

表面光栅垂直腔面发射激光器偏振特性研究

李明 李耀斌 邱平平 颜伟年 贾瑞雯 阚强

Polarization characteristics of surface grating vertical cavity surface emitting laser

Li Ming, Li Yaobin, Qiu Pingping, Yan Weinian, Jia Ruiwen, Kan Qiang

在线阅读 View online: https://doi.org/10.3788/IRLA20210332

您可能感兴趣的其他文章

Articles you may be interested in

850 nm高速垂直腔面发射激光器技术研究进展(特邀)

Advances in the technology of 850 nm high-speed vertical cavity surface emitting lasers (*Invited*) 红外与激光工程. 2020, 49(12): 20201077 https://doi.org/10.3788/IRLA20201077

新型正方晶格基横模光子晶体面发射激光器

Study of single-fundamental-mode square-lattice photonic crystal vertical cavity surface emitting laser 红外与激光工程. 2018, 47(6): 606005 https://doi.org/10.3788/IRLA201847.0606005

基于S波片和双延迟器的矢量光场偏振调控方法

Polarization control method of vector light field based on S-wave plate and double retarders 红外与激光工程. 2018, 47(12): 1207001 https://doi.org/10.3788/IRLA201847.1207001

对称结构光子晶体的表面光学Tamm态

Optical Tamm state on the surface of photonic crystal of symmetric structure 红外与激光工程. 2019, 48(8): 817001 https://doi.org/10.3788/IRLA201948.0817001

高亮度半导体激光器无输出耦合镜光栅外腔光谱合束

High brightness diode laser by coupler free grating external cavity spectral beam combining 红外与激光工程. 2019, 48(3): 306006 https://doi.org/10.3788/IRLA201948.0306006

垂直腔的光场调控及其应用(特邀)

Optical manipulation of vertical cavity and its applications (*Invited*) 红外与激光工程. 2021, 50(11): 20210425 https://doi.org/10.3788/IRLA20210425

表面光栅垂直腔面发射激光器偏振特性研究

李明1.2.3,李耀斌1.2.3,邱平平1.2.3,颜伟年1.2.3,贾瑞雯1.2.3,阚强1.2.3*

(1. 中国科学院半导体研究所半导体材料科学重点实验室,北京100083;

2. 中国科学院大学 材料与光电研究中心,北京 100049;

3. 低维半导体材料与器件北京市重点实验室, 北京 100083)

摘 要:研究了表面光栅结构对垂直腔面发射激光器 (VCSEL) 的偏振控制作用。引入表面光栅后, 对不同刻蚀深度下的偏振相关的镜面损耗进行了仿真,结果表明表面光栅刻蚀深度在 44~130 nm 范围 内均可实现稳定偏振,具有较大的工艺容差。表面光栅 VCSEL 在基横模工作状态下偏振抑制比 (Orthogonal Polarization Suppression Ratio, OPSR) 超过 20 dB,偏振光谱峰间偏振抑制比达到 40 dB,且 在多横模状态也实现了有效的偏振控制。为了进一步验证光栅对偏振控制的效果,制作了方向互相垂 直的两种表面光栅,具有这两种方向光栅的 VCSEL 的 OPSR 均达 20 dB 以上。测试分析表明表面光 栅是 VCSEL 实现稳定偏振的一种有效手段。

关键词:垂直腔面发射激光器; 表面光栅; 偏振控制; 偏振抑制比 中图分类号: TN248.4 文献标志码: A DOI: 10.3788/IRLA20210332

Polarization characteristics of surface grating vertical cavity surface emitting laser

Li Ming^{1,2,3}, Li Yaobin^{1,2,3}, Qiu Pingping^{1,2,3}, Yan Weinian^{1,2,3}, Jia Ruiwen^{1,2,3}, Kan Qiang^{1,2,3*}

Abstract: The polarization control of vertical cavity surface emitting laser (VCSEL) with surface grating structure was studied. After introducing the surface grating, the polarization-dependent mirror loss under different etching depths was simulated. The results show that the etching depth of the surface grating can achieve stable polarization in the range of 44 nm to 130 nm, which has a large fabrication tolerance. For the fundamental transverse mode, the orthogonal polarization suppression ratio (OPSR) of the surface grating VCSEL is more than 20 dB, and the peak-to-peak *OPSR* of the polarization-resolved spectrum reaches 40 dB. Effective polarization control can also be achieved even for multimode VCSEL. In order to further verify the effect of the grating on polarization control, two surface gratings with mutually perpendicular directions were fabricated. The *OPSR* of the VCSEL with the two directional gratings were more than 20 dB. The test results show that surface grating is an effective means for VCSEL to achieve stable polarization.

