[1] O'Toole M, Lindell D B, Wetzstein G. Confocal non-line-of-sight imaging based on the light-cone transform [J]. Nature, 2018, 555(7696): 338-341. doi:  10.1038/nature25489
[2] Lei Xin, He Liangyu, Tan Yixuan, et al. Direct object recognition without line-of-sight using optical coherence[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 16-20, 2019, Long Beach, CA, USA. New York: IEEE, 2019: 11729-11738.
[3] Willomitzer F, Li Fengqiang, Rangarajan P, et al. Non-line-of-sight imaging using superheterodyne interferometry[C]//Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), 25-28, June, 2018, Orlando, Florida, USA. Washington: Optical Society of America, 2018: CM2E.1.
[4] Viswanath A, Rangarajan P, MacFarlane D, et al. Indirect imaging using correlography [C]//Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), 25-28, June, 2018, Orlando, Florida, USA. Washington: Optical Society of America, 2018: CM2 E.3.
[5] Smith B M, O'Toole M, Gupta M, et al. Tracking multiple objects outside the line of sight using speckle imaging [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT. New York: IEEE, 2018:6258-6266.
[6] Katz O, Small E, Silberberg Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light [J]. Nature Photonics, 2012, 6(8): 549-553. doi:  10.1038/nphoton.2012.150
[7] Boger-Lombard J, Katz O. Passive optical time-of-flight for non line-of-sight localization [J]. Nature Communications, 2019, 10(1): 3343. doi:  10.1038/s41467-019-11279-6
[8] Balaji M M, Viswanath A, Rangarajan P, et al. Resolving Non Line-of-Sight (NLoS) motion using Speckle [C]//Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), 25-28, June, 2018, Orlando, Florida, USA. Washington: Optical Society of America, 2018: CM2 E.2.
[9] Torralba A, Freeman W T. Accidental pinhole and pinspeck cameras: Revealing the scene outside the picture [C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, Jun 16-21, 2012, Providence, RI, USA. New York: IEEE, 2012: 374-381.
[10] Bouman K L, Ye V, Yedidia A B, et al. Turning corners into cameras: Principles and methods [C]//2017 IEEE International Conference on Computer Vision, Oct 22-29, 2017, Venice, Italy. New York: IEEE, 2017: 2289-2297.
[11] Baradad M, Ye V, Yedidia A B, et al. Inferring light fields from shadows [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 18-23, 2018, Salt Lake City, UT, USA. New York: IEEE, 2018: 6267-6275.
[12] Saunders C, Murray-Bruce J, Goyal V K. Computational periscopy with an ordinary digital camera [J]. Nature, 2019, 565(7740): 472-475. doi:  10.1038/s41586-018-0868-6
[13] Kirmani A, Hutchison T, Davis J, et al. Looking around the corner using transient imaging [C]//2009 IEEE 12th International Conference on Computer Vision, Sep 27-Oct 4, 2009, Kyoto, Japan. New York: IEEE, 2009: 159-166.
[14] Velten A, Willwacher T, Gupta O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging [J]. Nature Communications, 2012, 3: 745. doi:  10.1038/ncomms1747
[15] Lindell D B, Wetzstein G, O'Toole M. Wave-based non-line-of-sight imaging using fast f-k migration [J]. ACM Transactions on Graphics, 2019, 38(4): 116.
[16] Liu X, Guillen I, La Manna M, et al. Non-line-of-sight imaging using phasor-field virtual wave optics [J]. Nature, 2019, 572(7771): 620-623. doi:  10.1038/s41586-019-1461-3
[17] Xin S, Nousias S, Kutulakos K N, et al. A theory of fermat paths for non-line-of-sight shape reconstruction [C]//2019 IEEE Conference on Computer Vision and Pattern Recognition, Jun 16-20, 2019, Long Beach, CA, USA. New York: IEEE, 2019: 6793-6802.
