-
当近地面臭氧浓度超过一定阈值时,会对人类健康、生态环境和动植物生长造成一系列不利影响[1-4]。目前臭氧已取代细颗粒物成为主要污染物,影响了春季和夏季的良好空气日数[5-6]。近地面臭氧浓度在很大程度上依赖于上层混合及垂直边界层的物理状况,如夜间残留层的臭氧在次日可以被下沉运动带到地面,从而使地面的臭氧浓度升高,甚至启动近地层的光化学污染进程[7]。因此,开展臭氧的垂直探测是完善臭氧监测和预警体系的重要部分,对研究臭氧的污染原因和变化趋势都具有重要意义。
差分吸收激光雷达是测量臭氧空间分布的一种重要工具,具有实时在线和高时空分辨率等优点[8-12]。近年来随着我国差分吸收激光雷达技术的发展,臭氧雷达已被广泛应用于大气环境领域的研究中。项衍等将臭氧浓度模拟结果和雷达观测结果进行比较,发现两者具有较好的一致性[13]。范广强等对北京灰霾天臭氧时空分布特征开展观测,结果发现离地面1.5~2 km的臭氧气团下沉引起近地面臭氧浓度的升高[8]。孙思思等对南京市一次典型臭氧污染过程的监测发现造成重污染的原因是近地面臭氧的循环生成和夜间高空残留的臭氧在湍流作用下混合并积累[14]。Chi等采用差分吸收激光雷达测量了中国科学院大学站的低对流层臭氧和气溶胶消光系数的垂直剖面,发现边界层(0.3~1.0 km)的臭氧随高度呈正梯度,在雾霾日夜间呈分层结构,而在洁净期夜间则呈均匀分布[15]。He等利用臭氧雷达观测了2019年9月底发生在珠江三角洲的一次臭氧污染过程,发现在300~500 m和1300~1700 m分别存在一个高浓度臭氧层和一个亚高浓度臭氧层[16]。基于个例分析不足以反映当地臭氧污染的整体特征,王馨琦等、秦龙等和李嫣婷等分别对广州、天津和深圳臭氧的垂直分布进行了长期观测和统计分析[17-19],但是这些分析都没有区分晴天和雨天的数据。而实际上,气象条件对臭氧浓度的影响很大。梁碧玲等通过对深圳市臭氧污染特征和气象条件的分析指出有利于臭氧污染的气象条件为较高的温度、充足的日照、干燥、无雨和弱风[20]。基于此,文中使用差分吸收激光雷达在潍坊市的观测数据,对晴天和雨天臭氧的分布特征分别进行了分析,探讨不同天气条件下臭氧分布的差别,并重点对晴天臭氧的分布特征进行了统计。
-
研究所用的低空臭氧浓度数据是由合肥中科光博量子科技有限公司生产的GBQ L-04型臭氧激光雷达探测的,监测时段2020年6月1日~2020年8月31日,监测点潍坊市环境监测中心站内(119.15°E,36.70°N)。
-
GBQ L-04型臭氧激光雷达是一种差分吸收激光雷达(differential absorption lidar,DIAL),该类型雷达同时向大气中的同一光路上发射波长接近的两束脉冲激光,其中一束激光的波长处于臭氧的吸收线上,受到臭氧较强的吸收,记为
$ {\lambda _{{\text{on}}}} $ ;另一束激光的波长位于臭氧吸收线的边翼或吸收线之外,臭氧在该波长的吸收很少或没有吸收,记为$ {\lambda _{{\text{off}}}} $ 。波长为$ {\lambda _{{\text{on}}}} $ 和$ {\lambda _{{\text{off}}}} $ 的两束激光的差分吸收激光雷达方程分别为[21-22]:$$\begin{split} P({\lambda }_{\rm on},{z})=&{C}_{\rm on}\frac{\beta ({\lambda }_{\rm on},{z})}{{Z}^{2}}\cdot\\ &\mathrm{exp}\left\{-2{\displaystyle {\int }_{0}^{{z}}\left[{\alpha }_{g}({\lambda }_{\rm on},{z})+\sigma ({\lambda }_{\rm on})N(z)\right]{\rm d}z}\right\} \end{split}$$ (1) $$\begin{split} P({\lambda }_{\rm off},{z})=&{C}_{\rm off}\frac{\beta ({\lambda }_{\rm off},{z})}{{Z}^{2}}\cdot\\ &\mathrm{exp}\left\{-2{\displaystyle {\int }_{0}^{{z}}\left[{\alpha }_{g}({\lambda }_{\rm off},{z})+\sigma ({\lambda }_{\rm off})N(z)\right]{\rm d}z}\right\} \end{split}$$ (2) 式中:
$P({\lambda _{\rm on}},z)$ 和$P({\lambda _{\rm off}},z)$ 分别表示高度z处两个波长的大气后向弹性散射回波信号;$ {C_{{\text{on}}}} $ 和$ {C_{{\text{off}}}} $ 分别表示两个波长的雷达常数;$\;\beta ({\lambda }_{\rm on}{,z})$ 和$\;\beta ({\lambda }_{\rm off},{z})$ 分别表示两个波长的激光在高度z处大气的后向散射系数;$ \sigma ({\lambda }_{\text{on}}) $ 和$ \sigma ({\lambda }_{\text{off}}) $ 分别表示臭氧在两个波长的消光截面;${\alpha _{\text{g}}}({\lambda _{\rm on}},{{z}})$ 和${\alpha _{\text{g}}}({\lambda _{\rm off}},z)$ 分别表示在高度z处除臭氧外的大气在两个波长的消光系数;$ N(z) $ 表示高度z处臭氧的数密度。由公式(1)、(2)式可求得方程的解为[21,23-24]:$$ N(z) = - \frac{1}{{2\Delta \sigma }}\frac{\rm d}{{{\rm d}z}}\left[\ln \frac{{P({\lambda _{\rm on}},z)}}{{P({\lambda _{\rm off}},z)}}\right] + B - {E_a} - {E_m} - {E_{gas}} $$ (3) 其中,
