

高品质因子氧化硅微腔的制备和光频梳产生(特邀)

高友 刘拓 王思宇 郭海润

Fabrication and optical frequency comb generation in high-quality factor silicon oxide microcavity (Invited)

Gao You, Liu Tuo, Wang Siyu, Guo Hairun

在线阅读 View online: https://doi.org/10.3788/IRLA20220294

您可能感兴趣的其他文章

Articles you may be interested in

基于超高Q值氟化镁晶体微腔的克尔光频梳产生研究

Research on Kerr optical frequency comb generation based on MgF2 crystalline microresonator with ultra-high-Q factor

红外与激光工程. 2021, 50(11): 20210481 https://doi.org/10.3788/IRLA20210481

拉曼增益对回音壁模式光学微腔的全光调制

All optical modulation of whispering-gallery-mode optical micro-cavities with Raman gain 红外与激光工程. 2017, 46(11): 1122003 https://doi.org/10.3788/IRLA201746.1122003

飞秒激光频率梳测距综述

Overview of distance measurement with femtosecond optical frequency comb 红外与激光工程. 2018, 47(10): 1006008 https://doi.org/10.3788/IRLA201847.1006008

高功率高重复频率飞秒掺镱光纤激光频率梳的研究(特邀)

High power high repetition rate femtosecond Ytterbium-doped fiber laser frequency comb (invited) 红外与激光工程. 2019, 48(1): 103001 https://doi.org/10.3788/IRLA201948.0103001

集成微腔光频梳在精密测量中的应用(特邀)

Applications of integrated microresonator-based optical frequency combs in precision measurement (*Invited*) 红外与激光工程. 2021, 50(11): 20210560 https://doi.org/10.3788/IRLA20210560

四波混频和级联四波混频效应产生的连续光频率梳

CW frequency comb generated by four-wave mixing and cascaded FWM 红外与激光工程. 2018, 47(7): 706007 https://doi.org/10.3788/IRLA201847.0706007

高品质因子氧化硅微腔的制备和光频梳产生(特邀)

高 友,刘 拓,王思宇,郭海润*

(上海大学 特种光纤与光接入网重点实验室 特种光纤与先进通信国际联合实验室,上海 200444)

摘 要:基于超高品质因子 (Q值)和非线性光学微腔产生的光学频率梳 (微腔光频梳) 在大容量光通 信、光学数据中心、光子神经形态运算以及大规模并行激光雷达等方面有着重要的应用。回音壁模式 (WGM) 微腔是研究微腔光频梳技术的一个重要平台,具有创纪录的超高 Q值和超高精细度 (Finesse), 能够实现超窄线宽激光、窄线宽光学频率梳,合成超低噪声的光子微波;同时也是研究腔内孤子动力学 的重要平台,对掌握孤子态的光学频率梳特性起到了重要的支撑作用。利用二氧化碳 (CO₂)激光器熔 融氧化硅 (SiO₂) 石英棒制备了高 Q值的 WGM 微腔。其自由光谱范围 (FSR) 在 10 GHz 以上,Q值达 到了 10⁸。对腔的谐振和耦合理想特性进行了表征,并在开放环境下观察到微腔受潮引起的 Q值退化 现象,通过二次退火实现了 Q值的回升。在 SiO₂ 微腔中验证了基于非线性克尔 (Kerr) 效应的光学频 率梳产生,其主要状态为调整不稳定性主导的低相干频率梳。同时,实验中也观察到了对应于全相干 耗散孤子态频率梳的"阶跃"信号,表明目前制备的 SiO₂ 微腔具备实现低噪声孤子光频梳的能力,并具 有微腔光频梳的应用潜力。

关键词:光学频率梳; 回音壁模式微腔; 激光熔融二氧化硅微腔 中图分类号:O437 文献标志码:A DOI: 10.3788/IRLA20220294

Fabrication and optical frequency comb generation in high-quality factor silicon oxide microcavity (*Invited*)

Gao You, Liu Tuo, Wang Siyu, Guo Hairun*

(Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444, China)

