留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硒化锌晶体的高效率高质量组合抛光方法(特邀)

杨超 张乃文 白杨

杨超, 张乃文, 白杨. 硒化锌晶体的高效率高质量组合抛光方法(特邀)[J]. 红外与激光工程, 2022, 51(9): 20220531. doi: 10.3788/IRLA20220531
引用本文: 杨超, 张乃文, 白杨. 硒化锌晶体的高效率高质量组合抛光方法(特邀)[J]. 红外与激光工程, 2022, 51(9): 20220531. doi: 10.3788/IRLA20220531
Yang Chao, Zhang Naiwen, Bai Yang. High-efficiency and high-quality combined polishing method of zinc selenide crystal (invited)[J]. Infrared and Laser Engineering, 2022, 51(9): 20220531. doi: 10.3788/IRLA20220531
Citation: Yang Chao, Zhang Naiwen, Bai Yang. High-efficiency and high-quality combined polishing method of zinc selenide crystal (invited)[J]. Infrared and Laser Engineering, 2022, 51(9): 20220531. doi: 10.3788/IRLA20220531

硒化锌晶体的高效率高质量组合抛光方法(特邀)

doi: 10.3788/IRLA20220531
详细信息
    作者简介:

    杨超,女,副教授,博士,主要从事超精密光学制造技术方面的研究

  • 中图分类号: TH161+.4

High-efficiency and high-quality combined polishing method of zinc selenide crystal (invited)

  • 摘要: 硒化锌晶体作为常用的红外晶体材料,广泛应用于红外光学系统中。为了提高硒化锌晶体的加工质量及加工效率,提出了将磁流变抛光(MRF)与传统数控抛光(CCOS)技术相结合的方法,通过多组正交实验配置硒化锌晶体的磁流变抛光液,对一块口径为50 mm的硒化锌晶体展开磁流变抛光,再针对磁流变抛光后的表面痕迹进行传统数控抛光,在正压力为0.05~0.1 MPa范围内,经过30 min均匀抛光,硒化锌晶体的表面粗糙度由3.832 nm降低到1.57 nm,粗糙度得到明显改善。该方法有效提高了非球面硒化锌晶体的加工效率并改善了加工后的表面质量,对硒化锌晶体的非球面超精密加工具有重要的参考价值。
  • 图  1  CIPs 的扫描电镜图

    Figure  1.  SEM image of CIPs

    图  2  ZnSe 试验件初始粗糙度

    Figure  2.  Initial roughness of ZnSe test piece

    图  3  实验过程图

    Figure  3.  Picture of the experimental process

    图  4  去除函数实验结果

    Figure  4.  Experimental results of the removal function

    图  5  不同磁流变抛光液体对ZnSe 抛光的材料去除效率和粗糙度

    Figure  5.  Material removal efficiency and roughness of ZnSe polished by different magnetorheological polishing liquids

    图  6  使用2号磁流变液加工后材料的粗糙度

    Figure  6.  Roughness of the material after processing with No. 2 magnetorheological fluid

    图  7  抛光垫实物图

    Figure  7.  Physical drawing of polishing pad

    图  8  CCOS精抛光后材料的表面粗糙度

    Figure  8.  Surface roughness of the material after CCOS fine polishing

    表  1  硒化锌的特性和性能

    Table  1.   Characteristic and properties of ZnSe

    MaterialTypeCrystal
    structure
    Hv/
    GPa
    Grain
    size/μm
    Density/
    g·mm−3
    ZnSePolycrystallineCubic0.9±0.0543±95.26
    下载: 导出CSV

    表  2  磁流变抛光液组成成分

    Table  2.   Composition of MR polishing fluid

    IngredientDeionized waterCarbonyl iron powder (CIPs)GlycerinRust inhibitorSodium carbonateCitric acidAuxiliariespolish powder
    Volume fractionOther35%3%0.8%2%0.6%0.2%0.2%
    下载: 导出CSV

    表  3  工艺参数

    Table  3.   Process parameter

    ParameterWheel
    diameter/mm
    Rotate
    speed/r·min−1
    Penetration
    depth/mm
    Magnetic
    field
    Value1601200.8340 mT
    下载: 导出CSV