$$ \Delta \sigma = \sigma ({\lambda _{\rm on}}) - \sigma ({\lambda _{\rm off}}) $$ (4) $$ B = \frac{1}{{2\Delta \sigma }}\frac{{\text{d}}}{{{\rm d}z}}\left[\ln \frac{{\beta ({\lambda _{\rm on}},z)}}{{\beta ({\lambda _{\rm off}},z)}}\right] $$ (5) $$ {E_a} = \frac{1}{{\Delta \sigma }}[{\alpha _a}({\lambda _{\rm on}},z) - {\alpha _a}({\lambda _{\rm off}},z)] $$ (6) $$ {E_{{m}}} = \frac{1}{{\Delta \sigma }}[{\alpha _m}({\lambda _{\rm on}},z) - {\alpha _m}({\lambda _{\rm off}},z)] $$ (7) $$ {E_{{{gas}}}} = \frac{{\Delta {\delta _{gas}}N_{gas}'}}{{\Delta \delta }} $$ (8) 式中:
$\Delta {\delta _{{{gas}}}}$ 表示其他痕量气体在两个波长的吸收截面差;$ N_{gas}' $ 表示其他痕量气体的吸收作用给臭氧浓度反演带来的影响;B、$ {E_a} $ 、${E_{{m}}}$ 和${E_{{{gas}}}}$ 分别表示大气后向散射作用带来的误差、气溶胶消光作用带来的误差、空气分子消光作用带来的误差和其他痕量气体吸收作用带来的误差。在气溶胶含量较少的情况下,B和${E_{{a}}}$ 可以忽略不计,但是在气溶胶含量多或分布不均匀时,B和${E_{{a}}}$ 不能忽略[24];${E_{{m}}}$ 可以根据大气模式或无线探空资料进行修正,修正后的误差在1%以下[23-24]。GBQ L-04型臭氧激光雷达在计算臭氧浓度时,根据美国标准大气模式对${E_{{m}}}$ 进行了修正,忽略了B和${E_{{a}}}$ 、${E_{{{gas}}}}$ 。 -
GBQ L-04型臭氧激光雷达由激光发射单元、光学接收单元、信号采集与数据处理单元、辅助单元四个部分组成。其中激光发射单元包括激光器、拉曼管和发射镜组,光学接收单元包括望远镜、光栅光谱仪和光电探测器,信号采集与数据处理单元包括模拟采集卡和工业计算机。雷达系统结构如图1所示。
Nd:YAG激光器经四倍频晶体产生波长为266 nm的激光,能量为90 mJ。雷达采用全固态激光源,优化激光束质量,发射能量稳定性能达到5%,光束发散角小于等于1 mrad。266 nm激光束进入拉曼管泵浦D2拉曼池发生拉曼散射,产生波长为289 nm和316 nm的两个Raman频移激光,能量分别为15 mJ和12 mJ。发射的激光束经准直扩束后射入大气,与大气中的气溶胶发生米散射,与空气分子发生瑞利散射,与痕量气体发生吸收作用。经过各种物理过程的后向散射回波信号被直径为250 mm的卡塞格林望远镜接收,经光栅光谱仪分光后,由光电倍增管(PMT)转换为电流信号。
文中臭氧雷达探测的垂直分辨率为7.5 m,时间分辨率为10 min,观测高度选取300~3000 m。
-
2020年6月1~2日和19~20日的天气实况如表1所示。其中19日和20日潍坊市日照时间分别为12.3 h和13 h,可作为晴天的代表。受高空槽影响,潍坊市1~2日出现一次降水过程,总降水量为17.7 mm,降水时段集中在1日19时~2日06时,1日和2日可分别作为傍晚和凌晨降水的代表。图2是臭氧雷达探测的实时空中臭氧浓度分布情况,其中图2(a)、(b)图分别是晴天和降水天气下的个例。
表 1 天气实况表
Table 1. Weather facts
Date Total value Average value Radiation/W·m−2 Sunshine/
hPrecipitation/
mmRelative humidity Ten minutes average wind speed/
m·s−1Temperature/
℃2020-06-01 6399 6.8 1.4 54 2.8 23.0 2020-06-02 6060 3.9 16.3 72 1.7 23.2 2020-06-19 5499 12.3 0 64 1.9 25.4 2020-06-20 6938 13 0 57 2.1 26.9 由图2(a)可见,晴天臭氧浓度呈现明显的日变化特征,即一天中高浓度臭氧主要集中在12~18时,夜间臭氧浓度较低;臭氧浓度层主要集中在1500 m以下的高度。一般来说,强辐射、高温、低湿有利于臭氧的生成。比较19日和20日的气象背景和臭氧浓度数据,发现虽然19日的总辐射、日照、平均气温都比20日小,平均相对湿度也比20日大,仅10 min平均风速的平均值比20日小,但是臭氧污染却比20日强,这是由于水平风是臭氧水平输送的重要动力,风速越大,越有利于臭氧污染的水平扩散,对污染源的冲淡稀释作用越好。臭氧浓度是臭氧生成条件和扩散条件综合作用的结果。
由图2(b)可见,降水开始前,由于对流旺盛,臭氧层会变厚,在上升气流的带动下能达到接近3 km的高度,同时降水前的大风也使得臭氧浓度降低;降水一开始,臭氧分布图上便出现很多不连续的高浓度亮块,雨停后亮块消失,表明这些亮块并非正常的臭氧信号,而是降水引起的干扰信号;这也进一步表明降水时臭氧雷达探测的臭氧浓度结果并不可靠。对比6月1日和2日臭氧浓度分布发现,1日臭氧浓度低且无明显日变化特征,而2日臭氧浓度分布和晴天一样,日变化明显。结合两日的降水时间表明,降水发生在一天中的不同时段,对臭氧污染的影响差异很大。降水发生在傍晚,白天受云层和大气对流运动的影响,臭氧生成条件弱而扩散条件好,臭氧污染不会太强;而降水发生在早晨,雨后天晴,白天的臭氧污染受到降水的影响则较小。
