留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于四波混频效应的1.5 μm多波长单频光纤激光器(特邀)

张奕 侯玉斌 张倩 王璞

张奕, 侯玉斌, 张倩, 王璞. 基于四波混频效应的1.5 μm多波长单频光纤激光器(特邀)[J]. 红外与激光工程, 2022, 51(6): 20220401. doi: 10.3788/IRLA20220401
引用本文: 张奕, 侯玉斌, 张倩, 王璞. 基于四波混频效应的1.5 μm多波长单频光纤激光器(特邀)[J]. 红外与激光工程, 2022, 51(6): 20220401. doi: 10.3788/IRLA20220401
Zhang Yi, Hou Yubin, Zhang Qian, Wang Pu. 1.5 μm multi-wavelength single-frequency fiber laser based on four-wave mixing effect (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220401. doi: 10.3788/IRLA20220401
Citation: Zhang Yi, Hou Yubin, Zhang Qian, Wang Pu. 1.5 μm multi-wavelength single-frequency fiber laser based on four-wave mixing effect (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220401. doi: 10.3788/IRLA20220401

基于四波混频效应的1.5 μm多波长单频光纤激光器(特邀)

doi: 10.3788/IRLA20220401
基金项目: 国家自然科学基金(61905006)
详细信息
    作者简介:

    张奕,男,硕士生,主要从事光纤激光器研制方面的研究

    侯玉斌,男,副研究员,博士后,主要从事单频光纤激光器、光纤布拉格光栅制备、双频光纤激光器、低噪声光纤放大器方面的研究

    通讯作者: 张倩,女,助理研究员,博士,主要从事低噪声单频光纤激光技术方面的研究。
  • 中图分类号: TN248

1.5 μm multi-wavelength single-frequency fiber laser based on four-wave mixing effect (Invited)

  • 摘要: 利用笔者自主搭建的双波长单频光纤激光器作为种子,通过声光调制器以及多级光纤放大后,将激光注入至100 m长的高非线性光纤中,该光纤的零色散点在1 550 nm处。借助高非线性光纤的四波混频效应,最终在峰值功率13 W的泵浦下获得了一系列新的光谱成分,20 dB范围内共产生了46条新光谱。这些光谱跨越了1.337 THz,并且每条光谱中只包含一个纵模。由于新光谱基于四波混频效应产生,不同光谱之间不存在增益竞争等问题,因此,该激光器的多波长单频可以稳定存在,并且光谱强度接近。该多波长单频光纤激光器不仅具有线宽窄、相干性高、噪声低等优势,由于其还可以在全光纤结构下同时输出多个波长的单频激光,这使得其在波分复用光通信、光频率转换、激光雷达、微波光子学等领域具有十分重要的应用。
  • 图  1  保偏双波长单频光纤激光器示意图

    Figure  1.  Schematic diagram of polarization-maintaining dual-wavelength single-frequency fiber laser

    图  2  保偏双波长单频光纤激光器的光谱图

    Figure  2.  Spectrum of polarization-maintaining dual-wavelength single-frequency fiber laser

    图  3  双波长单频光纤激光器的扫描干涉仪图像

    Figure  3.  Scanning interferometer image of dual-wavelength single-frequency fiber laser

    图  4  (a) 双波长单频光纤激光器拍频信号的频谱图;(b) 该拍频信号的中心频率以及强度稳定性的测量

    Figure  4.  (a) Frequency spectrum diagram of the beating signal of the dual-wavelength single-frequency fiber laser; (b) Stability measurement of the center frequency and the intensity of the beating signal

    图  5  FWM原理示意图

    Figure  5.  Schematic diagram of four-wave mixing principle

    图  6  多波长单频光纤激光器实验示意图

    Figure  6.  Schematic diagram of multi-wavelength single-frequency fiber laser

    图  7  激光器运行状态测试。(a) 光谱图;(b) 扫描干涉仪图像

    Figure  7.  State test of laser operating. (a) Spectrum; (b) Scanning inter-ferometer image

