[1] Singh A, Srivastav V, Pal R. HgCdTe avalanche photodiodes: A review [J]. Optics & Laser Technology, 2011, 43(7): 1358-1370.
[2] Reine M B, Marciniec J W, Wong K K, et al. Characterization of HgCdTe MWIR back-illuminated electron-initiated avalanche photodiodes [J]. J Electron Mater, 2008, 37: 1376-1386.
[3] Jack M, Wehner J, Edwards J, et al. HgCdTe APD-based linear-mode photon counting components and ladar receivers[C]//Proceedings of SPIE, 2011, 8033: 80330M.
[4] Sun X, Abshire J B, Beck J D. HgCdTe e-APD detector arrays with single photon sensitivity for space lidar applications[C]//Proceedings of SPIE, 2014, 9114: 91140K.
[5] Baker I, Maxey C, Hipwood L, et al. Leonardo (formerly Selex ES) infrared sensors for astronomy: Present and future[C]//High Energy, Optical, and Infrared Detectors for Astronomy VII, 2016.
[6] Rothman J, Perrais G, Ballet P, et al. Latest developments of HgCdTe e-APDs at CEA LETI-minatec [J]. Journal of Electronic Materials, 2008, 37(9): 1303-1310. doi:  10.1007/s11664-008-0449-9
[7] Beck J D, Wan C F, Kinch M A, et al. MWIR HgCdTe avalanche photodiodes[C]//Proceedings of SPIE, 2001, 4454: 188-197.
[8] Baker I M, Duncan S S, Copley J W. A low-noise laser-gated imaging system for long-range target identification[C]//Proceedings of SPIE, 2004, 5406: 133-144.
[9] Beck J, Woodall M, Scritchfield R, et al. Gated IR imaging with 128×128 HgCdTe electron avalanche photodiode FPA [J]. Journal of Electronic Materials, 2008, 37(9): 1334-1343. doi:  10.1007/s11664-008-0433-4
[10] Bailey S, Mckeag W, Wang J, et al. Advances in HgCdTe APDs and LADAR receivers[C]//Proceedings of SPIE, 2010, 7660: 76603I .
[11] Borniol E D, Castelein P, Guellec F, et al. A 320×256 HgCdTe avalanche photodiode focal plane array for passive and active 2D and 3D imaging[C]//Infrared Technology & Applications XXXVII, 2011.
[12] Philippe Feautrier, Jean-Luc Gach, Sylvain Guieu, et al. Revolutionary visible and infrared sensor detectors for the most advanced astronomical AO systems[C]//Proceedings of SPIE, 2014, 9148: 914818.
[13] Guo H, Cheng Y, Chen L, et al. The performance of mid-wave infrared HgCdTe e-avalanche photodiodes at SITP[C]// Fourteenth National Conference on Laser Technology and Optoelectronics, 2019.
[14] Rothman J. Physics and limitations of HgCdTe APDs: A review [J]. Journal of Electronic Materials, 2018, 47(10): 5657-5665.
[15] Parahyba V E S, Borniol E D, Perrier R, et al. Time-of-flight calibration of an MCT-APD sensor for a flash imaging LiDAR system[C]//Proceedings of SPIE, 2018, 11180: 111802K.
[16] Kinch M A, Beck J D, Wan C F, et al. HgCdTe electron avalanche photodiodes [J]. Journal of Electronic Materials, 2004, 33(6): 630-639. doi:  10.1007/s11664-004-0058-1
[17] Mcintyre R J. Multiplication noise in uniform avalanche diodes [J]. IEEE Transactions on Electron Devices, 1966, 13(1): 164-168. doi:  10.1109/T-ED.1966.15651
[18] Beck J, Wan C, Kinch M, et al. The HgCdTe electron avalanche photodiode [J]. Journal of Electronic Materials, 2006, 35: 1166-1173.
[19] Krainak M A, Sun X, Yang G, et al. Photon detectors with large dynamic range and at near-infrared wavelength for direct detection space lidars[C]//Proceedings of SPIE, 2009, 7320: 732005.
[20] National Research Council. Laser Radar: Progress and Opportunities in Active Electro-Optical Sensing[M]. Washington: The National Academies Press, 2014.
[21] Beck J D, Scritchfield R, Mitra P, et al. Linear mode photon counting with the noiseless gain HgCdTe e-APD [J]. Optical Engineering, 2011, 53(8): 081905.
[22] Bai X, Ping Y, Mcdonald P, et al. 16 channel GHz low noise SWIR photoreceivers[C]//Proceedings of SPIE, 2012, 8353:83532E.
[23] Baker I, Thorne P, Henderson J, et al. Advanced multifunctional detectors for laser-gated imaging applications[C]//Proceedings of SPIE, 2006, 6206: 620608.
[24] Baker I, Owton D, Trundle K, et al. Advanced infrared detectors for multimode active and passive imaging applications[C]//Proceedings of SPIE, 2008, 6940: 69402L.
[25] Borniol E D , Guellec F , Rothman J, et al. HgCdTe-based APD focal plane array for 2D and 3D active imaging: First results on a 320×256 with 30 µm pitch demonstrato[C]//Proceedings of SPIE, 2010, 7660: 76603D.
[26] Paul McManamon. Review of ladar: A historic, yet emerging, sensor technology with rich phenomenology [J]. Optical Engineering, 2012, 51(6): 060901.
[27] Lake K, Isgar V, Baker I, et al. Developments in theSAPHIRA family of HgCdTe APD infrared arrays for low flux sensing: presentand future[C]//Proceedings of SPIE, 2020, 11530: 115300H.
[28] Goebel S B, Donald N B, Guyon O, et al. Overview of the SAPHIRA detector for adaptive optics applications [J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2018, 4(2): 026001.