    表  4  不同抛光液成分的去除函数实验结果

    Table  4.   Experimental results of removal function for different polishing liquid compositions

    MR polishing fluid seriesAbrasive typeRemoval rate/μm·min−1Roughness/nm
    1single crystal diamond/100 nm5.29
    2Alumina/100 nm1.84
    3Alumina/800 nm3.68.5
    4Polycrystalline diamond/100 nm2.8810
    5Silicon oxide/100 nm0.31.8
    6Cerium oxide/100 nm0.362.5
    下载: 导出CSV

    表  5  抛光垫参数

    Table  5.   Polishing pad parameters

    MaterialPolyurethane
    ColorBlack
    Thickness/mm0.8±0.1
    Shore hardness (C)81±5
    Density/g·cm30.5±0.1
    Compression ratio(1.6±0.5)%
    下载: 导出CSV
  • [1] LI Shijie, Tian Rong, Wang Shouyi, et al. Research on compensation processing technology for infrared optical components [J]. Journal of Xi'an Technological University, 2020, 40(2): 146-152. (in Chinese) doi:  10.16185/j.jxatu.edu.cn.2020.02.003
    [2] Wang Lingxue, Cai Yi. Recent progress and perspectives of infrared optical systems [J]. Infrared Technology, 2019, 41(1): 1-12. (in Chinese)
    [3] Hao Siyuan, Xie Jianan, Wen Maoxing, et al. Design and realization of light and small long-wave infrared optical system [J]. Infrared and Laser Engineering, 2020, 49(9): 20200031. (in Chinese) doi:  10.3788/IRLA20200031
    [4] Zhang F, Yang Q, Bian H, et al. Fabrication of ZnSe microlens array for a wide infrared spectral region [J]. IEEE Photonics Technology Letters, 2020, 32(20): 1327-1330. doi:  10.1109/LPT.2020.3021131
    [5] Kadzevičius N, Švagždytė I, Gargasas J, et al. Investigation of polishing characteristics for aspherical lenses manufacturing [J]. Mechanics, 2020, 26(5): 457-461. doi:  10.5755/j01.mech.26.5.24572
    [6] Vilkova E Y, Timofeev O V. Mechanical polishing of ZnSe using rosin-based resins[J]. Inorganic Materials, 2010, 46(3): 264-268.
    [7] Tomashyk V M. Optimization of conditions for treatment of ZnSe crystal surfaces by chemical etching[J]. Semiconductor Physics Quantum Electronics and Optoelectronics, 2013, 16(2): 140-145.
    [8] Lucca D A, Shao L, Wetteland C J, et al. Subsurface damage in (100) ZnSe introduced by mechanical polishing [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006, 249(1-2): 907-910.
    [9] Dong Yunna, Cao Shuyun. Study on polishing zinc selenide wafer [J]. Diamond & Abrasives Engineering, 2016, 36(1): 83-86. (in Chinese) doi:  10.13394/j.cnki.jgszz.2016.1.0018
    [10] Li Qingzhong, Shi Weibin, Xia Mingguang. Effect of abrasive on ultrasound fine atomization CMP of zinc selenide [J]. Semiconductor Optoelectronics, 2018, 39(6): 815. (in Chinese)
    [11] 饶志敏. 轮式工具抛光硫化锌非球面关键技术研究[D]. 哈尔滨工业大学, 2017.

    Rao Zhimin. Zinc sulfide aspherical surface polishing using wheel polishing[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
    [12] Geng Ruiwen, Xie Qiming, Zhang Wanqing, et al. Study on the material removal mechanism of ZnSe crystal via ultra-precision diamond turning [J]. Infrared and Laser Engineering, 2021, 50(6): 20200403. (in Chinese) doi:  10.3788/IRLA20200403
    [13] 白杨. 磁流变抛光液的研制及去除函数稳定性研究[D]. 中国科学院研究生院(长春光学精密机械与物理研究所), 2015.