-
统计所用数据为2020年夏季潍坊市无降水日臭氧激光雷达探测的数据,有效探测数据日数为55天,其中6月21天,7月19天,8月15天。
-
图3给出了2020年夏季潍坊雷达站无降水日的臭氧浓度的时空分布情况。由图可知,臭氧浓度在1500 m以下呈现明显的日变化特征,在1500 m以上日变化不明显;日变化明显的高度,一天中臭氧浓度的高值一般出现在12~18时;臭氧浓度在500 m附近出现极大值。
-
为研究臭氧浓度的详细日变化特征及与地面日变化的关系,选取300、502.5、1005、1500、2002.5 m五个高度和地面臭氧浓度一起绘制日变化曲线,结果见图4。由图可见,地面日变化最明显,臭氧浓度在早晨7时达到最小值,后快速增大,到14时增长速率减缓,17时达最大值后又逐渐减小;300、502.5、1005 m三个高度有明显的日变化趋势,但是白天和夜晚臭氧浓度的差值没有地面大;1500、2002.5 m高度看不出日变化,臭氧浓度在一天中基本不变,且2002.5 m高度臭氧浓度值接近地面0时的臭氧浓度值,可作为地面臭氧预报的背景值;在10时之前,选取的五个高度的臭氧浓度均高于地面,14~17时,选取的高度仅在502.5 m处的臭氧浓度高于地面,其他的均比地面低。
1500 m以下低空臭氧浓度的日变化特征与臭氧的光化学过程和大气垂直扩散密切相关。白天,近地面大气中的氮氧化物、一氧化碳和有机化合物在紫外线的照射下发生光化学反应生成臭氧;夜晚,在“滴定效应”的影响下,近地面臭氧浓度不断降低。在大气湍流的作用下,白天臭氧自地面向上扩散,夜晚自低空向下沉降,从而使得低空臭氧浓度也出现白天升高、夜晚降低的现象,但是高度越高,受到地面的影响越小,到1500 m高度后臭氧浓度基本无日变化特征。
-
为了研究一天中不同时段臭氧分布的差别,以日出和日落为界,将一天的时间分为早晨转换时段、白天、傍晚转换时段和夜间四个时段。2020年,夏季潍坊市的日出时间在5:30~6:30之间,日落时间在18:30~19:30之间,故划分的早晨转换时段是指05、06和07三个时次,白天是指08~17时共10个时次,傍晚转换时段是指18、19和20三个时次,余下的8个时次归为夜间时段。统计不同时段的臭氧垂直分布特征如图5所示。由图可知:(1) 300~3000 m高度范围内,臭氧浓度随高度的变化呈现分层的特征。其中夜间和早晨转换时段的臭氧浓度廓线可以分为5层;全天、白天和傍晚转换时段的臭氧浓度廓线可以分为3层。(2)从300 m到约500 m高度,所有时段臭氧浓度都是随着高度的增加而增大,且早晨转换时段的增速最快;从约500 m到约900 m高度,所有时段臭氧浓度都是随着高度的增加而减小,且早晨转换时段的减速最快;从约900 m到约2 000 m高度,夜间和早晨转换时段的臭氧浓度先随高度的增加而增大,在约1200 m出现转折随高度的增加而减小,而白天和傍晚转换时段的臭氧浓度则是随着高度的增加而缓慢减小;从约2 000~3000 m高度,所有时段臭氧浓度都是随着高度的增加而缓慢增大。(3)在约500 m高度附近,臭氧浓度达到极大值,夜间、早晨转换时段,白天、傍晚转换时段和全天分别在450、457.5、540、562.5、457.5 m高度达到极大值149、152、169、162 、159 μg/m3;可见白天的极大值>傍晚转换时段的极大值>早晨转换时段的极大值>夜间的极大值,傍晚转换时段极大值出现的高度>白天极大值出现的高度>早晨转换时段极大值出现的高度>夜间极大值出现的高度。(4)在约500~1200 m高度,臭氧浓度值从小到大依次为早晨转换时段、夜间、傍晚转换时段和白天,其中傍晚转换时段和白天的差值较小;在(1500±200) m高度附近,各个时段的臭氧浓度差值较小。
无降水日对流层臭氧的垂直分布特征可能和大气的热力垂直结构相关,但是可惜的是笔者没有对应的大气温度垂直观测数据。利用距离臭氧雷达约2 km的潍坊市人民医院(119.13°E,36.70°N)米散射激光雷达探测的数据分析边界层高度情况。经统计,米散射雷达在相同时间范围内探测的早晨转换时段、白天、傍晚转换时段、夜晚和全天的边界层高度的平均值分别为435、634、590、455、546 m,和臭氧浓度极大值出现的高度基本一致。由此可见,臭氧浓度在500 m附近出现极大值可能和边界层高度有关。
-
文中选取典型的晴天和雨天个例对两种天气下臭氧的分布特征进行了分析,并对潍坊市夏季无降水日的臭氧分布特征进行了统计,结论如下:
(1)降水前强烈的对流运动和大风会使对流臭氧层变厚,臭氧浓度变稀。降水发生在一天中的不同时段,对臭氧污染的影响差异很大。如降水发生在傍晚,白天臭氧污染不会太强;而降水发生在早晨,雨后天晴,白天的臭氧污染受到降水的影响则较小;
(2)降水期间,臭氧雷达会受到降水的干扰,探测的浓度数据不可靠。有时在雨停后的数小时干扰信号依然存在,如19日00:00~06:00时。干扰出现时虽无降水,但地面相对湿度均在85%以上;
(3)无降水日对流臭氧层主要集中在1500 m以下,有明显的日变化特征,即臭氧浓度白天高夜晚低,这可能与臭氧的光化学过程和大气垂直扩散有关。随着高度的增加,臭氧分布的日变化特征逐渐变弱,至1500 m往上,日变化特征基本消失;
(4) 无降水日对流层臭氧的垂直分布呈现分层的特征,其中早晨转换时段和夜晚的分布基本相似,而白天和傍晚转换时段的分布基本相似。分析出现这一现象的原因可能和大气垂直热力结构有关,因此开展污染物和温度、湿度等气象要素的多因子联合垂直观测意义重大;
(5)无降水日对流层臭氧在500 m附近达到极大值,其中早晨转换时段和夜间极大值小,极大值出现的高度低,而白天和傍晚转换时段极大值大,出现极大值的高度高。臭氧极大值出现的高度和米散射激光雷达探测的边界层高度基本一致;
(6) 在1500 m高度,各个时段的臭氧浓度趋于一致,且自该高度往上臭氧无明显日变化特征,可将该层臭氧浓度作为臭氧预报的大气背景值。
Detection of ozone distribution characteristics in Weifang during summer using lidar