    图  8  多波长单频激光的输出光谱。(a) 完整光谱;(b) 局部光谱分析

    Figure  8.  Output spectrum of multi-wavelength single-frequency laser. (a) Complete spectrum; (b) Partial spectrum analysis

    图  9  多波长单频激光器的自相关仪图像

    Figure  9.  Autocorrelator image of the multi-wavelength single-frequency laser

  • [1] Esmail M A, Ragheb A, Seleem H, et al. Radar signal transmission and switching over optical networks [J]. Optics Communications, 2018, 410: 385-388. doi:  10.1016/j.optcom.2017.10.058
    [2] Claus Weitkamp. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere[M]. New York: Springer Science & Business, 2006.
    [3] Oh S H, Shin J U, Park Y J, et al. Multiwavelength lasers for WDM-PON optical line terminal source by silica planar lightwave circuit hybrid integration [J]. IEEE Photonics Technology Letters, 2007, 19(20): 1622-1624. doi:  10.1109/LPT.2007.904922
    [4] Jeon M Y, Kim N, Shin J, et al. Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation [J]. Optics Express, 2010, 18(12): 12291-12297. doi:  10.1364/OE.18.012291
    [5] Shen G F, Zhang X M, Chi H, et al. Microwave/millimeter-wave generation using multi-wavelength photonic crystal fiber brillouin laser [J]. Progress In Electromagnetics Research, 2008, 80: 307-320. doi:  10.2528/PIER07112202
    [6] Lu Z G, Grover C P. A widely tunable narrow-linewidth triple-wavelength erbium-doped fiber ring laser [J]. IEEE Photonics Technology Letters, 2004, 17(1): 22-24.
    [7] Shee Y G, Al-Mansoori M H, Ismail A, et al. Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing [J]. Optics Express, 2011, 19(3): 1699-1706. doi:  10.1364/OE.19.001699
    [8] Ying L T S, Fat L T, Harun S W. Brillouin erbium ytterbium fiber laser[C]//2008 International Conference on Computer and Communication Engineering. IEEE, 2008: 143-147.
    [9] Pan S, Lou C, Gao Y. Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter [J]. Optics Express, 2006, 14(3): 1113-1118. doi:  10.1364/OE.14.001113
    [10] Yeh C H, Shih F Y, Chen C T, et al. Multiwavelength erbium fiber ring laser using Sagnac loop and Fabry-Perot laser diode [J]. Laser Physics Letters, 2007, 5(3): 210.
    [11] Islam M S, Mohammad A B, Sikta J N, et al. Tunable multiwavelength erbium-doped fiber laser incorporating single-core comb filter at room temperature [J]. Optik, 2015, 126(23): 4268-4271. doi:  10.1016/j.ijleo.2015.08.047
