[1] John S, Leonid K. Optical fiber communications: Principles and practice[J/OL]. Phys Today, 1987. https://doi.org/10.1063/1.2820238.
[2] Kikuchi K. Fundamentals of coherent optical fiber communications [J]. Journal of Lightwave Technology, 2016, 34(1): 157-179. doi:  10.1109/JLT.2015.2463719
[3] Liu X, Chandrasekhar S, Winzer P J. Digital signal processing techniques enabling multi-Tb/s superchannel transmission: An overview of recent advances in DSP-enabled superchannels [J]. IEEE Signal Processing Magazine, 2014, 31(2): 16-24. doi:  10.1109/MSP.2013.2285934
[4] Pillai B, Sedighi B, Guan K, et al. End-to-end energy modeling and analysis of long-haul coherent transmission systems [J]. Journal of Lightwave Technology, 2014, 32(18): 3093-3111. doi:  10.1109/JLT.2014.2331086
[5] Hänsch T W. Passion for precision (Nobel lecture) [J]. Chemphyschem, 2010, 7(6): 1170-1187.
[6] Del’Haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator [J]. Nature, 2007, 450(7173): 1214-1217. doi:  10.1038/nature06401
[7] Pfeifle J, Brasch V, Lauermann M, et al. Coherent terabit communications with microresonator Kerr frequency combs [J]. Nature Photonics, 2014, 8(5): 375-380. doi:  10.1038/nphoton.2014.57
[8] Herr T, Brasch V, Jost J D, et al. Temporal solitons in optical microresonators [J]. Nature Photon, 2014, 8: 145-152.
[9] Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications [J]. Nature, 2017, 546(7657): 274-279.
[10] Shen B, Chang L, Liu J, et al. Integrated turnkey soliton microcombs [J]. Nature, 2020, 582(7812): 365-369.
[11] Kovach A, Chen D, He J, et al. Emerging material systems for integrated optical Kerr frequency combs [J]. Advances in Optics and Photonics, 2020, 12(1): 135-222.
[12] Xiang C, Liu J, Guo J, et al. Laser soliton microcombs heterogeneously integrated on silicon [J]. Science, 2021, 373(6550): 99-103.
[13] Lei F, Ye Z, Fülp A, et al. Fundamental optical linewidth of soliton microcombs [J]. arXiv Preprint arXiv, 2021: 2102.05517v1.
[14] Weng W, Lucas E, Lihachev G, et al. Spectral purification of microwave signals with disciplined dissipative Kerr solitons [J]. Physical Review Letters, 2019, 122(1): 013902.
[15] Liu J, Lucas E, Raja A S, et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs [J]. Nat Photonics, 2020, 14: 486-491.
[16] Yi X, Yang Q F, Zhang X, et al. Single-mode dispersive waves and soliton microcomb dynamics [J]. Nat Commun, 2017, 8: 14869.
[17] Helgason S B, Girardi M, Ye Z, et al. Power-efficient soliton microcombs [J]. arXiv, 2022: 2202. 09410.
[18] Liu Y, Qiu Z, Ji X, et al. A photonic integrated circuit based erbium-doped amplifier [J]. arXiv Preprint arXiv, 2022: 2204.02202.
[19] Xue X, Zheng X, Zhou B. Super-efficient temporal solitons in mutually coupled optical cavities [J]. Nat Photonics, 2019, 13: 616-622.
[20] Wang W, Liu H, Yang J, et al. Mapping ultrafast timing jitter in dispersion-managed 89 GHz frequency microcombs via self-heterodyne linear interferometry [J]. arXiv, 2021: 2108.01177.
[21] Geng Y, Zhou H, Cui W, et al. Coherent optical communications using coherence-cloned Kerr soliton microcombs [J]. Nature Communications, 2022, 13: 1070.
[22] Villafani D, Mirani A, Pang X, et al. Phase noise characterization and EEPN of a full C-band tunable laser in coherent optical systems [J]. IEEE Photonics Technology Letters, 2019, PP(99): 1-1.
[23] Temprana E, Myslivets E, Kuo P P, et al. Overcoming Kerr-induced capacity limit in optical fiber transmission [J]. Science, 2015, 348(6242): 1445-1448.
[24] Perin J K, Shastri A, Kahn J M. Design of low-power DSP-free coherent receivers for data center links [J]. Journal of Lightwave Technology, 2017, 35(21): 4650-4662. doi:  10.1109/JLT.2017.2752079
[25] Gui T, Du H, Zheng K, et al. Real time 6.4 Tbps (8×800 G) SHCD transmission through 1+8 multicore fiber for co-packaged optical-IO switch applications [C]//2022 Optical Fiber Communications Conference and Exhibition (OFC), 2022: 1-3.