-
摘要: 为了研究潍坊市夏季臭氧的分布特征,使用差分吸收激光雷达在潍坊市进行观测,分析了晴天和雨天臭氧分布的差别,并统计了无降水日臭氧的垂直分布和日变化特征。结果表明:降水发生前强烈的对流运动和大风会使对流臭氧层变厚,臭氧浓度变低;降水发生在一天中的不同时段,对臭氧污染的影响差异很大;无降水日对流臭氧层主要分布在1500 m以下,呈现白天高、夜晚低的日变化特征,高浓度值常出现在12~18时;在垂直结构上呈现分层的特征,其中,300~500 m高度的臭氧浓度随着高度的增加而增大,且在500 m附近达到极大值,该高度和米散射激光雷达探测的边界层高度基本一致;1500 m高度各个时段的臭氧浓度趋于一致,且自该高度往上臭氧无明显日变化特征,可将该层臭氧浓度作为臭氧预报的大气背景值。Abstract:
Objective Tropospheric ozone is an important greenhouse gas and a pollutant harmful to organisms. It not only affects the radiation balance of the ground-atmosphere system, but also seriously endangers the ecological environment. When the near-ground ozone concentration exceeds a certain threshold, it will cause a series of adverse effects on human health and the growth of animals and plants. Since the near-ground ozone concentration depends largely on the physical conditions of the upper layer atmosphere, it is of great significance to carry out vertical ozone detection and study the ozone distribution characteristics for the source analysis and pollution prevention of ozone. In recent years, the near-ground ozone concentration in Weifang has been increasing, especially in summer, which has replaced fine particles as the main pollutant. Therefore, the temporal and spatial distribution characteristics of ozone in Weifang during summer are analyzed in this paper. Methods The differences of ozone distribution under two different weather conditions of fine day and rainy day are studied through analyzing typical cases in this paper. In addition, in order to study the differences in ozone distribution at different times of the day, the time of a day was divided into four periods, namely morning transition, daytime, evening transition and nighttime, and the vertical distribution characteristics of ozone at each period were statistically analyzed. The low-altitude ozone concentration data used for the analysis was detected by the GBQ L-04 ozone lidar (Fig.1) produced by Hefei Zhongke Guangbo Quantum Technology limited company. The monitoring period is from June 1, 2020 to August 31, 2020. The monitoring location is located in Weifang Environmental Monitoring Center Station (119.15°E, 36.70°N). Results and Discussions The daily variation of low-altitude ozone concentration on sunny days is distinct, while on rainy days it varies with the time of the day when precipitation occurs. Ozone pollution will not be too strong when precipitation occurs in the evening because of good production conditions and weak diffusion conditions for ozone during the day due to cloud cover and atmospheric convective motion. Conversely, if precipitation