Key words: vertical cavity surface emitting laser; surface grating; polarization control; orthogonal polarization suppression ratio

收稿日期:2021-05-24; 修订日期:2021-06-16

基金项目:国家自然科学基金 (62074011, 61874145); 国家重点研发计划 (2018YFA0209000)

作者简介:李明,女,博士生,主要从事垂直腔面发射激光器偏振、横模等方面的研究。

Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
 Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China)

通讯作者:阚强,男,研究员,博士,主要从事垂直腔面发射激光器、DFB激光器等方面的研究。

0 引 言

基于砷化镓 (GaAs) 材料体系并生长在 (100) 取 向衬底上的标准垂直腔面发射激光器 (VCSEL) 没有 先天的机制来选择特定的偏振方向^[1]。VCSEL 多为 圆形对称的结构目其布拉格反射镜没有偏振依赖性. 这导致了各向同性的增益,因此,VCSEL中存在不稳 定的偏振。早在1988年研究人员就发现 VCSEL 中 的偏振大多沿着 [011] 和 [01] 两个晶向^[2]。VCSEL 因 腔长较短通常工作在单纵模状态,但其横向尺寸较 大,易出现高阶横模。这些模式中的每一种模式都包 含两种正交的偏振态^[3],这两种偏振态在温度或者偏 置电流变化过程中可能会发生切换^[4]。由于弹光效应 和电光效应引入的双折射可导致偏振切换时的频移 高达几十 GHz^[5],偏振切换使得 VCSEL 不适用于要 求频率稳定的场景中,如一些光学元器件、光谱学、 原子传感等[6-9],因此实现稳定的偏振是十分必要 的。改变衬底的指数可以使增益具有各向异性从而 选择出单一的偏振,例如,生长在(311)取向的衬底上 的 VCSEL 具有先天的偏振选择优势^[10], 但是这种特 殊取向衬底的外延生长和后续制作工艺难度较大[11]。 使用非对称的台面结构也可以在一定程度上增大两 个偏振的损耗差,但此方法对偏振的控制作用较弱^[12]。 外部光反馈也可以实现稳定的偏振[13],然而体积庞大 且成本高昂的外部反馈系统与小型化、低成本的初衷 相悖。此外,表面光栅被证实可以用来控制偏振。表 面光栅能够控制偏振源于光栅对 VCSEL 中两种偏振 模式的反射率不同,进而两种偏振的镜面损耗不同, 损耗较小的偏振被保留下来,最终使得 VCSEL 输出 单一的偏振模式。表面光栅中以反相光栅[14]和高对 比度光栅 (HCG)^[15] 为主要代表的表面光栅,体现出了 优异的偏振控制性能。但反相光栅需要精度较高的 外延工艺和刻蚀工艺, HCG制作难度系数较大。

文中报道了一种直接刻蚀的表面光栅方案,只需 在标准 VCSEL 表面制作区域直径 5 μm、周期 700 nm、 占空比 0.5 的圆形浅刻蚀光栅即可实现良好的偏振选 择。该光栅无需精确的外延厚度和刻蚀深度,并且周 期接近激射波长,大大增加了制作容差的同时降低了 制作的难度。结合这种直接刻蚀的表面光栅, VCSEL 在基横模状态下获得了 21 dB 的偏振抑制比 (OPSR) 和 40 dB 的峰间偏振抑制比 (peak-to-peak OPSR), 甚 至在多横模状态下也表现出良好的偏振控制作用。 笔者在同一批次分别制作了两种方向正交的光栅, 器 件的 OPSR 均达到 20 dB 以上, 说明光栅的方向确定 了偏振的方向, 光栅对 VCSEL 中的偏振能够形成有 效的控制。