    [12] Rota-Rodrigo S, Ibañez I, López-Amo M. Multi-wavelength fiber laser in single-longitudinal mode operation using a photonic crystal fiber Sagnac interferometer [J]. Applied Physics B, 2013, 110(3): 303-308. doi:  10.1007/s00340-012-5325-x
    [13] Li Kunyi. Research on 1.5-μm multi-wavelength single-frequency fiber laser [D]. Guangzhou: South China University of Technology, 2019. (in Chinese)
    [14] Wang Feng. Study on tunable Erbium-doped fiber laser based on superimposed fiber gratings [D]. Qinhuangdao: Yanshan University, 2016. (in Chinese)
    [15] Hou Y, Zhang Q, Qi S, et al. 1.5 μm polarization-maintaining dual-wavelength single-frequency distributed Bragg reflection fiber laser with 28 GHz stable frequency difference [J]. Optics Letters, 2018, 43(6): 1383-1386. doi:  10.1364/OL.43.001383
    [16] Yuan Yijun. Study on multiwavelength Erbium-doped fiber laser based on nonlinear effects[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [17] Wang Gaomeng. Widely tunable watt-level single longitudinal mode and multi-wavelength Brillouin fiber laser[D]. Shanghai: Shanghai Jiao Tong University, 2013. (in Chinese)
    [18] Zhenxu B, Hui C, Jie D, et al. High-power Brillouin frequency comb based on free-space optical cavity [J]. Chinese Journal of Lasers, 2022, 49(4): 0415001. (in Chinese)
    [19] Liu Y, Bursev S, Tsuda S, et al. Four-wave mixing in EDFAs [J]. Electronics Letters, 1999, 35(24): 2130-2131. doi:  10.1049/el:19991454
    [20] Xu Xiaochuan. Theoretical model of multiwavelength Erbium-doped fiber laser based on four-wave mixing[D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese)
    [21] Wang Jiachen. Study on output characteristic of multi-wavelength Erbium-doped fiber laser based on four-wave mixing[D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese)
  • [1] 万颖超, 杨保来, 奚小明, 张汉伟, 叶云, 王小林.  不同泵浦波长光纤激光器模式不稳定效应对比 . 红外与激光工程, 2022, 51(4): 20210256-1-20210256-8. doi: 10.3788/IRLA20210256
    [2] 魏振帅, 谢永耀, 邵贤彬, 刘俊都, 赵微, 赵显, 张行愚, 赵智刚, 丛振华, 刘兆军.  基于Re:YAG-SiO2光纤的单频光纤激光器研究进展(特邀) . 红外与激光工程, 2022, 51(6): 20220133-1-20220133-14. doi: 10.3788/IRLA20220133
    [3] 史伟, 付士杰, 盛泉, 史朝督, 张钧翔, 张露, 姚建铨.  高性能单频光纤激光器研究进展:2017-2021(特邀) . 红外与激光工程, 2022, 51(1): 20210905-1-20210905-14. doi: 10.3788/IRLA20210905