Abstract: Based on ultra-high quality factor(Q) and nonlinear optical microcavities, optical microcombs (microcavity optical frequency comb) have enabled a variety of important applications including high volume optical communications, optical data center, photonic neuromorphic computation and massive parallel LIDAR. Whispering gallery mode (WGM) microcavities stand for an important platform for studying the microcavity optical frequency comb technology, particularly having record ultra-high Q factors as well as the ultra-high finesse. It can realize ultra-narrow linewidth lasers and optical frequency combs, and photonic microwaves for synthesizing ultra-low noise. Here we developed high Q WGM microcavities from a silica (SiO₂) rod fused and shaped with the CO₂ laser. The quality factor is above 10⁸ with a free spectrum range at the level of 10 GHz. The cavity resonances as well as the coupling ideality have been characterized, where a degradation of Q factors in a

作者简介:高友,男,硕士生,主要从事 SiO2 微腔光频梳产生方面的研究。

收稿日期:2022-04-26; 修订日期:2022-05-13

基金项目:国家重点研发计划 (2020YFA0309400);国家自然科学基金 (11974234);上海市科技发展基金 (20QA1403500)

导师(通讯作者)简介:郭海润,男,教授,主要从事超快非线性光学、维纳光子学、集成光学频率梳技术与应用方面的研究。

humid environment was observed and recovered with a second annealing process. Moreover, Kerr comb generation was demonstrated in such SiO_2 microcavities, which at the moment is mostly in a noisy state governed by the modulation instability regime. Yet the footprint of the cavity soliton state was experimentally observed as a "soliton step" signal. The results indicate that a low-noise and fully coherent soliton microcomb is potentially accessible in home developed SiO_2 microcavities, and is readily for comb-related applications.

Key words: optical frequency comb; whispering gallery mode microcavity; laser fused silica cavity

0 引 言

近年来,基于高品质因子光学微腔的光学频率梳 技术受到国内外研究人员的广泛关注^[1-4],包括微腔 中的非线性光学机理、光学微腔的微纳加工工艺、以 及微腔光频梳的应用都得到了极大的发展,目前已经 能够实现全集成、高紧凑的光学频率梳芯片,为频率-时间计量提供大批量、高性能的激光光源。同时,微 腔光频梳也被证明能够在超大容量光通信^[5-6]、光学 数据中心^[7-8]、激光雷达^[9]、低噪声微波合成^[10-11]、光 子神经形态运算^[12-13]等领域有着巨大的应用前景。

回音壁模式 (WGM) 微腔是研究微腔光频梳技术 的一个重要平台, 也是最早开展此项研究的平台。至 今, 回音壁模式微腔, 如氟化物微腔, 具有高达 10¹¹ 的 超高品质因子, 以及高达 10⁷ 的精细度 (finesse)^[14]。 微腔光频梳的许多经典理论和实验现象均在回音壁 模式微腔中获得了验证, 包括腔内的时域耗散孤子态形 成^[15]、孤子量化缩放^[16]、孤子数目切换^[17-18]、呼吸孤 子态^[19]、模间呼吸孤子^[20]等。此外, 超高品质因子的 微腔也能用作超稳腔, 实现具有超窄线宽的连续激 光^[21-22] 和光频梳^[23-25]。