occurs in the morning and the sky clears after rain, daytime ozone pollution is less influenced by precipitation. When meteorological conditions such as radiation, temperature and humidity are similar, strong winds will significantly reduce the ozone concentration. Before rainfall, strong convective movement and gale will make the convective ozone layer thicker and the ozone concentration lower (Fig.2). Many interfering bright blocks appear on the ozone distribution map detected by radar during precipitation. This indicates that the results of ozone concentration detected by ozone lidar during precipitation are not reliable. On non-precipitation days, the convective ozone layer is mainly distributed below 1500 m, showing the characteristics of diurnal variation of high in the day and low at night, and the high concentration value often appears at 12-18 o'clock (Fig.3). This may be closely related to the photochemical process of near-ground and the atmospheric vertical diffusion. The convective ozone layer on non-precipitation days can be divided into several layers from up to down (Fig.4). This may be related to the thermal vertical structure of the atmosphere. Conclusions The distribution characteristics of ozone under typical weather conditions and the statistical characteristics of ozone on non-precipitation days in Weifang are analyzed with data detected by a differential absorption lidar in this paper. The research shows that meteorological conditions have a great impact on ozone distribution. On non-precipitation days, the convective ozone layer is mainly distributed below 1500 m. It increases with height between 300-500 m , and reaches a maximum near 500 m, which is basically consistent with the boundary layer height detected by the Mie-scattering lidar. The ozone concentration of each period of a day at 1500 m tends to be consistent, and there is no obvious diurnal variation up from this height. The ozone concentration in this layer can be used as the atmospheric background value in ozone forecast. -
表 1 天气实况表
Table 1. Weather facts
Date Total value Average value Radiation/W·m−2 Sunshine/
hPrecipitation/
mmRelative humidity Ten minutes average wind speed/
m·s−1Temperature/
℃2020-06-01 6399 6.8 1.4 54 2.8 23.0 2020-06-02 6060 3.9 16.3 72 1.7 23.2 2020-06-19 5499 12.3 0 64 1.9 25.4 2020-06-20 6938 13 0 57 2.1 26.9 -
