[1] Lippert E, Rustad G, Nicolas S, et al. Fibre-laser-pumped mid-infrared source[C]//Proceedings of SPIE, 2004, 5620: 56-62.
[2] Chuang T, Litvinovitch S, Engin D, et al. Compact, highly efficient, single-frequency 25 W, 2051 nm Tm fiber-based MOPA for CO2 trace-gas laser space transmitter[C]//Lidar Remote Sensing for Environmental Monitoring, 2017.
[3] Henderson S W, Hale C P, Magee J R, et al. Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho: YAG lasers [J]. Optics Letters, 1991, 16(10): 773-775. doi:  10.1364/OL.16.000773
[4] Li Z, Heidt A M, Daniel J M O, et al. Thulium-doped fiber amplifier for optical communications at 2 m [J]. Optics Express, 2013, 21(8): 9289-9297. doi:  10.1364/OE.21.009289
[5] Geng J, Wang Q, Jiang S. 2μm fiber laser sources and their applications[C]//Proceedings of SPIE, 2011, 8164(1): 3-14.
[6] Shapiro B, Adhikari R X, Aguiar O, et al. Cryogenically cooled ultra-low vibration silicon mirrors for gravitational wave observatories [J]. Cryogenics, 2017, 81: 83-92. doi:  10.1016/j.cryogenics.2016.12.004
[7] Karlmann P B, Klein K J, Halverson P G, et al. Linear thermal expansion measurements of single crystal silicon for validation of interferometer based cryogenic dilatometer[C]//AIP Con-ference, 2006.
[8] Driggers J C, Harms J, Adhikari R X. Subtraction of Newtonian noise using optimized sensor arrays [J]. Physical Review D, 2012, 86(10): 102001. doi:  10.1103/PhysRevD.86.102001
[9] Zhang W N, Li C, Mo S P, et al. A compact low noise single frequency linearly polarized dbr fiber laser at 1550 nm [J]. Chinese Physics Letters, 2012, 29(8): 1028-1032.
[10] Voo N Y. Development, characterisation and analysis of narrow linewidth, single-frequency DFB fibre lasers in the 1.5 μm-2 μm region[D]. Southampton, Hampshire, UK: University of Southampton, 2006.
[11] Iwatsuki K, Okamura H, Saruwatari M. Wavelength-tunable single-frequency and single-polarisation Er-doped fibre ring-laser with 1.4 kHz linewidth [J]. Electronics Letters, 1990, 26(24): 2033-2035. doi:  10.1049/el:19901312
[12] Geng J, Wu J, Jiang S, et al. Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm [J]. Opt Lett, 2007, 32(4): 355-357. doi:  10.1364/OL.32.000355
[13] Yang Q, Xu S H, Li C, et al. A single-frequency linearly polarized fiber laser using a newly developed heavily Tm3+-doped germanate glass fiber at 1.95μm [J]. Chinese Physics Letters, 2015, 32(9): 62-65.
[14] Fu S, Shi W, Sheng Q, et al. Compact hundred-mW 2 μm single-frequency thulium-doped silica fiber laser [J]. IEEE Photonics Technology Letters, 2017, 29(11): 853-856.
[15] Guan X, Yang C, Qiao T, et al. High-efficiency sub-watt in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1950 nm [J]. Optics Express, 2018, 26(6): 6817-6825.
[16] Foster S B, Tikhomirov A E. Pump-Noise contribution to frequency noise and linewidth of distributed-feedback fiber lasers [J]. IEEE Journal of Quantum Electronics, 2010, 46(5): 734-741. doi:  10.1109/JQE.2009.2035335
[17] Setzler S, Francis M P, Young Y E, et al. Resonantly pumped eyesafe erbium lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 645-657. doi:  10.1109/JSTQE.2005.850249
[18] Xu D, Yang F, Chen D, et al. Laser phase and frequency noise measurement by Michelson interferometer composed of a 3 × 3 optical fiber coupler [J]. Optics Express, 2015, 23(17): 22386-22393. doi:  10.1364/OE.23.022386