氧化硅 (SiO₂) 是实现 WGM 微腔的主要材料之 一。加工 SiO₂ WGM 微腔主要方法有高温火焰熔融, 以及利用高功率二氧化碳 (CO₂) 激光实现局部熔 融。加工成型的微腔主要有石英棒微腔、光纤端的微 球腔、以及基于石英套管或空芯光纤的微瓶腔。早 在 1989 年, Braginsky 等首次利用熔融 SiO₂ 材料制备 出了微球腔^[26], *Q* 值高达 10⁸, 讨论了降低光开关的控 制阈值的可能性。1996 年, Gorodetsky 等用氧-氢微 燃烧器制备了高纯度熔融 SiO₂ 微球^[27], *Q* 值高达 3×10⁹, 并讨论了影响微腔 *Q* 值的相关因素。2007 年, Del' Haye 等通过将 1550 nm 连续光泵浦到石英玻璃 微腔[28],首次实现微腔光频梳的产生,证明了晶体微 腔光频梳的可行性。2011年, Papp 等基于前人的工 作,提出了一种新的制造方法,采用金刚石研磨和火 焰抛光相结合的方法,在SiO2石英棒上制备了Q值 高达 6.2×10⁸ 的微腔^[29],并在 1560 nm 附近形成了线 间距 36 GHz、跨度 50 nm、阈值小于 10 mW 的频率 梳。2013年, Papp等优化了加工工艺,利用 CO2 激 光器熔融石英棒的方式制备微腔[30-31], Q值达到了 109,并实现了微梳线间距的宽带机械控制。2019年, Del' Have 等同样利用 CO2 激光器熔融 SiO2 微棒 腔^[32],制备了 Q 值高达 3.7×10⁸ 的微腔,并产生孤子微 梳,为低阈值微梳系统的实现铺平了道路。2019年, 肖云峰等制备了超高 Q值 SiO₂ 光学微球腔^[33],其 Q值高达10°, 通过将SSB的基本概念扩展到有源微 腔来实现对称破缺拉曼激光器。2021年,董春华等利 用 CO2 激光器熔融石英棒,得到了 Q 值为 2×10⁸ 的微 棒腔[34],通过辅助激光法产生了孤子梳,并观察到了 完美孤子晶体。2021年,邱昆等利用Q值为10°次方 的微棒腔生成了单个耗散克尔孤子微梳[35],并通过迭 代退火过程精确调整孤子重复频率。2021年,姚佰承 等利用 Q 值为 3×10⁸ 的 SiO₂ 微球首次产生了多个模 式家族的孤子同时输出[36],并实现了不同载频中心孤 子的相互锁定。使无标记多参量气体混合物的单分 子探测成为可能,为光频梳的生化精密测量提供了新 的路径。根据上述研究进展,可以总结目前 SiO2微 腔的制备技术已经较为成熟,Q值普遍达到了10⁸以 上,且相关的延伸性研究,包括实现微腔光频梳、实 现高精度传感、实现低阈值的光开关等,也已经有所 发展。

文中的主要工作是基于 SiO₂ 棒制备了高品质因 子的回音壁模式微腔 (即石英棒微腔),并开展了微腔 的特性表征和微腔光频梳产生的研究。

1 微腔制备与表征

1.1 SiO2 微腔制备

利用 CO₂ 激光器制备 SiO₂ 微腔。首先,准备了 低 OH 含量、高纯度的直径为 3 mm 的石英棒,将其 安装在电机驱动的气伏马达主轴上,此外,CO₂ 激光 束的粗对准是由一个可见共线对准的激光器支持的, 通过调整 CO₂ 激光器高度,使激光束聚焦在石英棒 上,如图 1(a) 所示;其次,将气伏马达以 600 r/min 的 转速带动石英棒转动,同时让 CO₂ 激光沿着棒的轴向 来回扫描以蒸发石英棒表层,起到清洁和预热作用; 最后,通过 CO₂ 激光器对石英棒两次熔融的距离和 时间的控制,得到初步的微腔结构,再对微腔表面进 行最终的熔融处理,获得表面光滑的微腔,如图 1(b) 所示。

Fig.1 Fabrication of microcavity. (a) Schematic diagram of SiO₂ microcavity preparation; (b) Picture of SiO₂ crystalline resonator

1.2 SiO2 微腔形貌表征

SiO₂ 晶体微腔的品质因子 Q 值不仅与材料本身 有关,还与其微腔表面粗糙度、清洁度以及微腔圆度 有关,因此,笔者通过对微腔表面粗糙度以及微腔圆 度进行表征,来确定制备的微腔的可用性,如图 2 所示。

首先,通过光学干涉轮廓仪对微腔的表面数据进 行提取,表征出微腔的三维表面轮廓;其次,用二维多 项式函数对实测轮廓进行拟合,提取表面粗糙度作为 拟合的残差,最终估算其表面均方根(RMS)粗糙度低 至几纳米;此外,根据实验测得的表面粗糙信息可知, 存在相比 RMS 粗糙度更大的表面结构起伏,通常这 些较大的起伏结构位于微腔外缘两侧,推测对于微腔 内高阶横向模式会有影响。如图 2(a)、(b) 所示;最

- 图 2 微腔形貌。(a) 微腔 3D 表面轮廓;(b) 微腔表面粗糙度图; (c)~(d) 微腔圆度表征
- Fig.2 Morphology of microcavity. (a) 3D surface profile of the microcavity; (b) Surface roughness diagram of microcavity; (c)-(d) Characterization of microcavity roundness