[1] Kong Qinxin, Liu Guangren, Li Guichen. Surface ozone concentration variation and possible influence on human health [J]. Climatic and Environment Research, 1999, 4(1): 61-66. (in Chinese) doi: 10.3878/j.issn.1006-9585.1999.01.14 [2] Ye Shuchun, Deng Rongchang, Ling Xiaoxia. Advances on impacts of increasing ozone concentration in atmosphere near ground on yields of crops [J]. Journal of Agro-environment Science, 2006, 25(Z2): 772-776. (in Chinese) [3] Chen Chen, Hong Yingying, Liu Li, et al. Analysis of two typical ozone pollution processes in Foshan in spring [J]. Acta Science Circumstantiae, 2022, 42(4): 304-314. (in Chinese) doi: 10.13671/j.hjkxxb.2021.0355 [4] Yang Yunling, Hao Jufei, Yang Lina, et al. Analysis of meteorological conditions of a continuous ozone pollution process in Xingtai of Hebei province [J]. Journal of Arid Meteorology, 2020, 38(3): 448-456. (in Chinese) doi: 10.11755/j.issn.1006-7639(2020)-03-0448 [5] Wang Xinyu, Zhao Wenhui, Zhang Tianyue, et al. Analysis of the characteristics of ozone pollution in the North China Plain from 2016 to 2020 [J]. Atmosphere, 2022, 13(5): 1. doi: 10.3390/atmos13050715 [6] Yi Ri, Wang Yalin, Zhang Yinjun, et al. Pollution characteristics and influence factors of ozone in Yangtze River Delta [J]. Acta Scientiae Circumstantiae, 2015, 35(8): 2370-2377. (in Chinese) doi: 10.13671/j.hjkxxb.2014.1063 [7] Fan Guangqiang, Zhang Tianshu, Fu Yibing, et al. Temporal and spatial distribution characteristics of ozone based on differential absorption lidar in Beijing [J]. Chinese Journal of Lasers, 2014, 41(10): 1014003. (in Chinese) doi: 10.3788/CJL201441.1014003 [8] Fan Guangqiang, Liu Jianguo, Chen Zhenyi, et al. A differential absorption lidar system for tropospheric ozone monitoring [J]. Chinese Journal of Lasers, 2012, 39(11): 1113001. (in Chinese) doi: 10.3788/CJL201239.1113001 [9] Cao Kaifa, Huang Jian, Hu Shunxing. Boundary layer ozone differential-absorption lidar [J]. Infrared and Laser Engineering, 2015, 44(10): 2912-2917. (in Chinese) [10] Huang Zuzhao, Pei Chenglei, Wang Yujun, et al. The net-working observation and analysis of atmospheric ozone lidars in Guangzhou in 2017 [J]. Environmental Science & Technology, 2018, 41(11): 159-164. (in Chinese) doi: 10.19672/j.cnki.1003-6504.2018.11.026 [11] Hu Shunxing, Hu Huanling, Zhou Jun, et al. DIAL lidar mea-surement for tropospheric ozone [J]. Laser Technology, 2001, 25(6): 406-409. (in Chinese) doi: 10.3969/j.issn.1001-3806.2001.06.013 [12] Di Huige, Hua Dengxin. Research status and progress of Lidar for atmosphere in China [J]. Infrared and Laser Engineering, 2021, 50(3): 20210032. (in Chinese) doi: 10.3788/IRLA20210032 [13] Xiang Yan, Liu Jianguo, Zhang Tianshu, et al. Differential absorption lidar combined with numerical model used for detecting distribution of ozone during summer in Hangzhou [J]. Optics and Precision