可以同时将其聚焦在不同焦距位置上。需要注意的是,椭圆偏振光中LCP和RCP光的“含量”不同,透过LSSM后,形成的分裂焦点光强度不同;而线偏振光中LCP和RCP光的“含量”相同,透过LSSM后,形成的分裂焦点光强几乎一致。

      图  4  (a) LSSM工作原理示意图;(b) 不同偏振光透过LSSM后两焦点电场强度随椭偏度χ的变化曲线;(c)~(g) 波长λ0 = 4200 nm的LCP、椭圆偏振光(χ=−0.5)、LP光、椭圆偏振光(χ=0.5)及RCP光透过LSSM后,在x-z平面上的电场强度分布;(h)~(l) 对应(c)~(g)沿白虚线的电场强度分布

      Figure 4.  (a) Schematic diagram of LSSM working principle; (b) Electric field intensity of the two focal points of LSSM versus the incident polarization χ; (c)-(g) Electric field intensity distributions in the x-z plane of LSSM upon incident light with different polarization states at λ0 = 4200 nm;(h)-(l) Electric field intensity of focal points along z axis (x=0) corresponds to (c)-(g), respectively

      为验证该方案可行性,图4(c)~(g)给出了不同偏振光透过LSSM后在x-z平面形成的电场强度分布。由图可知,对于LCP入射光(χ=−1),在z≈70 µm,x=0处可以观察到一个明亮的焦点;对于RCP入射光(χ=1),明亮焦点移动到z≈110 µm,x=0处;而对于LP(χ=0)光,沿纵向(z轴)产生两个不同焦距的独立焦点,且两焦点光强度几乎一致。而对于椭圆偏振入射光,同样产生沿纵向(z轴)分布的两独立焦点,但两焦点光强差异明显。为进一步量化入射光椭偏度对光束劈裂的影响,图4(h)~(l)对应给出了图4(c)~(g)沿白虚线的光强分布,充分证明了LSSM可实现显著的纵向光自旋霍尔效应。

      为了更进一步说明入射光椭偏度χ对焦点光强分布的影响,图4(b)还给出了两焦点光强与椭偏度χ之间的关系曲线。当χ=−1时,z= f+处焦点光强最大,x= f处焦点光强最小;随着χ逐渐增大,x= f+处焦点光强减小,x= f 处焦点光强增加;当χ=0时,两焦点光强度相等;随着χ进一步增大,x= f处焦点光强呈现出明显优势,并在χ=1时光强达到最大,而x= f+处焦点光强此时最小。表明通过调控入射光的椭偏度可实现焦斑光强连续可调谐。

    • 综上所述,文中协同PB相位和传输相位,利用Ge2Sb2Se4Te1各向异性单元结构设计了两种在近红外波段能够实现偏振复用的超构透镜。理论计算表明,所设计的超构透镜在λ0=4200 nm入射光垂直照射下可实现光束自旋依赖的横向和纵向分裂性能;通过调控入射光的偏振度,所设计的超构透镜还能实现焦斑光强的连续可调谐性能。与传统复合相位型超构透镜相比,相变材料Ge2Sb2Se4Te1赋予了所设计的超构透镜额外的自由度,通过调控Ge2Sb2Se4Te1的相态,所设计的超构透镜不仅可对聚焦光斑亮度连续调谐,还能对聚焦功能“ON”和“OFF”实现动态切换。因此,所提出的方案可显著提升超表面的多功能性,在自旋调控的纳米光子学、光学成像和光学传感器领域具有重要应用价值。

      需要指出的是,为了提供足够的相位差满足半波片条件,选用 2800 nm 高度的Ge2Sb2Se4Te1柱来增加相位的调控能力和透射效率。之所以是Ge2Sb2Se4Te1而非经典相变材料Ge2Sb2Te5作为“有源”元素,不仅在于Ge2Sb2Se4Te1较低损耗特性,更是由于相变时较长结晶时间(~µs)允许Ge2Sb2Se4Te1薄膜的可逆转换厚度可超过1 µm,这对于全介质光子器件而言尤为关键。还需注意,虽然在加工条件允许的情况下,随着Ge2Sb2Se4Te1柱高度的增高会增加调控能力,但高度增加,刻蚀难度会增大,且刻蚀形貌及垂直度都会发生退化,因此选取Ge2Sb2Se4Te1柱高度时要采取“折中”方案,以使器件性能最优化。

参考文献 (25)

目录

    /

    返回文章
    返回