    [4] 李灿, 周朴, 马鹏飞, 姜曼, 陶悦, 刘流.  单频光纤激光技术的研究进展(特邀) . 红外与激光工程, 2022, 51(6): 20220237-1-20220237-14. doi: 10.3788/IRLA20220237
    [5] 孟祥瑞, 文瀚, 陈浩伟, 孙博, 陆宝乐, 白晋涛.  波长可切换窄线宽单频掺镱光纤激光器(特邀) . 红外与激光工程, 2022, 51(6): 20220325-1-20220325-8. doi: 10.3788/IRLA20220325
    [6] 段叶珍, 杨昌盛, 李佳龙, 蒋葵, 赵齐来, 冯洲明, 徐善辉.  可调谐单频光纤激光器的研究进展(特邀) . 红外与激光工程, 2022, 51(6): 20220119-1-20220119-10. doi: 10.3788/IRLA20220119
    [7] 侯玉斌, 卢向文, 张倩, 王璞.  应用于下一代引力波探测器的超低噪声2 μm高功率单频光纤激光器(特邀) . 红外与激光工程, 2022, 51(6): 20220400-1-20220400-7. doi: 10.3788/IRLA20220400
    [8] 王丽莎, 孙松松, 闫炜, 瞿娇娇, 王勇.  L波段可切换双波长高能量脉冲光纤激光器 . 红外与激光工程, 2021, 50(7): 20200370-1-20200370-5. doi: 10.3788/IRLA20200370
    [9] 朱可, 裴丽, 赵琦, 解宇恒, 常彦彪.  采用双Sagnac环滤波器的可切换多波长光纤激光器 . 红外与激光工程, 2020, 49(11): 20200047-1-20200047-7. doi: 10.3788/IRLA20200047
    [10] 郭波.  基于二维材料非线性效应的多波长超快激光器研究进展(特邀) . 红外与激光工程, 2019, 48(1): 103002-0103002(22). doi: 10.3788/IRLA201948.0103002
    [11] 张福才, 孙博君, 孙晓刚.  单目标极小值优化法的多波长真温反演研究 . 红外与激光工程, 2019, 48(2): 226002-0226002(6). doi: 10.3788/IRLA201948.0226002
    [12] 侯玉斌, 张倩, 齐恕贤, 冯宪, 王璞.  具有32 GHz频差的掺Yb3+双频DBR光纤激光器 . 红外与激光工程, 2018, 47(10): 1005005-1005005(4). doi: 10.3788/IRLA201847.1005005
    [13] 郭树怀, 王天鹤, 郭煌, 乔斌, 王晓.  四波混频和级联四波混频效应产生的连续光频率梳 . 红外与激光工程, 2018, 47(7): 706007-0706007(7). doi: 10.3788/IRLA201847.0706007
    [14] 白晓磊, 盛泉, 张海伟, 付士杰, 史伟, 姚建铨.  单频EYDFA中种子光功率和增益光纤温度对输出线宽的影响 . 红外与激光工程, 2018, 47(10): 1005004-1005004(6). doi: 10.3788/IRLA201847.1005004
    [15] 张利明, 鄢楚平, 冯进军, 张昆, 张浩彬, 朱辰, 张大勇, 赵鸿, 陈念江, 李尧, 郝金坪, 王雄飞, 何晓彤, 周寿桓.  180 W单频全光纤激光器 . 红外与激光工程, 2018, 47(11): 1105001-1105001(9). doi: 10.3788/IRLA201847.1105001
    [16] 史伟, 房强, 李锦辉, 付士杰, 李鑫, 盛泉, 姚建铨.  激光雷达用高性能光纤激光器 . 红外与激光工程, 2017, 46(8): 802001-0802001(5). doi: 10.3788/IRLA201746.0802001
    [17] 王枫, 毕卫红, 付兴虎, 付广伟, 江鹏, 武洋, 王莹.  基于重叠光栅的双波长掺铒光子晶体光纤激光器 . 红外与激光工程, 2016, 45(8): 822001-0822001(5). doi: 10.3788/IRLA201645.0822001
    [18] 史伟, 付士杰, 房强, 盛泉, 张海伟, 白晓磊, 史冠男, 李锦辉, 姚建铨.  基于稀土掺杂石英光纤的单频光纤激光器 . 红外与激光工程, 2016, 45(10): 1003001-1003001(8). doi: 10.3788/IRLA201645.1003001
    [19] 林桢, 任国斌, 郑斯文, 朱博枫, 彭万敬, 简水生.  基于光纤拉锥及相位调制的可切换多波长掺铒光纤激光器 . 红外与激光工程, 2014, 43(10): 3262-3268.
    [20] 王彦斌, 李华, 王敏, 邹前进, 亓凤杰, 袁春.  全光纤双波长泵浦产生超连续谱的仿真研究 . 红外与激光工程, 2013, 42(4): 1050-1055.
  • 加载中
图(9)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  4
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 修回日期:  2022-05-27
  • 刊出日期:  2022-07-05