Engineering, 2018, 26(8): 1882-1887. (in Chinese) doi: 10.3788/OPE.20182608.1882 [14] Sun Sisi, Ding Feng, Lu Xiaobo, et al. Analysis a typical O3 pollution in Nanjing using ozone laser radar [J]. The Administration and Technique of Environmental Monitoring, 2018, 30(3): 60-63. (in Chinese) doi: 10.3969/j.issn.1006-2009.2018.03.015 [15] Chi Xiyuan, Liu Cheng, Xie Zhouqing, et al. Observations of ozone vertical profiles and corresponding precursors in the low troposphere in Beijing, China [J]. Atmospheric Research, 2018, 213: 224-235. doi: 10.1016/j.atmosres.2018.06.012 [16] He Guowen, Deng Tao, Wu Dui, et al. Characteristics of boundary layer ozone and its effect on surface ozone concen-tration in Shenzhen, China: A case study [J]. Science of the Total Environment, 2021, 791: 148044. doi: 10.1016/j.scitotenv.2021.148044 [17] Wang Xinqi, Zhang Tianshu, Pei Chenglei, et al. Monitoring of vertical distribution of ozone using differential absorption lidar in Guangzhou [J]. Chinese Journal of Lasers, 2019, 46(12): 1211003. (in Chinese) doi: 10.3788/CJL201946.1211003 [18] Qin Long, Gao Yuping, Wang Wenxiu, et al. Observation of vertical distribution of ozone based on differential absorption lidar during summer and autumn in Tianjin [J]. Optics and Precision Engineering, 2019, 27(8): 1697-1703. (in Chinese) doi: 10.3788/OPE.20192708.1697 [19] Li Yanting, Sun Tianle, He Long, et al. Vertical distribution characteristics of ozone pollution in Shenzhen in autumn [J]. China Environmental Science, 2020, 40(5): 1975-1981. (in Chinese) doi: 10.19674/j.cnki.issn1000-6923.2020.0223 [20] Liang Biling, Zhang Li, Lai Xin, et al. Analysis of the characteristics of ozone pollution and its relationship with meteorological conditions in Shenzhen [J]. Journal of Meteorological and Environment, 2017, 33(1): 66-71. (in Chinese) doi: 10.3969/j.issn.1673-503X.2017.01.009 [21] 王英俭, 胡顺星, 周军, 等. 激光雷达大气参数测量—中国东部重要大气参数高分辨率垂直分布探查[M]. 北京: 科学出版社, 2014: 16-17. [22] Gimmestad G G. Differential-Absorption Lidar for Ozone and Industrial Emissions[M]//Claus Weitkamp. Lidar. New York: Springer, 2005: 187-212. [23] Hu Shunxing, Hu Huanling, Zhou Jun, et al. Comparison of tropospheric ozone measurements between three-wavelength dual-dial and two-wavelength dial method [J]. Acta Meteoro-logical Sinica, 2002, 60(4): 486-493. doi: 10.3321/j.issn:0577-6619.2002.04.012 [24] Wang Zhien, Hu Huanling, Zhou Jun. Dual differential absorption lidar: a new method to reduce effectively the effect of aerosols on ozone measurement [J]. Acta Meteorological Sinica, 1996, 54(4): 437-446. (in Chinese) doi: 10.11676/qxxb1996.045 -