[1] Savage N. Spectrometers[J]. Nature Photonics , 2009, 3 (10): 601-602.
[2] 郑麒麟, 文龙, 陈沁. 基于散斑检测的微型计算光谱仪研究进展 [J]. 光电工程, 2021, 48(3): 200183. doi:  10.12086/oee.2021.200183

Zheng Qilin, Wen Long, Chen Qin. Research progress of computational microspectrometer based on speckle inspection [J]. Opto-Electronic Engineering, 2021, 48(3): 200183. (in Chinese) doi:  10.12086/oee.2021.200183
[3] Neece G A. Microspectrometers: an industry and instrumentation overview[C]//Imaging Spectrometry XIII, SPIE, 2008, 7086: 21-28.
[4] Jayapala M, Lambrechts A, Tack N, et al. Monolithic integration of flexible spectral filters with CMOS image sensors at wafer level for low cost hyperspectral imaging[C]//International Image Sensor Workshop, 2013, 1.
[5] Malinen J, Rissanen A, Saari H, et al. Advances in miniature spectrometer and sensor development[C]//Next-Generation Spectroscopic Technologies VII, SPIE, 2014, 9101: 83-97.
[6] Saxe S, Sun L, Smith V, et al. Advances in miniaturized spectral sensors[C]//Next-Generation Spectroscopic Technologies XI, SPIE, 2018, 10657: 69-81.
[7] Yang Z, Albrow-Owen T, Cai W, et al. Miniaturization of optical spectrometers [J]. Science, 2021, 371(6528): 0722. doi:  10.1126/science.abe0722
[8] Wang S W, Xia C, Chen X, et al. Concept of a high-resolution miniature spectrometer using an integrated filter array [J]. Optics Letters, 2007, 32(6): 632-634. doi:  10.1364/OL.32.000632
[9] Bao J, Bawendi M G. A colloidal quantum dot spectrometer [J]. Nature, 2015, 523(7558): 67-70. doi:  10.1038/nature14576
[10] Tittl A, Leitis A, Liu M, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces [J]. Science, 2018, 360(6393): 1105-1109. doi:  10.1126/science.aas9768
[11] Yang Z, Albrow-Owen T, Cui H, et al. Single-nanowire spectrometers [J]. Science, 2019, 365(6457): 1017-1020. doi:  10.1126/science.aax8814
[12] Wang Z, Yi S, Chen A, et al. Single-shot on-chip spectral sensors based on photonic crystal slabs [J]. Nature Communications, 2019, 10(1): 1020.
[13] Liang L, Hu X, Wen L, et al. Unity integration of grating slot waveguide and microfluid for terahertz sensing [J]. Laser & Photonics Reviews, 2018, 12(11): 1800078.
[14] Wen L, Liang L, Yang X, et al. Multiband and ultrahigh figure-of-merit nanoplasmonic sensing with direct electrical readout in Au-Si nanojunctions [J]. ACS Nano, 2019, 13(6): 6963-6972. doi:  10.1021/acsnano.9b01914
[15] Wen L, Sun Z, Zheng Q, et al. On-chip ultrasensitive and rapid hydrogen sensing based on plasmon-induced hot electron–molecule interaction [J]. Light: Science & Applications, 2023, 12(1): 76. doi:  10.1038/s41377-023-01123-4
[16] Wu X, Gao D, Chen Q, et al. Multispectral imaging via nanostructured random broadband filtering [J]. Optics Express, 2020, 28(4): 4859-4875. doi:  10.1364/OE.381609
[17] John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Physical Review Letters, 1987, 58(23): 2486.
[18] Chen Q, Liang L, Zheng Q, et al. On-chip readout plasmonic mid-IR gas sensor [J]. Opto-Electronic Advances, 2020, 3(7): 190040. doi:  10.29026/oea.2020.190040
[19] Redding B, Liew S F, Sarma R, et al. Compact spectrometer based on a disordered photonic chip [J]. Nature Photonics, 2013, 7(9): 746-751. doi:  10.1038/nphoton.2013.190
[20] Yang T, Xu C, Ho H, et al. Miniature spectrometer based on diffraction in a dispersive hole array [J]. Optics Letters, 2015, 40(13): 3217-3220. doi:  10.1364/OL.40.003217
[21] Chakrabarti M, Jakobsen M L, Hanson S G. Speckle-based spectrometer [J]. Optics Letters, 2015, 40(14): 3264-3267. doi:  10.1364/OL.40.003264
[22] Yang T, Huang X L, Ho H P, et al. Compact spectrometer based on a frosted glass [J]. IEEE Photonics Technology Letters, 2016, 29(2): 217-220. doi:  10.1109/LPT.2016.2636340
[23] Kwak Y, Park S M, Ku Z, et al. A pearl spectrometer [J]. Nano Letters, 2020, 21(2): 921-930. doi:  10.1021/acs.nanolett.0c03618
[24] Redding B, Alam M, Seifert M, et al. High-resolution and broadband all-fiber spectrometers [J]. Optica, 2014, 1(3): 175-180. doi:  10.1364/OPTICA.1.000175
[25] Liew S F, Redding B, Choma M A, et al. Broadband multimode fiber spectrometer [J]. Optics Letters, 2016, 41(9): 2029-2032. doi:  10.1364/OL.41.002029
[26] Metzger N K, Spesyvtsev R, Bruce G D, et al. Harnessing speckle for a sub-femtometre resolved broadband wavemeter and laser stabilization [J]. Nature Communications, 2017, 8(1): 15610. doi:  10.1038/ncomms15610
[27] Redding B, Liew S F, Bromberg Y, et al. Evanescently coupled multimode spiral spectrometer [J]. Optica, 2016, 3(9): 956-962. doi:  10.1364/OPTICA.3.000956
[28] Chen Y, Ming H. Review of surface plasmon resonance and localized surface plasmon resonance sensor [J]. Photonic Sensors, 2012, 2: 37-49. doi:  10.1007/s13320-011-0051-2
[29] Chhatre A, Solasa P, Sakle S, et al. Color and surface plasmon effects in nanoparticle systems: Case of silver nanoparticles prepared by microemulsion route [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 404: 83-92. doi:  10.1016/j.colsurfa.2012.04.016
[30] Morawiec S, Mendes M J, Priolo F, et al. Plasmonic nanostructures for light trapping in thin-film solar cells [J]. Materials Science in Semiconductor Processing, 2019, 92: 10-18. doi:  10.1016/j.mssp.2018.04.035
[31] Kong W, Kuang D, Wen Y, et al. Solution classification with portable smartphone-based spectrometer system under variant shooting conditions by using convolutional neural network [J]. IEEE Sensors Journal, 2020, 20(15): 8789-8796. doi:  10.1109/JSEN.2020.2983733
[32] Berisha S, Lotfollahi M, Jahanipour J, et al. Deep learning for FTIR histology: leveraging spatial and spectral features with convolutional neural networks [J]. Analyst, 2019, 144(5): 1642-1653. doi:  10.1039/C8AN01495G
[33] Meng Z, Li J, Yin C, et al. Multimode fiber spectrometer with scalable bandwidth using space-division multiplexing [J]. AIP Advances, 2019, 9(1): 015004. doi:  10.1063/1.5052276
[34] Li A, Fainman Y. On-chip spectrometers using stratified waveguide filters [J]. Nature Communications, 2021, 12(1): 2704. doi:  10.1038/s41467-021-23001-6
[35] Yang T, Peng J, Ho H, et al. Visible-infrared micro-spectrometer based on a preaggregated silver nanoparticle monolayer film and an infrared sensor card[C]//2017 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments, SPIE, 2018, 10616: 267-274.