    Bai Yang. Preparation of MR polishing fluid and study on stability of removal function[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2012. (in Chinese)
    [14] Bai Y, Zhang X, Yang C, et al. Material removal model of magnetorheological finishing based on dense granular flow theory [J]. Light: Advanced Manufacturing, 2022, 3: 1-10.
    [15] Wang Jiaqi, Xiao Qiang. Research progress of magnetorheological polishing technology [J]. Surface Technology, 2019, 48(10): 317-328. (in Chinese)
    [16] Salzman S, Romanofsky H J, West G, et al. Acidic magnetorheological finishing of infrared polycrystalline materials [J]. Applied Optics, 2016, 55(30): 8448-8456. doi:  10.1364/AO.55.008448
  • [1] 高博, 范斌, 王佳, 吴湘, 辛强.  光学元件磁流变加工不确定度误差工艺方法 . 红外与激光工程, 2024, 53(3): 20230595-1-20230595-10. doi: 10.3788/IRLA20230595
    [2] 吴鹏飞, 邓植中, 雷思琛, 谭振坤, 王姣.  基于激光散斑图像多特征参数的表面粗糙度建模研究 . 红外与激光工程, 2023, 52(12): 20230348-1-20230348-11. doi: 10.3788/IRLA20230348
    [3] 张鑫, 张乐, 宋驰, 闫力松, 尹小林, 张斌智.  基于PSD评价及伪随机轨迹的单晶碳化硅表面粗糙度研究 . 红外与激光工程, 2023, 52(5): 20220838-1-20220838-7. doi: 10.3788/IRLA20220838
    [4] 宋鹏, 白杨, 杨超, 李闯, 薛常喜, 丁佳雯, 郭杰.  大口径离轴非球面离心力误差修正的车削方法 . 红外与激光工程, 2023, 52(7): 20220888-1-20220888-9. doi: 10.3788/IRLA20220888
    [5] 胡玮娜, 吕勇, 耿蕊, 李宇海, 牛春晖.  光电探测器表面损伤状态偏振成像式探测系统 . 红外与激光工程, 2022, 51(6): 20210629-1-20210629-9. doi: 10.3788/IRLA20210629
    [6] 杨航, 陈英, 黄文, 韩明, 张星兴, 贾阳, 李彬, 蒋蓉.  面向中频误差的变距螺旋矩阵轨迹优化方法 . 红外与激光工程, 2022, 51(3): 20210443-1-20210443-7. doi: 10.3788/IRLA20210443
    [7] 陈世杰, 牛春晖, 李晓英, 吕勇.  CCD损伤进程中光学成像系统猫眼回波特性研究 . 红外与激光工程, 2021, 50(9): 20200425-1-20200425-6. doi: 10.3788/IRLA20200425
    [8] 蒋磊, 刘恒彪, 李同保.  超辐射发光二极管的散斑自相关法表面粗糙度测量研究 . 红外与激光工程, 2019, 48(7): 717003-0717003(7). doi: 10.3788/IRLA201948.0717003
    [9] 李晓媛, 高伟, 田东, 董会, 吉方, 王超.  KDP晶体表面残留磁流变抛光液清洗技术研究 . 红外与激光工程, 2018, 47(S1): 132-137. doi: 10.3788/IRLA201847.S120006
    [10] 史杰, 钟凯, 刘楚, 王茂榕, 乔鸿展, 李吉宁, 徐德刚, 姚建铨.  太赫兹频段金属粗糙表面散射特性 . 红外与激光工程, 2018, 47(12): 1217004-1217004(6). doi: 10.3788/IRLA201847.1217004
    [11] 张祥金, 沈娜, 胡鑫, 宋健.  激光近程探测中目标表面的散射特性 . 红外与激光工程, 2017, 46(7): 706003-0706003(9). doi: 10.3788/IRLA201746.0706003
    [12] 樊长坤, 李琦, 赵永蓬, 陈德应.  不同粗糙度抛物面的2.52 THz后向散射测量 . 红外与激光工程, 2017, 46(11): 1125005-1125005(6). doi: 10.3788/IRLA201746.1125005
    [13] 朱南南, 张骏.  表面粗糙度激光散射检测的多波长光纤传感器 . 红外与激光工程, 2016, 45(5): 522003-0522003(6). doi: 10.3788/IRLA201645.0522003
    [14] 卢晓云, 薛晨阳, 王永华, 郑华, 杜建功, 张婷, 闫树斌, 唐军.  毫米级氟化钙盘腔的加工与测试 . 红外与激光工程, 2015, 44(10): 3049-3054.
    [15] 颛孙晓博, 武文远, 黄雁华, 龚艳春, 吴成国, 李兆兆.  基于MB模型的简化偏振BRDF模型建立与仿真 . 红外与激光工程, 2015, 44(3): 1098-1102.
    [16] 周建忠, 刘伟, 黄舒, 郑阳, 谭文胜, 宋稳红, 穆丹, 佘杰.  音膜激光辐照的表面完整性及声学特性研究 . 红外与激光工程, 2015, 44(5): 1420-1425.
    [17] 李睿, 杨小君, 赵卫, 贺斌, 李明, 赵华龙, 朱文宇, 王宁.  飞秒激光加工对熔覆层侧壁粗糙度的影响 . 红外与激光工程, 2015, 44(11): 3244-3249.
    [18] 付怀洋, 周泗忠, 姜凯, 梅超, 张惠.  镜面粗糙度对远紫外望远镜能量集中度的影响 . 红外与激光工程, 2014, 43(8): 2562-2567.
    [19] 王宁, 贾辛, 邢廷文.  子孔径拼接检测浅度非球面 . 红外与激光工程, 2013, 42(9): 2525-2530.
    [20] 马占龙, 王君林.  超高精度光学元件加工技术 . 红外与激光工程, 2013, 42(6): 1485-1490.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  54
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 修回日期:  2022-08-22
  • 刊出日期:  2022-09-28