1 器件结构和测试平台

文中 VCSEL 的外延结构是利用金属有机化学气 相沉积 (MOCVD) 技术在 GaAs 衬底上沉积而成。器 件结构如图 1 所示,包括 n型 GaAs 衬底、n型接触 层、37 对 n型 Al_{0.9}GaAs/Al_{0.12}GaAs 分布布拉格反射 器 (distributed Bragg reflector, DBR)、有源区、22.5 对 p型 Al_{0.9}GaAs/Al_{0.12}GaAs DBR,以及厚度约 60 nm (半 对 DBR)的 p型 GaAs 接触层。其中,DBR 结构采用 渐变界面以减小器件的电阻和光损耗,有源区包含 3 对 InGaAs 压应变量子阱 (QWs),且在有源区上方设 置了一层厚度30 nm 的高铝组分材料 (Al_{0.98}GaAs) 用 于氧化。笔者在 VCSEL 表面接触层材料上进行刻蚀 来获得表面光栅,用于选择出单一的偏振模式。

文中采用电子束曝光 (EBL) 工艺定义光栅的掩 蔽,并利用电感耦合等离子体刻蚀 (ICP) 工艺完成表 面光栅的刻蚀。所制作的光栅周期约为 700 nm,占空 比为 0.5,刻蚀深度约 60 nm,光栅区域的直径为 5 μm, 如图 2 所示。这种周期接近激射波长的表面光栅没 有可以应用的介质理论公式,只能通过数值仿真来获 得光栅对偏振的影响。通过时域有限差分法 (FDTD)^[16] 对平行和垂直光栅方向的偏振的反射率进行了仿真,

图 2 表面光栅的扫描电子显微镜照片。其中,光栅周期约为 700 nm,占空比为 0.5,刻蚀深度约 60 nm,光栅区域直径为 5 μm Fig.2 SEM images of the surface grating, which with a period of 700 nm, a duty cycle of 0.5, and an etching depth of about 60 nm. The diameter of the grating area is 5 μm

可以得到两个偏振的反射率随光栅刻蚀深度的变化, 再根据公式(1)可以得到反射率对应的镜面损耗,从 而得到图 3 所示的两种偏振的镜面损耗随 VCSEL 表 面刻蚀深度的变化。

$$\alpha_{mirror} = \frac{1}{2L_{eff}} \ln \frac{1}{R_1 R_2} \tag{1}$$

式中: *a_{mirror}* 为镜面损耗; *L_{eff}* 为激光器的有效腔长; *R*₁ 和 *R*₂ 分别为上下 DBR 的反射率。根据参考文献 [17],两 个偏振的损耗差达 10 cm⁻¹ 以上时,就可以形成稳定 的偏振。由图 3 可以看出,表面光栅刻蚀深度在 44~ 130 nm 范围内镜面损耗差便已超过 10 cm⁻¹,因此只 要光栅刻蚀深度在此范围内便可获得单一的偏振,无 需精确刻蚀。微纳结构的浅刻蚀对于任何刻蚀工艺 来说都是一种挑战,而在保证微纳结构形貌的同时实 现精确刻蚀将更加困难,这也是此类浅刻蚀光栅制作 难度较大的原因。而文中的表面光栅具有较大的工

艺容差,大大降低了 ICP 工艺刻蚀的难度。

图 4 为偏振测试系统示意图,测试原理如下:激 光器经电流源直流 (DC) 供电,激光光束通过准直透 镜进行准直,再经过偏振片后得到单一偏振态,之后 利用分束器将光束分为两路,一路经探测器 (PD) 得 到光电流,一路通过光谱仪 (OSA) 测得此偏振态光 谱,最终使用 Labview 程序读取数据。旋转偏振片对 不同偏振态的光电流和光谱进行测量,从而获得偏振 *P-I* 曲线和偏振光谱。偏振控制作用的强弱通过 *OPSR* 来体现,其计算公式为:

$$OPSR = 10\log(P_1/P_2) \tag{2}$$

式中: *P*₁ 和 *P*₂ 分别为两偏振态的功率,偏振抑制比也 表现为偏振光谱中两偏振态峰值间的差异。

Fig.4 Polarization test system

2 分析与讨论

为了更好地说明表面光栅对偏振的控制作用,分 别对普通 VCSEL 和表面光栅 VCSEL 进行了偏振特 性的对比,测试温度均为 25 ℃。如图 5 所示为普通 VCSEL 的偏振 *P-I* 曲线,实线和虚线分别代表 TE、 TM 两种偏振态,可以看出,两种偏振态的功率大小相 当,没有偏振态占据主导地位。随后,测试了表面光 栅 VCSEL 的偏振特性,如图 6 和图 7 所示,分别为工 作在基横模状态和高阶横模状态的表面光栅 VCSEL 的偏振相关测试结果,图中,"Parallel"和"Orthogonal" 分别表示平行于或垂直于光栅条方向的偏振。图 6(a)、 (c) 和 (d) 均在 3 mA 的偏置电流下测量,氧化孔直径 约为 3 µm 来获得基横模。其中,图 6(a) 为表面光栅 VCSEL 的远场特性,由图可知,该模式为基横模,光