[18] Chan S, Warburton R E, Gariepy G, et al. Fast tracking of hidden objects with single-pixel detectors [J]. Electronics Letters, 2017, 53(15): 1005-1007. doi:  10.1049/el.2017.0993
[19] Chan S, Warburton R E, Gariepy G, et al. Non-line-of-sight tracking of people at long range [J]. Optics Express, 2017, 25(9): 10109-10117. doi:  10.1364/OE.25.010109
[20] Gariepy G, Tonolini F, Henderson R, et al. Detection and tracking of moving objects hidden from view [J]. Nature Photonics, 2015, 10(1): 23-26.
[21] Pandharkar R, Velten A, Bardagjy A, et al. Estimating motion and size of moving non-line-of-sight objects in cluttered environments [C]//2011 IEEE Conference on Computer Vision and Pattern Recognition, June 20-25, 2011, Colorado Springs, CO. New York: IEEE, 2011: 265-272.
[22] Faccio D, Velten A, Wetzstein G. Non-line-of-sight imaging [J]. Nature Reviews Physics, 2020, 2(6): 318-327. doi:  10.1038/s42254-020-0174-8
[23] Maeda T, Satat G, Swedish T, et al. Recent advances in imaging around corners [J]. arXiv, 2019: 1910.05613. doi:  10.48550/arXiv.1910.05613
[24] Xuefeng W, Xingsu C, Jinshan S, et al. Research status and progress of the non-line-of-sight vision imaging system [J]. Infrared Technology, 2017, 39(1): 8-13.
[25] Guodong L, Yue L, Yifei H, et al. Research status and development trend of non-line-of-sight imaging system [J]. Navigation and Control, 2020, 19(1): 27-33,137.
[26] Shukong W, Yuning Z. Research progress of passive non-line-of-sight imaging methods [J]. Optoelectronic Technology, 2021, 41(2): 87-93.
[27] Chenfei J, Xiaorui T, Meng T, et al. Research advances on non-line-of-sight three-dimensional imaging lidar [J]. Infrared and Laser Engineering, 2022, 51(3): 20210471. doi:  10.3788/IRLA20210471
[28] Geng R, Hu Y, Chen Y. Recent advances on non-line-of-sight imaging: conventional physical models, deep learning, and new scenes [J]. arXiv, 2021: 2104.13807.
[29] Freund I. Looking through walls and around corners [J]. Physica A: Statistical Mechanics and its Applications, 1990, 168(1): 49-65. doi:  10.1016/0378-4371(90)90357-X
[30] Feng S, Kane C, Lee P A, et al. Correlations and fluctuations of coherent wave transmission through disordered media [J]. Physical Review Letters, 1988, 61(7): 834-837. doi:  10.1103/PhysRevLett.61.834
[31] Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media [J]. Physical Review Letters, 1988, 61(20): 2328-2331. doi:  10.1103/PhysRevLett.61.2328
[32] Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations [J]. Nature Photonics, 2014, 8(10): 784-790. doi:  10.1038/nphoton.2014.189
[33] Starshynov I, Ghafur O, Fitches J, et al. Coherent control of light for non-line-of-sight imaging [J]. Physical Review Applied, 2019, 12(6): 064045. doi:  10.1103/PhysRevApplied.12.064045
[34] Metzler C A, Heide F, Rangarajan P, et al. Deep-inverse correlography: towards real-time high-resolution non-line-of-sight imaging [J]. Optica, 2020, 7(3): 249-251. doi:  10.1364/OPTICA.391291
[35] Naraghi R R, Gemar H, Batarseh M, et al. Wide-field interferometric measurement of a nonstationary complex coherence function [J]. Optics Letters, 2017, 42(23): 4929-4932. doi:  10.1364/OL.42.004929
[36] Batarseh M, Sukhov S, Shen Z, et al. Passive sensing around the corner using spatial coherence [J]. Nature Communications, 2018, 9(1): 3629. doi:  10.1038/s41467-018-05985-w
[37] Beckus A, Tamasan A, Ati G K. Multi-modal non-line-of-sight passive imaging [J]. IEEE Transactions on Image Processing, 2019, 28(7): 3372-3382. doi:  10.1109/TIP.2019.2896517
[38] Rangarajan P, Willomitzer F, Cossairt O, et al. Spatially resolved indirect imaging of objects beyond the line of sight [C]//Unconventional and Indirect Imaging, Image Reconstruction, and Wavefront Sensing 2019, Aug 14-15, 2019, San Diego, CA. Bellingham: SPIE-INT SOC Optical Eengineering, 2019: 111350.