后,每隔 π/4 采集一组数据进行圆度表征,共采集了 8 组数据,对其进行圆度拟合并取平均值,计算得到 腔直径上的变化约 3%,如图 2(c)、(d)所示,其圆率满 足实验要求。

2 微腔特性

2.1 SiO2 微腔 Q 值测试

为了测试微腔的谐振峰特性,搭建了微腔耦合的 测试系统,如图 3(a)所示。系统使用可调谐连续波激 光器 (CTL1550_Toptica)作为光源,经过锥腰直径约 为 3 μm 的锥形光纤波导实现 SiO₂ 微腔的耦合。通 过扫描激光频率,可以在示波器 (OSC)中观察微腔的 透射信号,并研判谐振峰的特性。当激光频率调谐速 度为 2.5 GHz/s,测得的微腔透射谱如图 3(b)所示,由 测得的结果可知,其 FSR 为 17.8 GHz。采用洛伦兹线 形对各个谐振峰进行拟合,结果显示微腔中最佳的 *Q* 值约为 3.87×10⁸,如图 3(c)所示;当激光调谐速度

图 3 SiO2 微腔谐振峰测试。(a) 微腔耦合测试示意图; (b) 微腔功率透射谱; (c) 洛伦兹拟合谱线; (d) Ringdown 拟合

Fig.3 Measurement of resonant peak of SiO₂ microcavity. (a) Schematic diagram of microcavity coupling test; (b) Power transmission spectrum of microcavity; (c) Lorentz fitting spectral line; (d) Ringdown fitting

为 350 GHz/s, 实验中观察到谐振峰出现了振荡衰退 (Ring down) 现象, 如图 3(d) 所示。理论上^[37], 一个谐 振模式内腔场的时间演化可以描述为一个简单的谐 振模型, 即:

$$\frac{\partial A}{\partial t} = \mathrm{i}\omega_0 A - \frac{k}{2}A + \sqrt{k_{ex}} \cdot s_{in} \tag{1}$$

式中: ω_0 为谐振角频率; k为系统总损耗率,包括固有损 耗率 k_0 和耦合损耗率 k_{ex} ,即 $k = k_0 + k_{ex}$; s_{in} 为外部源,在 频率可调的连续波模式下,其变化 $s_{in} = s_0 \exp(i\phi(t))$ 。 在稳态形式下,即相对于其初始值 ω_i 的激光频率调谐 与腔内光子寿命相比缓慢变化,笔者得到 $\phi(t) = \omega_i t$, 公式(1)的解给出了作为激光失谐 $\delta_\omega = \omega_i - \omega_0$ 函数的 标准洛伦兹分布。相反,在激光频率调谐与光子寿命 相当的条件下,得到 $\phi(t) = \left(\omega_i + \frac{V_s t}{2}\right)t$,其中, V_s 为激光 频率的调谐速度。因此,设 $A = a \cdot \exp(i\phi(t))$,公式(1) 可以变换为:

$$\frac{\partial a}{\partial t} = i(\delta_{\omega} - V_s t)a - \frac{k}{2}a + \sqrt{k_{ex}} \cdot s_0 \tag{2}$$

对上式积分可得:

$$a = \sqrt{k_{ex}} \cdot s_0 \cdot \exp\left(i\delta_\omega t - \frac{k}{2}t\right) \times \left[f(t) - \frac{1}{i\delta_\omega - \frac{k}{2}}\right]$$
(3)

其中,

$$f(t) = -\sqrt{\frac{i\pi}{2V_s}} \exp\left(i\frac{\left(i\delta_{\omega} - \frac{k}{2}\right)^2}{2V_s}\right) \times \left[erf\left(-i\frac{i(\delta_{\omega} - V_s t) - \frac{k}{2}}{\sqrt{2iV_s}}\right) - erf\left(-i\frac{i(\delta_{\omega} - \frac{k}{2})}{\sqrt{2iV_s}}\right)\right]$$