硒化锌晶体的高效率高质量组合抛光方法(特邀)

doi: 10.3788/IRLA20220531
    作者简介:

    杨超,女,副教授,博士,主要从事超精密光学制造技术方面的研究

  • 中图分类号: TH161+.4

摘要: 硒化锌晶体作为常用的红外晶体材料,广泛应用于红外光学系统中。为了提高硒化锌晶体的加工质量及加工效率,提出了将磁流变抛光(MRF)与传统数控抛光(CCOS)技术相结合的方法,通过多组正交实验配置硒化锌晶体的磁流变抛光液,对一块口径为50 mm的硒化锌晶体展开磁流变抛光,再针对磁流变抛光后的表面痕迹进行传统数控抛光,在正压力为0.05~0.1 MPa范围内,经过30 min均匀抛光,硒化锌晶体的表面粗糙度由3.832 nm降低到1.57 nm,粗糙度得到明显改善。该方法有效提高了非球面硒化锌晶体的加工效率并改善了加工后的表面质量,对硒化锌晶体的非球面超精密加工具有重要的参考价值。

English Abstract

    • 近年来,红外光学系统的应用逐步向着民用商品领域发展,从传统的国防、军事上的应用,到现在的民用摄像头、工业检测手段等,这些应用上的拓展对光学系统及光学元件的要求愈发严格[1-3]。硒化锌一直作为理想的红外材料具有优良的光学特性,包括从可见光到中红外波长和远红外波长的宽透明度、高折射率、低色散和环境适应性等[4]。良好的使用光谱范围使得硒化锌材料可作为多种民用、商用的光学材料,但对其加工效率及加工精度提出了较高要求[5],如何提高其加工精度及加工效率成为目前亟待解决的问题。