[39] Willomitzer F, Li F, Balaji M M, et al. High resolution non-line-of-sight imaging with superheterodyne remote digital holography [C]//Computational Optical Sensing and Imaging (COSI, IS, MATH, pcAOP), June 24–27, 2019, Munich Germany. OSA Technical Digest (Optica Publishing Group, 2019), 2019: CM2A.2.
[40] Tanaka K, Mukaigawa Y, Kadambi A. Polarized non-line-of-sight imaging [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 13-19, 2020, Seattle, WA, USA. New York: IEEE, 2020: 2133-2142.
[41] Maeda T, Yiqin W, Raskar R, et al. Thermal non-line-of-sight imaging [C]//2019 IEEE International Conference on Computational Photography, May 15-17, 2019, Univ Tokyo, Tokyo, JAPAN. New York: IEEE, 2019: 1-11.
[42] Kaga M, Kushida T, Takatani T, et al. Thermal non-line-of-sight imaging from specular and diffuse reflections [J]. IPSJ Transactions on Computer Vision and Applications, 2019, 11(1): 8. doi:  10.1186/s41074-019-0060-4
[43] Lindell D B, Wetzstein G , Koltun V. Acoustic non-line-of-sight imaging [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 16-20, 2019, Long Beach, CA, USA. New York: IEEE, 2019: 6773-82.
[44] He Y, Zhang D, Hu Y, et al. Non-line-of-sight imaging with radio signals [C]//2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Dec 7-10, 2020, Auckland, New Zealand. New York: IEEE, 2020: 11-16.
[45] Naser F, Gilitschenski I, Rosman G, et al. ShadowCam: Real-time detection of moving obstacles behind a corner for autonomous vehicles [C]//2018 21st International Conference on Intelligent Transportation Systems, Nov 04-07, 2018, Maui, HI. New York: IEEE, 2018: 560-567.
[46] Thrampoulidis C, Shulkind G, Xu F, et al. Exploiting occlusion in non-line-of-sight active imaging [J]. IEEE Transactions on Computational Imaging, 2018, 4(3): 419-431. doi:  10.1109/TCI.2018.2829599
[47] Yedidia A B, Baradad M, Thrampoulidis C, et al. Using unknown occluders to recover hidden scenes [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 16-20, 2019, Long Beach, CA. New York: IEEE, 2019: 12223-12231.
[48] Rapp J, Saunders C, Tachella J, et al. Seeing around corners with edge-resolved transient imaging [J]. Nature Communications, 2020, 11(1): 5929. doi:  10.1038/s41467-020-19727-4
[49] Seidel S W, Ma Y, Murray-Bruce J, et al. Corner occluder computational periscopy: estimating a hidden scene from a single photograph [C]//2019 IEEE International Conference on Computational Photography, May 15-17, 2019, Tokyo, Japan. New York: IEEE, 2019: 1-9.
[50] Chandran S, Jayasuriya S. Adaptive lighting for data-driven non-line-of-sight 3 d localization and object identification [J]. arXiv, 2019: 1905.11595.
[51] Zhou C, Wang C-Y, Liu Z. Non-line-of-sight imaging off a phong surface through deep learning [J]. arXiv, 2020: 2005.00007.