基于四波混频效应的1.5 μm多波长单频光纤激光器(特邀)

doi: 10.3788/IRLA20220401
    作者简介:

    张奕,男,硕士生,主要从事光纤激光器研制方面的研究

    侯玉斌,男,副研究员,博士后,主要从事单频光纤激光器、光纤布拉格光栅制备、双频光纤激光器、低噪声光纤放大器方面的研究

    通讯作者: 张倩,女,助理研究员,博士,主要从事低噪声单频光纤激光技术方面的研究。
基金项目:  国家自然科学基金(61905006)
  • 中图分类号: TN248

摘要: 利用笔者自主搭建的双波长单频光纤激光器作为种子,通过声光调制器以及多级光纤放大后,将激光注入至100 m长的高非线性光纤中,该光纤的零色散点在1 550 nm处。借助高非线性光纤的四波混频效应,最终在峰值功率13 W的泵浦下获得了一系列新的光谱成分,20 dB范围内共产生了46条新光谱。这些光谱跨越了1.337 THz,并且每条光谱中只包含一个纵模。由于新光谱基于四波混频效应产生,不同光谱之间不存在增益竞争等问题,因此,该激光器的多波长单频可以稳定存在,并且光谱强度接近。该多波长单频光纤激光器不仅具有线宽窄、相干性高、噪声低等优势,由于其还可以在全光纤结构下同时输出多个波长的单频激光,这使得其在波分复用光通信、光频率转换、激光雷达、微波光子学等领域具有十分重要的应用。

English Abstract

    • 作为激光技术与现代光电探测技术结合的先进探测技术,激光雷达在无人驾驶、环境监测等领域具有重要的应用价值[1-2],用于产生探测信号的激光器作为激光雷达的重要组成部分一直是研究的重点。多波长单频光纤激光器不仅具备单频光纤激光器光束质量好,结构紧凑,线宽窄等优势,还可以同时输出多个波长的单频激光[1],这些特点使其成为高精度激光雷达的理想光源。除了激光雷达以外,多波长单频光纤激光器在波分复用光通讯系统[3]、微波光子学[4]、太赫兹光谱学[5]等领域有着广泛的应用。因而,高性能的多波长单频光纤激光器的研制也成为相关领域的研究热点。

      串联谐振腔[6]是最早被用于制作多波长单频光纤激光器的方法,该方法是通过串联多个单频激光谐振腔进而获得多波长单频激光输出。该方案避免了不同波长成分对上能级粒子的竞争,使得激光器得以长期稳定运行。然而,由于激光器输出波长与串联谐振腔的数量相关,且不同谐振腔产生的波长成分相干性不高,采用串联谐振腔的方法较为有限。

      目前,另一个方法是在同一增益光纤中[7-8]同时实现多波长单频激光输出。由于需要在同一增益介质内产生多个波长,这一方法对增益光纤的掺杂浓度和增益谱宽度都有较高要求。除此之外,还需要在腔内加入特定的波长选择元件,才能实现稳定的多波长输出。在实际操作中,除了使用法布里-珀罗滤波器[9-10]等精密梳状滤波器[11],也可使用多个光纤Lyot-Sagnac环[10,12]或是窄带光纤光栅[13-15]进行选频和滤波。由于所有波长来源于同一增益介质,这使得不同波长之间存在竞争,造成波长的不稳定性,同时受限于增益谱宽度,该方案使得多波长的宽度有限。

      利用非线性效应[16]实现多波长单频光纤激光器则可以有效解决增益谱宽度,以及增益竞争的问题。其基本原理是将获得的单/双频激光输出作为种子,借助非线性介质产生新的频率成分,进而获得多波长输出。这一过程中发挥作用的非线性效应一般是受激布里渊散射(stimulated Brillouin scattering, SBS)[17-18]或四波混频(four wave mixing, FWM)[18-21]。河北工业大学的吕志伟课题组[18]采用金刚石晶体作为非线性介质,利用空间光腔实现布里渊光学频率梳振荡器,利用SBS与FWM获得了带宽1.5 THz、最高23阶的1.2 μm光学频率梳。然而,该方案的阈值较高,达到了50 W,产生的不同波长的强度差距较大,同时空间结构的使用也在一定程度限制了其应用。

      鉴于SBS效应的阈值较高,并且泵浦光和斯托克斯光的强度差距较大等问题,借助高非线性光纤模场直径小、作用距离长等优势,利用该光纤中FWM效应来实现多波长单频的产生,可以有效减小新波长产生的阈值功率,并且光谱强度接近。为此笔者课题组利用保偏双波长单频光纤激光器作为种子光源,该光源的两个波长分别为1552.2 nm与1552.43 nm,并且强度相近。再通过声光调制器(acousto-optic modulator, AOM)强度调制与多级光纤放大器,获得具有一定峰值功率输出的双波长单频激光。最终将输出激光注入至一段长度为100 m的高非线性光纤中,该光纤在1550 nm处为零色散。借助光纤中的FWM效应最终在峰值功率13 W的情况下,在20 dB范围内产生了46个新的光谱成分,并且每个光谱均只包含一个纵模。光谱宽度跨越1.337 THz,光谱信噪比达到35 dB。笔者确信这一多波长单频光纤激光器可在激光雷达、太赫兹光谱学等领域发挥重要作用。