式中: erf(z) 为复误差函数。腔透射率可以计算为:

$$T = \left| \frac{s_0 - \sqrt{k_{ex}} \cdot a}{s_0} \right|^2 \tag{4}$$

注意,使用公式(4)进行拟合将确定地返回耦合 率 k_{ex} 作为整体损耗率 k 的一部分,从而可以区分腔 体的耦合状态(过度耦合或欠耦合)。

通过对实验观察到的 Ringdown 曲线进行拟合,结果显示谐振峰对应的固有品质因子为: $Q_0 = \omega_0/k_0 = 7.32 \times 10^8$,耦合品质因子为 $Q_e = 9.86 \times 10^8$ 。以及总体的品质因子 Q 值为: $1/Q_0 + 1/Q_e = 4.2 \times 10^8$,该结果与低速频率调谐下洛伦兹拟合的谐振峰 Q 值相似。因此,笔者验证了 Q 值超过 10⁸ 的 SiO₂ 回音壁 模式微腔。

2.2 SiO2 微腔耦合特性

为了研究微腔的耦合特性,笔者通过实验测得微

腔的耦合理想曲线 (Ideality)。首先,通过调整光纤锥 和微腔的耦合状态,找到一个耦合效率较高的位置, 此时,再将光纤锥移至远离微腔的位置处;然后,将光 纤锥从远处慢慢靠近微腔,在这个过程中采集同一模 式下的谐振峰的数据,利用洛伦兹曲线对采集的谐振 峰数据进行拟合,得到了不同耦合状态下的谐振峰数 据。最后,通过拟合得到微腔谐振峰深度和线宽 Ideality曲线,如图4所示。

需要说明的是,本征损耗主要由材料吸收损耗、 辐射损耗和散射损耗所决定,而耦合损耗主要与微 腔和光纤锥的耦合距离有关。由结果可知,当光纤锥 从远处慢慢靠近微腔直到刚出现谐振峰时,此时,耦 合损耗小于本征损耗,系统处于欠耦合状态;当光纤 锥逐步靠近微腔直到谐振峰深度达到最深时,此时, 耦合损耗等于本征损耗,系统处于临界耦合;当光纤 锥再贴近微腔直到谐振峰深度变浅时,此时,耦合损 耗大于本征损耗,系统处于过耦合。实验中测的谐 振峰深度与线宽的变化,基本符合标准的 Ideality 曲线,证明在微腔耦合过程中,没有额外的能量损耗。

2.3 SiO₂ 微腔 Q 值退化

由于制备 SiO₂ 微腔材料的水羟基的存在,使其 具有较强的亲水性,这也导致了 SiO₂ 微腔放置一段 时间后其 *Q* 值会有所下降。为了测试其 *Q* 值随时间 的变化关系,每隔一段时间对微腔的 *Q* 值进行测试, 其结果如图 5 所示。由结果可知, 微腔 Q 值随着时间 不断降低, 经过一段时间后, 其 Q 值的变化趋于平稳, 主要原因可能是由于 SiO₂ 微腔表面的水羟基饱和, 导致其 Q 值最终变化不大。

图 5 微腔 Q 值随时间衰减曲线

Fig.5 Decay curve of microcavity Q value with time

为了能实现对制备的 SiO, 微腔重复使用, 一是 要对制备的 SiO, 微腔进行隔绝空气保存, 二是对 O 值退化的微腔进行退火处理来使微腔表面的水汽 蒸发,来实现 Ø 值的回升。处理方案主要有两种,一 是利用 CO, 激光器对微腔进行重新熔融处理, 但基于 目前的微腔制备系统,无法重新找到微腔的精确位 置,因此,笔者选择了另外一种方式,即利用马弗炉对 已经放置一段时间的 SiO₂ 微腔进行退火处理, 来验 证此方法的可行性。为了比较退火前后的 Q 值的变 化,以及Q值的恢复程度,先对刚制备的微腔的部分 谐振峰 O 值进行了测试, 其中, Depth 为 0 时表示此时 系统处于临界耦合。一段时间后,再次对退火前后同 级深度的谐振峰 Q 值进行了测试, 其中, 退火温度设 置为 950 ℃, 退火时间设置为 6 h, 其结果如表 1 所 示。由表可知,其Q值较未退火前有所提升,但未能 恢复到刚制备好时的水平。由于笔者对微腔退火的 研究还处于探索阶段,并没有找到最佳的退火温度和 退火时间。并且在退火过程中,马弗炉内的微尘可能 吸附到微腔表面,也会导致 Q 值恢复不明显。因此, 可以通过探索最佳的退火温度和退火时间以及优化