[52] Sasaki T, Leger J R. Light field reconstruction from scattered light using plenoptic data [J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2020, 37(4): 653-670. doi:  10.1364/JOSAA.378714
[53] Sasaki T, Leger J R. Non-line-of-sight object location estimation from scattered light using plenoptic data [J]. Journal of the Optical Society of America A, 2021, 38(2): 211-228. doi:  10.1364/JOSAA.394846
[54] Lin D, Hashemi C, Leger J R. Passive non-line-of-sight imaging using plenoptic information [J]. Journal of the Optical Society of America A, 2020, 37(4): 540-551. doi:  10.1364/JOSAA.377821
[55] Velten A, Wu D, Jarabo A, et al. Femto-photography: capturing and visualizing the propagation of light [J]. ACM Transactions on Graphics, 2013, 32(4): 44.
[56] Richardson J A, Grant L A, Henderson R K. Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology [J]. IEEE Photonics Technology Letters, 2009, 21(14): 1020-1022. doi:  10.1109/LPT.2009.2022059
[57] Gersbach M, Richardson J, Mazaleyrat E, et al. A low-noise single-photon detector implemented in a 130 nm CMOS imaging process [J]. Solid-State Electronics, 2009, 53(7): 803-808. doi:  10.1016/j.sse.2009.02.014
[58] Kadambi A, Whyte R, Bhandari A, et al. Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles [J]. ACM Transactions on Graphics, 2013, 32(6): 1-10.
[59] Gao L, Liang J, Li C, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second [J]. Nature, 2014, 516(7529): 74-U159. doi:  10.1038/nature14005
[60] Musarra G, Lyons A, Conca E, et al. Non-line-of-sight three-dimensional imaging with a single-pixel camera [J]. Physical Review Applied, 2019, 12(1): 011002. doi:  10.1103/PhysRevApplied.12.011002
[61] Jarabo A, Masia B, Marco J, et al. Recent advances in transient imaging: a computer graphics and vision perspective [J]. Visual Informatics, 2017, 1(1): 65-79. doi:  10.1016/j.visinf.2017.01.008
[62] Buettgen B, Seitz P. Robust optical time-of-flight range imaging based on smart pixel structures [J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 2008, 55(6): 1512-1525. doi:  10.1109/TCSI.2008.916679
[63] Faccio D, Velten A. A trillion frames per second: the techniques and applications of light-in-flight photography [J]. Rep Prog Phys, 2018, 81(10): 105901. doi:  10.1088/1361-6633/aacca1
[64] Yang L, Zhang L, Dong H, et al. Evaluating and improving the depth accuracy of Kinect for Windows v2 [J]. IEEE Sensors Journal, 2015, 15(8): 4275-4285. doi:  10.1109/JSEN.2015.2416651
[65] Repasi E, Lutzmann P, Steinvall O, et al. Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configurations [J]. Applied Optics, 2009, 48(31): 5956-5969. doi:  10.1364/AO.48.005956
[66] Kaida X, Weiqi J , Jing L, et al. Non-line-of-sight imaging based on laser range-gated imaging technology [J]. Infrared Laser Eng, 2012, 41(8): 2073-2078.
[67] Laurenzis M, Velten A. Non-line-of-sight active imaging of scattered photons [C]//Electro-Optical Remote Sensing, Photonic Technologies, and Applications VII; and Military Applications in Hyperspectral Imaging and High Spatial Resolution Sensing, Sep 24-26, 2013, Dresden, Germany. Bellingham: SPIE-INT SOC Optical Engineering, 2019, 8897:47-53.
[68] Han H, Zhong W. Experimental study of non-line-of-sight imaging technology [J]. Optical Instruments, 2015, 37(3): 220-225.
[69] Marco L M, Fiona K, Eric B, et al. Error backprojection algorithms for non-line-of-sight imaging [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2018, 41(7): 1615-1626.