    • 文中的保偏双波长单频光纤激光器采用分布式布拉格反射(distributed Bragg reflection, DBR)结构,其中的低反光栅为笔者自主制备的保偏双波长光纤光栅。该光栅通过两次曝光的方式在同一段栅区形成两个反射波长,二者的中心波长差别为0.23 nm,反射率约85%。另外的高反双波长光纤光栅反射率>99%,两个反射波长与低反光栅相匹配[15]。谐振腔中的增益光纤为一段5 cm长的掺铒石英光纤(Nufern, PM-ESF-7/125),其吸收系数为~55 dB/m@1530 nm。为了防止端面反射,高反光栅的另一端被切割成8°。该谐振腔最终被固定在具有恒温控制的热沉上,从而保证激光器的长期稳定运转。974 nm单模半导体激光器作为泵浦源,经保偏波分复用器(wavelength division multiplexing, WDM)与激光谐振腔对接后对其进行反向泵浦。实验装置如图1所示。

      图  1  保偏双波长单频光纤激光器示意图

      Figure 1.  Schematic diagram of polarization-maintaining dual-wavelength single-frequency fiber laser

      笔者利用一台光谱分析仪(AQ6373,Yokogawa)对该双波长单频激光器的输出光谱进行测量,光谱仪设置的分辨率为0.02 nm,输出光谱如图2所示。激光输出的中心波长分别为1552.2 nm与1552.43 nm,间距0.23 nm(相当于频域28 GHz),光谱信噪比约60 dB。两个波长的光谱强度基本一致,并且两个波长可以长时间稳定存在,没有出现模式竞争现象。

      图  2  保偏双波长单频光纤激光器的光谱图

      Figure 2.  Spectrum of polarization-maintaining dual-wavelength single-frequency fiber laser

      图3为扫描干涉仪 (Thorlabs, Model SA210-8 B)测得的纵模的图像。该扫描干涉仪的自由光谱范围和分辨率分别为 10 GHz和 67 MHz。通过图3可以观察到在一个扫描周期内只出现两个峰。由于两个纵模的频率间隔为28 GHz,扫描干涉仪的自由光谱范围为10 GHz,所以两个纵模在扫描干涉仪中的间隔应该约为2 GHz,这也与上图的情况相符。再结合输出光谱可知每个波长只存在一个纵模,且纵模强度与光谱强度相对应。

      图  3  双波长单频光纤激光器的扫描干涉仪图像

      Figure 3.  Scanning interferometer image of dual-wavelength single-frequency fiber laser

      用高速探头(Finisar, XPDV2120 RA-VF-FP, Band-width > 50 GHz)和频谱仪(Agilent N9030 A PXA)对两个纵模拍频产生的微波信号进行测量,在频谱仪中观测到一个28 GHz左右的信号,如图4 (a)所示。信号两边的边带是由驰豫振荡造成的。对该信号进行了1 h的测量,信号中心频率的波动的均方差在60 kHz以内,强度的波动在0.52 dB以内,如图4 (b)所示[15]

      图  4  (a) 双波长单频光纤激光器拍频信号的频谱图;(b) 该拍频信号的中心频率以及强度稳定性的测量

      Figure 4.  (a) Frequency spectrum diagram of the beating signal of the dual-wavelength single-frequency fiber laser; (b) Stability measurement of the center frequency and the intensity of the beating signal