图 5 普通 VCSEL 的偏振 P-I 曲线

Fig.5 Polarization-resolved light-current characteristics of ordinary VCSEL

斑呈圆形对称且远场发散角约 10°。图 6(b) 为偏振 P-I曲线,根据公式(1)可得 OPSR 约为 21 dB。利用 表面光栅控制偏振,通过缩小氧化孔径来获得基横 模。VCSEL中的每个横模均包含两个正交的偏振态^[3], 故高阶横模的存在使 VCSEL中偏振的方向更加复 杂,导致偏振控制的难度加大。较小的氧化孔可以输 出更为纯净单一的横向模式,这样偏振光谱可以得到 更好的偏振控制效果,如图 6(c)偏振光谱所示,基横 模状态下 peak-to-peak *OPSR* 高达 40 dB。偏振 *P-I* 曲 线和偏振光谱获得的偏振抑制比数值不同的原因为 偏振光谱忽略了自发辐射部分。为了更直观地体现 偏振态在出光平面上的分布,测试了偏振强度随角度 Theta 的变化,如图 6(d) 所示,将与光栅条平行的方向 设置为 0°,不难看出,垂直于光栅方向的偏振强度最 强,也就是说形成了以垂直光栅方向的偏振为主的偏

图 6 基横模状态下表面光栅 VCSEL 的偏振特性。(a) 远场特性; (b) 偏振 *P-I* 曲线; (c) 偏振光谱; (d) 偏振在出光平面上的分布 Fig.6 (a) Far-field characteristics, (b) Polarization-resolved *P-I* curve, (c) Polarization-resolved spectrum, and (d) The distribution of polarization states in the polar coordinate plane of the basic transverse mode surface grating VCSEL

与基横模相比,多横模 VCSEL 要实现偏振控制 更具挑战性。表面光栅 VCSEL 在多横模状态下的偏 振特性如图 7 所示,多横模的获得来自于较大的氧化 孔径。图 7(a)~(c) 分别为偏振 P-I 特性、偏振光谱,以

图 7 多横模状态下表面光栅 VCSEL 的偏振特性。(a) 偏振 P-I 曲 线;(b) 偏振光谱;(c) 偏振在出光平面上的分布

Fig.7 (a) Polarization-resolved *P-I* curve, (b) Polarization-resolved spectrum, and (c) Distribution of polarization states in the polar coordinate plane of a multi-transverse mode surface grating VCSEL

及沿出光面的偏振态强度分布。图 7(a)和 (b)显示的 OPSR 和 peak-to-peak OPSR 分别为 23 dB 和 33 dB, 表面光栅在高阶横模状态下依然表现出卓越的偏振 选择能力。与图 6(d) 类似,图 7(c)显示最强偏振方向与光栅条方向垂直。以上测试结果表明,表面光栅 VCSEL 在全电流范围内实现了有效的偏振控制,这 是表面光栅偏振控制能力的强有力证明。

实际中许多因素都可能导致 VCSEL 中的偏振发

生切换,比如,工艺中台面和氧化孔的形状不是完美 对称的圆形、测试中电流注入不均匀等。为了验证偏 振选择与光栅方向之间的关系,。笔者选取了 (100) 朝 [110] 晶向偏 2°的 GaAs 衬底,并制作了两种方向 正交的光栅,两光栅方向分别为 [011] 偏 2°方向和 [01] 晶向方向。两种表面光栅 VCSEL 的偏振 P-I 曲 线如图 8 所示,图中显示的 OPSR 均超过 20 dB,表明 变换光栅的方向依然可以实现稳定的偏振,主偏振的 方向是由光栅方向决定的。因此,无需刻意将光栅方 向对准某一晶向,所制作的表面光栅依然可以实现稳 定的偏振。