[70] Laurenzis M, Velten A. Non-line-of-sight laser gated viewing of scattered photons [J]. Optical Engineering, 2014, 53(2): 023102. doi:  10.1117/1.OE.53.2.023102
[71] Laurenzis M, Velten A. Feature selection and back-projection algorithms for nonline-of-sight laser-gated viewing [J]. Journal of Electronic Imaging, 2014, 23(6): 063003. doi:  10.1117/1.JEI.23.6.063003
[72] Laurenzis M, Klein J, Bacher E, et al. Multiple-return single-photon counting of light in flight and sensing of non-line-of-sight objects at shortwave infrared wavelengths [J]. Optics Letters, 2015, 40(20): 4815-4818. doi:  10.1364/OL.40.004815
[73] Jin C, Xie J, Zhang S, et al. Reconstruction of multiple non-line-of-sight objects using back projection based on ellipsoid mode decomposition [J]. Optics Express, 2018, 26(16): 20089-20101. doi:  10.1364/OE.26.020089
[74] Gupta O, Willwacher T, Velten A, et al. Reconstruction of hidden 3 D shapes using diffuse reflections [J]. Optics Express, 2012, 20(17): 19096-19108. doi:  10.1364/OE.20.019096
[75] Buttafava M, Zeman J, Tosi A, et al. Non-line-of-sight imaging using a time-gated single photon avalanche diode [J]. Optics Express, 2015, 23(16): 20997-21011. doi:  10.1364/OE.23.020997
[76] Arellano V, Gutierrez D, Jarabo A. Fast back-projection for non-line of sight reconstruction [J]. Optics Express, 2017, 25(10): 11574-11583. doi:  10.1364/OE.25.011574
[77] Laurenzis M, Velten A. Investigation of frame-to-frame back projection and feature selection algorithms for non-line-of-sight laser gated viewing [C]//Electro-Optical Remote Sensing, Photonic Technologies, and Applications VIII; and Military Applications in Hyperspectral Imaging and High Spatial Resolution Sensing II, Sep 22-23, 2014, Amsterdam, Netherlands. Bellingham: SPIE-INT SOC Optical Eengineering, 2014: 9250: 113-120.
[78] Pediredla A, Dave A, Veeraraghavan A, et al. SNLOS: Non-line-of-sight scanning through temporal focusing [C]//2019 IEEE International Conference on Computational Photography, May 15-17, 2019, Univ Tokyo, Tokyo, Japan. New York: IEEE, 2018: 2164-9774.
[79] Wu D, Wetzstein G, Barsi C, et al. Frequency analysis of transient light transport with applications in bare sensor imaging [C]//12th European Conference on Computer Vision, Oct 07-13, 2012, Florence, Italy. Berlin: Springer-Verlag Berlin, 2012: 7572: 542-555.
[80] Heide F, Xiao L, Heidrich W, et al. Diffuse mirrors: 3 D reconstruction from diffuse indirect illumination using inexpensive time-of-flight sensors [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, Jun 23-28, 2014, Columbus, OH. New York:IEEE, 2014: 3222-3229.
[81] Achuta, Kadambi, Hang, et al. Occluded imaging with time-of-flight sensors [J]. ACM Transactions on Graphics, 2016, 35(2): 1-12.
[82] Pediredla A K, Buttafava M, Tosi A, et al. Reconstructing rooms using photon echoes: A plane based model and reconstruction algorithm for looking around the corner [C]//2017 IEEE International Conference on Computational Photography, May 12-14, 2017, Stanford Univ, Stanford, CA. New York: IEEE, 2017: 1-12.
[83] Heide F, Hullin M B, Gregson J, et al. Low-budget transient imaging using photonic mixer devices [J]. ACM Transactions on Graphics, 2013, 32(4): 45.
[84] Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers [J]. Foundations and Trends in Machine Learning, 2010, 3(1): 1-122. doi:  10.1561/2200000016
[85] Ye J-T, Huang X, Li Z-P, et al. Compressed sensing for active non-line-of-sight imaging [J]. Optics Express, 2021, 29(2): 1749-1763. doi:  10.1364/OE.413774
[86] Liu X, Wang J, Li Z, et al. Non-line-of-sight reconstruction with signal–object collaborative regularization [J]. Light: Science & Applications, 2021, 10(1): 198.