表 1	退火前后微腔	Q值变化
-----	--------	------

Tab.1	Change of	f O value (of microcavity	v before a	nd after	annealing
1 40.1	Change of	i V faint	or microcavity	beiore ai	iu aitei	anneanns

Depth	0.6	0.5	0.4	0.3	0.2	0.1	0
Initial Q value	-	3.23×10 ⁸	-	2.14×10 ⁸	1.43×10 ⁸	-	-
Before annealing	1.78×10^{8}	1.66×10 ⁸	8.57×10 ⁷	6.9×10 ⁷	6.1×10 ⁷	5.7×10 ⁷	5.96×10 ⁷
After annealing	3.11×10 ⁸	2.12×10 ⁸	1.59×10 ⁸	1.3×10 ⁸	7.9×10 ⁷	7.1×10 ⁷	7.57×10 ⁷

微腔退火的夹具来实现 Q 值的高效恢复。

3 微腔光频梳产生

利用高 Q 值的 SiO₂ 微腔系统对光频梳产生过程 进行研究。光频梳产生的实现系统图如图 3(a) 所 示。采用任意信号发生器 (AFG) 驱动可调谐激光器 来实现输出激光围绕着特定频率进行快速扫频, 激光 通过掺铒光纤放大器 (EDFA) 放大, 经过隔离器 (ISO) 和偏振控制器 (FPC) 注入到 SiO₂ 微腔中, 用示 波器 (OSC) 和光谱仪 (OSA) 观察谐振峰状态和光频 梳产生。

首先,通过调整光纤锥和微腔的耦合状态,找到 一个耦合效率较高的位置;其次,对泵浦功率进行扫 描,通过调节 EDFA,得到的输出功率为 80 mW,然后 调节偏振控制器,在示波器上找到可以产生孤子梳时 所出现的"台阶",台阶长度约为1.8 MHz,如图 6(a)、 (b)所示。笔者控制可调谐激光,从短波长向长波长 进行调谐,在调谐过程中,光频梳最先由单频的泵浦 光产生第一、第二级边带,如图 6(c)所示,即腔内光 场形成了时域的 Turing 模式;继续调谐激光波长,微 腔内激发的简并与非简并四波混频 (FWM) 作用将产 生更多的梳齿,如图 6(d)、(e)所示,此时,微腔进入到 调制不稳定状态,即腔内的时域模式是随机不稳定 的,光频梳也不具有较高相干性。目前,由于孤子台 阶较短,笔者还无法获得孤子态的微腔光频梳。通过 优化泵浦功率,并采用有效的热平衡技术,如辅助激 光法^[38]等,可以有效增加孤子台阶的长度,以此获得 孤子态的微腔光频梳产生。

图 6 光频梳产生。(a) 高泵浦功率下微腔的透射谱线;(b) 图 (a) 的部分放大的透射谱线;(c)~(e) 光频梳的演化过程,分别对应于图 (a) 中微腔透 射谱线的三个不同的位置

Fig.6 Optical frequency comb generation. (a) Transmission lines of microcavity at high pump power; (b) Partially amplified transmission line of Fig.(a); (c)-(e) Evolution process of optical frequency comb corresponds to three different positions of microcavity transmission line in Fig.(a)

此外,利用 LLE 方程描述实验中微腔光频梳的演 化过程^[15],设定泵浦功率 P_{in} 为 100 mW,有效折射率 n_0 为 1.45、耦合线宽 k_{ex} 为 $2\pi \times 600$ kHz、色散 D_2 为 $2\pi \times$ 8000 Hz、FSR 为 17.8 GHz、有效模式体积 V_{eff} 为 9×10⁻¹² m³、非线性系数 n_2 为 2.4×10⁻¹⁹ m³·W⁻¹、中心 波长 λ 为 1550 nm, 图 7 展示了通过仿真得到的第 一、二级边带梳、子梳、调制不稳定频梳以及单孤子 光频梳的光谱图和时域波形图。模拟中泵浦激光从 相对于微腔模式蓝失谐区域扫描到红失谐区域, 一开 始随着泵浦调谐, 腔内能量逐渐升高, 频域开始出现 初级梳齿边带,对应的时域分布表现为连续波的均匀 分布,如图 7(a)、(b)中 I 图所示;随着泵浦继续调谐, 腔内能量进一步升高,频域表现为低相干的 MI 梳,时 域表现为不规则的混沌状态,如图 7(a)、(b)中 II、 III 图所示;随着泵浦进一步调谐,光频梳进入孤子状 态,频梳处于低噪态,各谱线是相干的,对应时域表现 为单孤子状态,如图 7(a)、(b)中 IV 图所示。由此可 知,实验结果和仿真结果具有较好的一致性。