    • 在非线性光学领域,FWM是一种常见的三阶非线性效应。当至少两束不同频率($v_{1},v_{2},v_{1} < v_{2}$)的光一同在非线性介质中传播时,由于存在差频的折射率调制,会产生如图5所示的两个新的频率分量,分别为:

      图  5  FWM原理示意图

      Figure 5.  Schematic diagram of four-wave mixing principle

      $$ v_{3}=v_{1}-\left(v_{2}-v_{1}\right) $$
      $$ v_{4}=v_{2}+\left(v_{2}-v_{1}\right) $$

      通过持续控制非线性介质长度与输入光功率,则可以将FWM效应逐级传递,进而产生更多的新频率成分。

      笔者课题组采用双波长单频光纤激光器输出的1552.2 nm与1552.43 nm两个单频激光作为起始波长,借助高非线性光纤中的级联FWM效应实现多波长单频产生。为了达到FWM效应所需的功率,采用多级光纤放大器对其进行放大。由于放大过程中产生的自发辐射放大(amplified spontaneous emission, ASE)会在后期FWM过程中作为噪声严重影响输出光谱的信噪比以及新光谱成分的生成。为此在放大器最后需要添加一个滤波器来滤除多余的ASE成分。由于所采用的滤波器的损伤阈值仅为300 mW,在放大器中添加了一个AOM对激光的强度进行调制,最终实现高峰值功率、低平均功率的激光输出,这样既可以保证FWM过程所需的功率,同时还可以避免损伤滤波器。

      光纤放大器的实验装置如图6所示。由保偏DBR光纤激光器输出的双波长单频激光通过保偏隔离器后,通过一级纤芯放大器进行功率放大。纤芯放大器采用的增益光纤为2 m的PM-ESF-7/125,其吸收系数为~55 dB/m@1530 nm。作为泵浦的974 nm单模半导体激光器最大输出功率为1 W。继而,利用AOM进行斩波,将原本的连续光调制为重复频率100 kHz,脉宽100 ns 的脉冲光。在AOM后再经过一级纤芯放大器与包层放大器。纤芯放大器的基本参数与前一级保持一致。而包层放大器则使用了4 m长的PM-EYDF-6/125作为增益光纤,吸收系数为40±10 dB/m@1535 nm,泵浦源则采用中心波长976 nm,输出功率9 W的多模半导体激光器。放大器输出的激光经过滤波器滤除额外的ASE之后进入高非线性光纤,文中采用的高非线性光纤为长飞公司的NL-1550-0,长度为100 m,光纤的零色散点在1550 nm处。

      图  6  多波长单频光纤激光器实验示意图

      Figure 6.  Schematic diagram of multi-wavelength single-frequency fiber laser

      为了验证由高非线性光纤产生的新光谱成分的确是单频激光,在包层放大器泵浦功率较低时,利用光谱仪和扫描干涉仪对其光谱、纵模情况进行了测量,所得结果如图7所示。图7 (a)为输出光谱图,凭借效应FWM,输出光谱由原先的1552.2 nm和1552.43 nm处的两个波长扩展出了等间隔分布的两对新光谱成分。种子激光器产生的1552.2 nm与1552.43 nm处的光谱信噪比约为50 dB,FWM效应产生的第一对新光谱分量的信噪比约40 dB,产生的第二对新光谱分量的信噪比约20 dB。图7 (b)为输出光谱的扫描干涉仪图像,在一个扫描周期内同时出现四个纵模。对比输出光谱的情况可知,由于扫描干涉仪图像显示的是线性坐标系下的光谱成分,因此图中四个纵模分别对应光谱中的种子激光以及FWM产生的第一对光谱成分。FWM产生的第二对光谱成分与种子相差30 dB,在线性坐标系下的扫描干涉仪图像中无法观察到这组光谱。因此,通过对比光谱图和扫描干涉仪图像可知,通过FWM产生的新光谱成分依然是单频状态,并且间隔与种子光的间隔一致。随着泵浦功率的提升,基于泵浦激光产生的第一级光谱成分的轻度也会随之升高。第二级光谱成分的产生则是依赖于泵浦激光以及第一级光谱成分的一部分,例如,短波长处的第二级光谱是与$ {\nu }_{2} $形成配对光子。随着泵浦光谱$ {\nu }_{1},{\nu }_{2} $能量的提升,第一级光谱成分会不断提高,同时$ {\nu }_{1},{\nu }_{2} $光谱成分分别与新产生的第二级光谱成分形成配对光子。这一系列过程都会不断消耗泵浦激光以及前级光谱的能量,对这些能量较强的光谱成分进行钳制。通过不断级联过程,最终使得产生的梳状光谱呈现平坦的趋势。