[87] O'Toole M, Lindell D B, Wetzstein G. Real-time non-line-of-sight imaging [C]//ACM SIGGRAPH 2018 Emerging Technologies, Aug 12-16, 2018, Vancouver, British Columbia, Canada. New York: Association for Computing Machinery, 2018: 1-2.
[88] Young S I, Lindell D B, Girod B, et al. Non-line-of-sight surface reconstruction using the directional light-cone transform [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 13-19, 2020, Seattle, WA. USA: IEEE, 2020:1404-1413.
[89] Wu C, Liu J, Huang X, et al. Non–line-of-sight imaging over 1.43 km [J]. Proceedings of the National Academy of Sciences, 2021, 118(10): e2024468118. doi:  10.1073/pnas.2024468118
[90] Xu F, Shulkind G, Thrampoulidis C, et al. Revealing hidden scenes by photon-efficient occlusion-based opportunistic active imaging [J]. Optics Express, 2018, 26(8): 9945-9962. doi:  10.1364/OE.26.009945
[91] Heide F, O'Toole M, Zang K, et al. Non-line-of-sight imaging with partial occluders and surface normals [J]. Acm Transactions on Graphics, 2019, 38(3): 22.
[92] Chia-Yin T, Sankaranarayanan A C, Gkioulekas I. Beyond volumetric albedo - a surface optimization framework for non-line-of-sight imaging [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 16-20, 2019, Long Beach, CA. USA: IEEE, 2018: 1545-1555.
[93] Iseringhausen J, Hullin M B. Non-line-of-sight reconstruction using efficient transient rendering [J]. ACM Transactions on Graphics, 2020, 39(1): 8.
[94] Klein J, Peters C, Martin J, et al. Tracking objects outside the line of sight using 2D intensity images [J]. Scientific Reports, 2016, 6: 32491. doi:  10.1038/srep32491
[95] Tsai C-Y, Kutulakos K N, Narasimhan S G, et al. The geometry of first-returning photons for non-line-of-sight imaging [C]//30th IEEE Conference on Computer Vision and Pattern Recognition, Jul 21-26, 2017, Honolulu, HI. New York: IEEE, 2017: 2336-2344.
[96] Reza S A, Manna M La, Bauer S, et al. Phasor field waves: a Huygens-like light transport model for non-line-of-sight imaging applications [J]. Optics Express, 2019, 27(20): 29379-29399.
[97] Reza S A, Manna M La, Bauer S, et al. Phasor field waves: experimental demonstrations of wave-like properties [J]. Optics Express, 2019, 27(22): 32587-32608. doi:  10.1364/OE.27.032587
[98] Teichman J A. Phasor field waves: a mathematical treatment [J]. Optics Express, 2019, 27(20): 27500-27506. doi:  10.1364/OE.27.027500
[99] Liu X, Velten A. The role of wigner distribution function in non-line-of-sight imaging [C]//2020 IEEE International Conference on Computational Photography (ICCP), Apr 24-26, 2020, Washington Univ St Louis, St Louis, MO. New York: IEEE, 2020: 1-12.
[100] Garcia D, Tarnec L L, Muth S, et al. Stolt‘s f-k migration for plane wave ultrasound imaging [J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2013, 60(9): 1853-1867.
[101] Cafforio C, Prati C, Rocca E. SAR data focusing using seismic migration techniques [J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2): 194-207. doi:  10.1109/7.78293
[102] Numerical methods of exploration seismology: With algorithms in MATLAB [M]. Margrave G F, Lamoureux M P, 2018.