      目前,国内外诸多学者已经开展了对硒化锌的抛光研究工作。Gavrishchuk等[6]研究了对硒化锌进行化学机械抛光(CMP)时不同抛光树脂的软化温度对去除率的影响,并且提出在抛光过程中加入1 mol/L的硝酸会使去除率与传统机械抛光相比提升近30%。Tomashyk等[7]在对硒化锌进行CMP时使用了双氧水-溴化氢-乙二醇混合溶液进行蚀刻,直径为25 mm的硒化锌样品经过CMP加工后表面粗糙度达到了近6 nm。Lucca等[8]利用透射电子显微镜(XTEM)研究机械抛光硒化锌时的近表面损伤的程度和分布,分析并证明了表面下具有两个不同的损伤区域。董云娜等[9]研究了采用CMP抛光硒化锌晶体时,不同的氧化铝尺寸作为抛光液以及抛光液pH值对材料去除率的影响,最终选用了200 nm的氧化铝磨粒,抛光液的pH值在8时,抛光一块直径为20 mm的硒化锌晶体,抛光效率可达2 μm/min。李庆钟等[10]采用雾化施液CMP的方法,用表面粗糙度和材料去除率作为评价标准,筛选出最适合抛光硒化锌的抛光磨料,在一块直径为20 mm的硒化锌晶体上进行抛光,最终表面粗糙度达到了2.13 nm。

      上述研究虽然在硒化锌抛光后的表面质量上有一定的进展,但是硒化锌加工的抛光效率和材料表面粗糙度仍有待进一步提高。中文采用组合抛光加工硒化锌晶体的方法,将磁流变抛光加工技术与传统数控抛光(CCOS)技术结合,有效提高光学元件的加工效率及加工精度,其加工精度可进一步扩展应用于可见光范围。

    • 目前红外晶体材料的非球面加工方法主要通过超精密切削成形,然后采用CMP工艺提升面形精度和表面质量[11]。但由于硒化锌晶体具有高脆性、低断裂韧性和各向异性的特点[12],在对其进行超精密切削时,晶体表面极易沿着不同的晶向断裂,产生裂纹和缺陷,并且由于其各向异性的特点,导致其加工时断裂的方向也不固定,很难保证加工后表面质量。硒化锌晶体除了高脆性之外,其质地也较软, CMP抛光虽然也能加工出高质量光学表面,但加工精度难以保证。ZnSe晶体材料的特性如表1所示。

      表 1  硒化锌的特性和性能

      Table 1.  Characteristic and properties of ZnSe

      MaterialTypeCrystal
      structure
      Hv/
      GPa
      Grain
      size/μm
      Density/
      g·mm−3
      ZnSePolycrystallineCubic0.9±0.0543±95.26

      磁流变抛光(MRF)作为一种超精密柔性加工技术,其利用磁流变抛光液在梯度磁场下形成的柔性磨头对工件实现剪切去除,且单个抛光颗粒对工件表面作用压强较小[13],所以磁流变抛光加工的材料有几乎没有亚表面损伤[14]。MRF抛光同时还具有加工确定性高、表面粗糙度低、加工面形精度高等特点[15],可以实现对多种材料及不同面型光学元件的纳米精度的加工。采用磁流变抛光实现对硒化锌元件的超精密抛光需要研发特殊的磁流变抛光液体,若采用常规的抛光液进行抛光,虽然抛光效率极高,但是材料内部的晶粒结构会表现的异常明显,呈类似于橘皮状,抛光后表面的粗糙度较差[16],进而导致后续抛光难度加大,抛光周期增加。因此,研发适用于硒化锌材料的磁流变抛光液是实现磁流变抛光对其高精度高质量加工的关键。

    • 磁流变抛光液通常由微米级铁粉颗粒、抛光粉、基载液(水或油)、化学添加剂组成。对于红外材料的抛光通常采用水基磁流变抛光液体[15]。同样地,文中也选择去离子水为载液,由于为了防止铁粉颗粒生锈,磁流变抛光液体的pH通常需要调节至强碱性(pH=11左右),但当pH较高时磁流变抛光表面的粗糙度较差,然而当pH接近中性甚至酸性的情况下,磁流变抛光液体中铁粉颗粒将很快生锈,无法保证长时间抛光使用。

      因此,在保证磁流变抛光液中铁粉不生锈的前提下,通过优化液体选择了将基载液的pH调节至9.3,磁流变抛光液的主要成分如表2所示。

      表 2  磁流变抛光液组成成分

      Table 2.  Composition of MR polishing fluid

      IngredientDeionized waterCarbonyl iron powder (CIPs)GlycerinRust inhibitorSodium carbonateCitric acidAuxiliariespolish powder
      Volume fractionOther35%3%0.8%2%0.6%0.2%0.2%