图 8 不同方向的表面光栅 VCSEL 的偏振 P-I 曲线

3 结 论

笔者研制了一种具有稳定偏振的表面光栅 VCSEL, 这种偏振稳定的 VCSEL 在原子传感、气体探测等具 有频率稳定要求的场景中具有巨大的应用潜力。 文中,表面光栅被直接蚀刻在常规 VCSEL 外延 结构上,具有较大的周期,相对易于制备;与反向光栅 结构相比,不需要额外外延高精度的外延层,并具有 较大的刻蚀深度容差,大大降低了工艺难度。在基横 模状态下,器件的 peak-to-peak OPSR 高达 40 dB,并且 在多横模状态下,也表现出良好的偏振控制性能。此 外,制作了两种方向互相垂直的表面光栅,对应的 OPSR 均在 20 dB 以上,验证了不同方向表面光栅对 VCSEL 偏振态稳定而有效的控制作用。

参考文献:

- [1] Ostermann J M, Debernardi P, Jalics C, et al. Monolithic polarization control of multimode VCSELs by a dielectric surface grating[M]//Lei C, Choquette K D, Kilcoyne S P. Vertical-Cavity Surface-Emitting Lasers Viii, 2004: 201-212.
- [2] Shimizu M, Koyama F, Iga K. Polarization characteristics of MOCVD grown GaAs/GaAlAs CBH surface emitting lasers [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1988, 27(9): 1774-1775.
- [3] Van Exter M P, Willemsen M B, Woerdman J P. Characterizing and understanding VCSEL polarization noise[M]//Choquette K D, Lei C. Vertical-Cavity Surface-Emitting Lasers IV, 2000: 58-68.
- [4] Sanmiguel M, Feng Q, Moloney J V. Light-polarization dynamics in surface-emitting semiconductor-lasers [J]. *Physical Review A*, 1995, 52(2): 1728-1739.
- [5] Ostermann J M, Debernardi P, Jalics C, et al. Surface gratings for polarization control of single- and multi-mode oxideconfined vertical-cavity surface-emitting lasers [J]. *Optics Communications*, 2005, 246(4-6): 511-519.
- [6] Zarin A S, Chakraborty A L, Upadhyay A. Absolute noninvasive measurement of CO₂ mole fraction emitted by E. coli and S. aureus using calibration-free 2f WMS applied to a 2004 nm VCSEL [J]. *Optics Letters*, 2017, 42(11): 2138-2141.
- [7] Chen B, Claus D, Russ D, et al. Generation of a high-resolution 3D-printed freeform collimator for VCSEL-based 3D-depth

sensing [J]. Optics Letters, 2020, 45(19): 5583-5586.

- [8] Xie Y Y, Ni P N, Wang Q H, et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions [J]. *Nature Nanotechnology*, 2020, 15(2): 125-131.
- [9] Wang Biao, Lu Hongfei, Li Aoqi, et al. Research of TDLAS methane detection system using VCSEL laser as the light source
 [J]. *Infrared and Laser Engineering*, 2020, 49(4): 0405002. (in Chinese)
- [10] Mizutani A, Hatori N, Nishiyama N, et al. A low-threshold polarization-controlled vertical-cavity surface-emitting laser grown on GaAs (311)B substrate [J]. *IEEE Photonics Technology Letters*, 1998, 10(5): 633-635.
- [11] Nishiyama N, Mizutani A, Hatori N, et al. Lasing characteristics of InGaAs-GaAs polarization controlled vertical-cavity surfaceemitting laser grown on GaAs (311) B substrate [J]. *IEEE Journal of Selected Topics in Quantum Electronics*, 1999, 5(3): 530-536.
- [12] Choquette K D, Leibenguth R E. Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries [J]. *IEEE Photonics Technology Letters*, 1994, 6(1): 40-42.
- [13] Deng T, Wu Z M, Xie Y Y, et al. Impact of optical feedback on current-induced polarization behavior of 1550 nm vertical-cavity surface-emitting lasers [J]. *Applied Optics*, 2013, 52(16): 3833-3837.
- [14] Haglund E, Jahed M, Gustavsson J S, et al. High-power single transverse and polarization mode VCSEL for silicon photonics integration [J]. *Opt Express*, 2019, 27(13): 18892-18899.
- [15] Huang M C, Zhou Y, Chang-hasnain C J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating [J]. *Nature photonics*, 2007, 1(2): 119-122.
- [16] Yee K S. Numerical solution of initial boundary value problems involving maxwells equations in isotropic media [J]. *IEEE Transactions on Antennas and Propagation*, 1966, AP14(3): 302-307.
- [17] Kuksenkov D V, Temkin H. Polarization related properties of vertical-cavity surface-emitting lasers [J]. *IEEE Journal of Selected Topics in Quantum Electronics*, 1997, 3(2): 390-395.