[103] Caramazza P, Boccolini A, Buschek D, et al. Neural network identification of people hidden from view with a single-pixel, single-photon detector [J]. Scientific Reports, 2018, 8: 11945. doi:  10.1038/s41598-018-30390-0
[104] Tancik M, Swedish T, Satat G, et al. Data-driven non-line-of-sight imaging with a traditional camera [C]//Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), June 25-28, 2018, Orlando, Florida United States. OSA Technical Digest (Optica Publishing Group), 2018: IW2B.6.
[105] Wenzheng C, Daneau S, Brosseau C, et al. Steady-state non-line-of-sight imaging [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 16-20, 2019, Long Beach, CA, USA. New York: IEEE, 2018: 6783-6792.
[106] Chen W, Wei F, Kutulakos K N, et al. Learned feature embeddings for non-line-of-sight imaging and recognition [J]. ACM Transactions on Graphics, 2020, 39(6): 230.
[107] Chopite J G, Hullin M B, Wand M, et al. Deep non-line-of-sight reconstruction [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 13-19, 2020, Seattle, WA, USA. New York: IEEE, 2020: 957-966.
[108] Isogawa M, Ye Y, O'Toole M, et al. Optical non-line-of-sight physics-based 3D human pose estimation [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 13-19, 2020, Seattle, WA, USA. New York: IEEE, 2020: 7011-7020.
[109] Scheiner N, Kraus F, Fangyin W, et al. Seeing around street corners: non-line-of-sight detection and tracking in-the-wild using doppler radar [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 13-19, 2020, Seattle, WA, USA. New York: IEEE, 2020: 2065-2074.
[110] Zhu D, Cai W. Fast non-line-of-sight imaging with two-step deep remapping [J]. arXiv preprint arXiv, 2021, 2101.10492.
[111] Shen S, Wang Z, Liu P, et al. Non-line-of-sight imaging via neural transient fields [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(7): 2257-2268. doi:  10.1109/TPAMI.2021.3076062
[112] Metzler C A, Lindell D B, Wetzstein G. Keyhole imaging: non-line-of-sight imaging and tracking of moving objects along a single optical path [J]. IEEE Transactions on Computational Imaging, 2020, 7: 1-12.
[113] Henley C, Maeda T, Swedish T, et al. Imaging behind occluders using two-bounce light [C]//European Conference on Computer Vision, Aug 23-28, 2020, Glasgow, UK. Springer, 2020: 573-588.
[114] Galindo M, Marco J , O'Toole M, et al. A dataset for benchmarking time-resolved non-line-of-sight imaging [C]//ACM SIGGRAPH 2019 Posters, Jul 28-Aug 01, 2019, Los Angeles, CA. New York: Association for Computing Machinery, 2019: 1-2.
[115] Klein J, Laurenzis M, Michels D L, et al. A quantitative platform for non-line-of-sight imaging problems [C]//British Machine Vision Conference, Sep 6, 2018: 1-13.
[116] Jin C, Tang M, Jia L, et al. Scannerless non-line-of-sight three dimensional imaging with a 32 x32 SPAD array [J]. arXiv, 2020(11): 05122. doi:  10.48550/arXiv.2011.05122
[117] Nam J H, Brandt E, Bauer S, et al. Real-time Non-line-of-Sight imaging of dynamic scenes [J]. arXiv, 2020: 2010.12737. doi:  10.48550/arXiv.2010.12737
[118] Pei C, Zhang A, Deng Y, et al. Dynamic non-line-of-sight imaging system based on the optimization of point spread functions [J]. Optics Express, 2021, 29(20): 32349-32364. doi:  10.1364/OE.439372
[119] Jingyao W, Xiuqin S, Jingjing T, et al. Study of theory for transient imaging of hidden object using single-photon array detector [J]. Infrared an d Laser Engineering, 2018, 47(S1): S120002. doi:  10.3788/IRLA201847.S120002
[120] Xiaochun L, Bauer S, Velten A. Analysis of feature visibility in Non-line-of-sight measurements [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 16-20, 2019, Long Beach, CA, USA. New York: IEEE, 2019: 10132-10140.