      所用铁粉的粒径为D50=3 μm羰基铁粉,铁粉类型为高纯羰基铁粉。图1为羟基铁粉的扫描电镜(SEM)图片。

      图  1  CIPs 的扫描电镜图

      Figure 1.  SEM image of CIPs

      为了获取较好的表面粗糙度,选择六种不同的纳米抛光粉,配制六种磁流变抛光液体进行去除函数实验,获取去除效率和表面粗糙度的最佳平衡。

    • 为了测试不同磁流变抛光液体ZnSe抛光时的去除效率和表面粗糙度,采用自主研发的磁流变抛光设备进行去除函数,加工参数如表3所示。

      表 3  工艺参数

      Table 3.  Process parameter

      ParameterWheel
      diameter/mm
      Rotate
      speed/r·min−1
      Penetration
      depth/mm
      Magnetic
      field
      Value1601200.8340 mT

      试验件采用的是两块直径为50 mm的典型的多晶ZnSe材料,其参数如表1所示。两块试验件均为平面,并且经过预抛光后其初始面形误差RMS小于15 nm,初始表面粗糙度为3.5 nm,图2为ZnSe材料的初始粗糙度检测结果,可以看出预抛光的表面仍有存在明显的晶粒分布。

      图  2  ZnSe 试验件初始粗糙度

      Figure 2.  Initial roughness of ZnSe test piece

      为测试不同磁流变抛光液体的抛光性能,采用开展去除函数实验的方法进行研究,实验过程按照表2所示的参数,并控制单点的驻留时间为10 s,测试完成采用zygo激光干涉仪及白光干涉仪测量液体的材料去除效率及抛光表面粗糙度,进而评估液体抛光性能。图3为去除函数实验过程图。

      图  3  实验过程图

      Figure 3.  Picture of the experimental process

      具体抛光液体参数及实验结果如表4所示。

      表 4  不同抛光液成分的去除函数实验结果

      Table 4.  Experimental results of removal function for different polishing liquid compositions

      MR polishing fluid seriesAbrasive typeRemoval rate/μm·min−1Roughness/nm
      1single crystal diamond/100 nm5.29
      2Alumina/100 nm1.84
      3Alumina/800 nm3.68.5
      4Polycrystalline diamond/100 nm2.8810
      5Silicon oxide/100 nm0.31.8
      6Cerium oxide/100 nm0.362.5

      通过表4的实验结果可以看出,在抛光ZnSe晶体材料时候,不同尺寸和类型的抛光粉对ZnSe抛光的材料去除效率和抛光后表面粗糙度具有显著影响。图4是6种不同实验所得的去除函数检测图。

      图  4  去除函数实验结果

      Figure 4.  Experimental results of the removal function

      根据表4实验结果可以得出图5的实验结果曲线,可以看出抛光过程中材料去除效率与粗糙度成正比关系,即材料去除效率越高,抛光表面的粗糙度越大,同时粒径对材料去除效率与抛光粉粒径及种类有关。

      图  5  不同磁流变抛光液体对ZnSe 抛光的材料去除效率和粗糙度

      Figure 5.  Material removal efficiency and roughness of ZnSe polished by different magnetorheological polishing liquids

      图5可以看出,使用1号抛光液时材料的去除效率为5.2 μm/min,加工后的粗糙度为9 nm;使用2号抛光液时材料的去除效率为1.8 μm/min,加工后的粗糙度为4 nm;使用3号抛光液时材料的去除效率为3.6 μm/min,加工后的粗糙度为8.5 nm;使用4号抛光液时材料的去除效率为2.88 μm/min,加工后的粗糙度为10 nm;使用5号抛光液时材料的去除效率为0.3 μm/min,加工后的粗糙度为1.8 nm;使用6号抛光液时材料的去除效率为0.36 μm/min,加工后的粗糙度为2.5 nm。使用1号抛光液的去除效率虽然最高,但是同时加工后的表面粗糙度也很高。使用3、4号抛光液时加工后的表面粗糙度超过8 nm,导致后续抛光难度加大,精度无法保证。使用5、6号抛光液进行磁流变抛光时,虽然有较好的表面粗糙度,但是去除效率过低。结合加工效率及加工质量综合考虑,2号抛光液的材料去除效率和表面质量最合适。图6为在使用2号抛光液进行磁流变抛光后的ZnSe材料的表面粗糙度检测结果图,粗糙度为3.832 nm。