Fig.7 Simulated optical frequency comb evolution based on LLE. (a) Figures I, II, III and IV show the evolution process of optical frequency comb; (b) Corresponding to the time-domain spectra in different comb states in Fig.(a)

4 结 论

文中利用自制的 SiO₂ 微腔系统实现了光频梳的 产生。通过 CO₂ 激光器熔融石英棒制备了 Q 值达到 3.87×10⁸ 的 SiO₂ 微腔, 对制备的微腔的形貌进行了表 征分析, 为笔者优化制备工艺提供了重要依据。同时 对降低的 Q 值微腔进行退火处理, 实现了 Q 值的回 升, 从而为微腔的可重复使用提供了可行性的条件。 最后, 通过激光频率调谐实现了微腔中的光学频率梳 产生。实验中目前已经观察到对应低噪声、高相干孤 子态光频梳的孤子台阶信号, 未来将通过优化泵浦功 率, 改善微腔中的光热现象来激发孤子的光频梳。此 外,实验中对调制不稳定状态的光频梳产生的研究也 具有一定的参考价值,在光频梳演变过程中,初级边 带的位置可以有效反映出微腔的色散参数;同时,调 制不稳定性的梳状光谱具有低相干性,在光学断层扫 描,高光谱成像等领域有着重要的应用。

参考文献:

- Schibli T R, Hartl I, Yost D C. Optical frequency comb with submillihertz linewidth and more than 10 W average power [J]. *Nature Photonics*, 2008, 2(6): 355-359.
- [2] Brasch V, Geiselmann M, Herr T, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation [J]. *Science*, 2016, 351(6271): 357-360.
- [3] Chen Haojing, Xiao Yunfen. Applications of integrated microresonator-based optical frequency combs in precision measurement [J]. *Infrared and Laser Engineering*, 2021, 50(11): 20210560. (in Chinese)
- [4] Xue Xiaoxiao, Zheng Xiaoping. Novel microwave photonic applications based on integrated microcombs (Invited) [J]. *Infrared and Laser Engineering*, 2021, 50(7): 20211046. (in Chinese)
- [5] Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonatorbased solitons for massively parallel coherent optical communications [J]. *Nature*, 2017, 546(7657): 274-279.
- [6] Fujii S, Tanaka S, Ohtsuka T, et al. Dissipative Kerr soliton microcombs for FEC-free optical communications over 100 channels [J]. *Optics Express*, 2022, 30(2): 1351-1364.
- [7] Raja A S, Lange S, Karpov M, et al. Ultrafast optical circuit switching for data centers using integrated soliton microcombs
 [J]. *Nature Communications*, 2021, 12(1): 5867.
- [8] Corcoran B, Tan M, Xu X, et al. Ultra-dense optical data transmission over standard fibre with a single chip source [J]. *Nature Communications*, 2020, 11(1): 2568.
- [9] Riemensberger J, Lukashchuk A, Karpov M, et al. Massively parallel coherent laser ranging using a soliton microcomb [J]. *Nature*, 2020, 581(7807): 164-170.
- [10] Lucas E, Brochard P, Bouchand R, et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator [J]. *Nature Communications*, 2020, 11(1): 374.
- [11] Liu J, Lucas E, Raja A S, et al. Photonic microwave generation in the X-and K-band using integrated soliton microcombs [J]. *Nature Photonics*, 2020, 14(8): 486-491.
- [12] Xu X, Tan M, Corcoran B, et al. 11 TOPS photonic

convolutional accelerator for optical neural networks [J]. *Nature*, 2021, 589(7840): 44-51.