      图  7  激光器运行状态测试。(a) 光谱图;(b) 扫描干涉仪图像

      Figure 7.  State test of laser operating. (a) Spectrum; (b) Scanning inter-ferometer image

      为了实现更多新光谱成分的产生,继续增加放大器的泵浦功率,最终获得了平均功率130 mW的双波长单频激光输出,对应的峰值功率为13 W。同时对比了在进入高非线性光纤之前是否经过滤波器对于输出的梳状光谱的影响,如图8 (a)所示。通过对比可知,通过滤波器将泵浦激光器的ASE过滤之后,可以大幅提高梳状光谱光谱信噪比,同时产生更多的新光谱成分。经过滤波器之后的整体光的信噪比达到了35 dB。在20 dB的光谱范围内,初始光谱ν1ν2两侧分别产生26阶和20阶新的光谱成分,光谱跨越1.337 THz。造成短波方向的光谱阶数高于长波方向的光谱阶数的主要原因在于所用高非线性光纤的零色散点在1550 nm处,初始激光的光谱在1552 nm附近,随着更高阶数光谱的产生,短波方向的光谱相较于长波方向的光谱更靠近光纤的零色散波长,这使得FWM效应在短波处产生更多的新光谱成分。图8(b)为图8(a)梳状光谱中1549.5 nm处1 nm范围内的放大部分,从该图中可以明显观察到各个波长的峰值处存在明显的缺失,这主要是由于实验所采用的光谱仪在高分辨率情况下的采样点数有限造成的,由此可以证明实际光谱强度的均匀性更好。

      图  8  多波长单频激光的输出光谱。(a) 完整光谱;(b) 局部光谱分析

      Figure 8.  Output spectrum of multi-wavelength single-frequency laser. (a) Complete spectrum; (b) Partial spectrum analysis

      由于该多波长单频光纤激光器的多波长单频是基于四波混频效应产生的,同时受到泵浦激光低相位噪声特性的影响,各个波长之间具有较低的相位噪声,因此该激光器在时域上是会形成类似于锁模激光器的输出特性,既产生脉冲输出,重频与纵模间隔一致。通过自相关仪对该激光器的输出脉冲进行测量,输出结果如图9所示。

      图  9  多波长单频激光器的自相关仪图像

      Figure 9.  Autocorrelator image of the multi-wavelength single-frequency laser

    • 利用笔者课题组自主搭建的双波长单频光纤激光器作为种子,该激光器的两个中心波长为1552.2 nm和1552.43 nm。通过AOM进行强度调制以及多级光纤放大后,将最终的输出激光注入至100 m长的高非线性光纤中,该光纤的零色散点在1550 nm处。借助高非线性光纤的FWM效应,最终在峰值功率13 W的泵浦下获得了一系列强度接近的新光谱成分,20 dB范围内共产生了46条新光谱,这些光谱跨越了1.337 THz,并且每条光谱中只包含一个纵模。因此,这一可稳定运转的多波长单频光纤激光器将在各类精密传感、光谱探测、太赫兹产生等领域产生重要的应用功能价值。

参考文献 (21)

目录

    /

    返回文章
    返回