      图  6  使用2号磁流变液加工后材料的粗糙度

      Figure 6.  Roughness of the material after processing with No. 2 magnetorheological fluid

      虽然使用磁流变抛光技术可以获得较高精度的光学表面,但是磁流变抛光后晶体表面仍然存在磁流变抛光后特有的表面划痕的情况,且粗糙度变差,需要结合传统抛光方法来消除表面微观划痕和提升表面粗糙度。因此,在磁流变抛光结束后继续采用传统抛光数控抛光(CCOS)方法进行最终的精抛光。

    • 对于非球面硫化锌的抛光采用小磨头配合抛光垫,对其进行超精密抛光,硫化锌晶体超精密抛光所用抛光垫对抛光效率和表面质量均有重要的影响,表5为所用抛光垫的参数,图7为实验所用抛光垫实物图。

      表 5  抛光垫参数

      Table 5.  Polishing pad parameters

      MaterialPolyurethane
      ColorBlack
      Thickness/mm0.8±0.1
      Shore hardness (C)81±5
      Density/g·cm30.5±0.1
      Compression ratio(1.6±0.5)%

      图  7  抛光垫实物图

      Figure 7.  Physical drawing of polishing pad

      CCOS抛光过程所用的抛光液体为碱性氧化硅抛光液, pH=10,其中二氧化硅颗粒呈球形,粒径为100 nm。将其与抛光垫配合使用,将加工正压力控制在0.05~0.1 MPa之间,进行最后的精抛光,经过30 min均匀抛光,表面粗糙度达到了1.57 nm,与抛光前相比,粗糙度精度在短时间内得到了明显改善。图8为使用2号抛光液进行磁流变抛光后,再对材料进行CCOS加工后最终ZnSe材料的表面粗糙度检测结果。

      图  8  CCOS精抛光后材料的表面粗糙度

      Figure 8.  Surface roughness of the material after CCOS fine polishing

      综上所述,对于硒化锌晶体的高精度高效抛光,可选用磁流变抛光结合传统抛光模式进行组合加工。先通过磁流变技术进行抛光,再通过CCOS对其面形进行快速修正。对一块口径为50 mm的硒化锌进行组合抛光实验,通过正交实验选取合适的磁流变抛光液,对其进行磁流变抛光,抛光后粗糙度为3.832 nm,再通过CCOS进行30 min的快速抛光使其粗糙度达到1.57 nm,粗糙度得到了明显改善。该组合加工方法可以有效地提高硒化锌的抛光质量及抛光效率,抛光后的硒化锌光学元件粗糙度可达到可见光波段使用精度,为硒化锌光学元件的广泛应用提供了有效的加工指导。

    • 为了解决硒化锌的非球面加工难度大、加工效率低、加工后表面质量差等问题,文中提出了将磁流变抛光和CCOS相结合的方法。研制了适用于加工硒化锌晶体的磁流变抛光液,与此同时结合CCOS精抛光处理,进一步提高了硒化锌晶体的表面质量,经过组合抛光加工后口径为50 mm的硒化锌晶体的表面粗糙度可达到1.57 nm,满足高效率、高精度、低成本的抛光需求。相对于传统抛光方法,将MRF与CMP相结合的研究思路同样适用于其他红外材料光学元件的高效率、高质量加工,研究成果为红外光学材料的非球面加工提供了一种普适的加工策略,对非球面光学元件的超精密加工具有重要的借鉴意义。

参考文献 (16)

目录

    /

    返回文章
    返回