- [13] Feldmann J, Youngblood N, Karpov M, et al. Parallel convolutional processing using an integrated photonic tensor core [J]. *Nature*, 2021, 589(7840): 52-58.
- [14] Savchenkov A A, Matsko A B, Ilchenko V S, et al. Optical resonators with ten million finesse [J]. *Optics Express*, 2007, 15(11): 6768-6773.
- [15] Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators [J]. *Nature Photonics*, 2014, 8(2): 145-152.
- [16] Lucas E, Guo H, Jost J D, et al. Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators [J]. *Physical Review A*, 2017, 95(4): 043822.
- [17] Guo H, Karpov M, Lucas E, et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators [J]. *Nature Physics*, 2017, 13(1): 94-102.
- [18] Taheri H, Matsko A B, Maleki L, et al. All-optical dissipative discrete time crystals [J]. *Nature Communications*, 2022, 13(1): 1-10.
- [19] Lucas E, Karpov M, Guo H, et al. Breathing dissipative solitons in optical microresonators [J]. *Nature Communications*, 2017, 8(1): 736.
- [20] Guo H, Lucas E, Pfeiffer M H P, et al. Intermode breather solitons in optical microresonators [J]. *Physical Review X*, 2017, 7(4): 041055.
- [21] Alnis J, Schliesser A, Wang C Y, et al. Thermal-noise-limited crystalline Whispering-Gallery-mode resonator for laser stabilization [J]. *Physical Review A*, 2011, 84(1): 011804.
- [22] Lim J, Savchenkov A A, Dale E, et al. Chasing the thermodynamical noise limit in Whispering-Gallery-mode resonators for ultrastable laser frequency stabilization [J]. *Nature Communications*, 2017, 8(1): 8.
- [23] Pavlov N G, Koptyaev S, Lihachev G V, et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes [J]. *Nature Photonics*, 2018, 12(11): 694-698.
- [24] Pavlov N G, Lihachev G, Koptyaev S, et al. Soliton dual frequency combs in crystalline microresonators [J]. Optics Letters, 2017, 42(3): 514-517.
- [25] Liu G, Ilchenko V S, Su T, et al. Low-loss prism-waveguide optical coupling for ultrahigh-Q low-index monolithic resonators
 [J]. *Optica*, 2018, 5(2): 219-226.

- [26] Braginsky V B, Gorodetsky M L, Ilchenko V S. Quality-factor and nonlinear properties of optical whispering-gallery modes [J]. *Physics Letters A*, 1989, 137(7-8): 393-397.
- [27] Gorodetsky M L, Savchenkov A A, Ilchenko V S. Ultimate Q of optical microsphere resonators [J]. *Optics Letters*, 1996, 21(7): 453-455.
- [28] Del'Haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator [J]. *Nature*, 2007, 450(7173): 1214-1217.
- [29] Papp S B, Diddams S A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb [J]. *Physical Review A*, 2011, 84(5): 053833.
- [30] Papp S B, Del'Haye P, Diddams S A. Mechanical control of a microrod-resonator optical frequency comb [J]. *Physical Review X*, 2013, 3(3): 031003.
- [31] Del'Haye P, Diddams S A, Papp S B. Laser-machined ultra-high-Q microrod resonators for nonlinear optics [J]. *Applied Physics Letters*, 2013, 102(22): 221119.
- [32] Zhang S, Silver J M, Del Bino L, et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser [J]. *Optica*, 2019, 6(2): 206-212.
- [33] Cao Q T, Liu R, Wang H, et al. Reconfigurable symmetrybroken laser in a symmetric microcavity [J]. Nature Communications, 2020, 11(1): 1-7.
- [34] Niu R, Wan S, Wang Z Y, et al. Perfect soliton crystals in the high-Q microrod resonator [J]. *IEEE Photonics Technology Letters*, 2021, 33(15): 788-791.
- [35] Wen Q, Cui W, Geng Y, et al. Precise control of micro-rod resonator free spectral range via iterative laser annealing [J]. *Chinese Optics Letters*, 2021, 19(7): 071903.
- [36] Tan T, Yuan Z, Zhang H, et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene overmodal microresonator [J]. *Nature Communications*, 2021, 12(1): 6716.
- [37] Dumeige Y, Trebaol S, Ghişa L, et al. Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers [J]. *JOSA B*, 2008, 25(12): 2073-2080.
- [38] Zhou H, Geng Y, Cui W, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities [J]. *Light: Science & Applications*, 2019, 8(1): 1-10.