[1] 范晋祥, 杨建宇. 红外成像探测技术发展趋势分析[J]. 红外与激光工程, 2012, 41(12): 3145-3153. doi:  10.3969/j.issn.1007-2276.2012.12.003

Fan Jinxiang, Yang Jianyu. Development trends of infrared imaging detecting technology [J]. Infrared and Laser Engineering, 2012, 41(12): 3145-3153. (in Chinese) doi:  10.3969/j.issn.1007-2276.2012.12.003
[2] Rogalski A. HgCdTe infrared detector material: History, status and outlook [J]. Reports on Progress in Physics, 2005, 68(10): 2267-2336.
[3] Grein C H, Young P M, Flatte M E, et al. Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes [J]. Journal of Applied Physics, 1995, 78(12): 7143-7152.
[4] Levine B F. Quantum-well infrared photodetectors [J]. Journal of Applied Physics, 1993, 74(8): R1-R81.
[5] Shen L, Pun E Y B, Ho J C. Recent developments in III-V semiconducting nanowires for high-performance photodetectors [J]. Materials Chemistry Frontiers, 2017, 1(4): 630-645.
[6] Li Z, Allen J, Allen M, et al. Review on III-V semiconductor single nanowire-based room temperature infrared photodetectors [J]. Materials, 2020, 13(6): 1400.
[7] 黄庆红. 国际半导体技术发展路线图(ITRS)2013版综述[J]. 中国集成电路, 2014, 23(9): 25-45. doi:  10.3969/j.issn.1681-5289.2014.09.002

Huang Q. International technology roadmap for semiconductors (ITRS) (2013 edition) [J]. China Integrated Circult, 2014, 23(9): 25-45. (in Chinese) doi:  10.3969/j.issn.1681-5289.2014.09.002
[8] Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: Synthesis, characterization, and applications [J]. Advanced Materials, 2003, 15(5): 353-389.
[9] Fang H, Hu W, Wang P, et al. Visible light-assisted high-performance mid-infrared photodetectors based on single InAs nanowire [J]. Nano Letters, 2016, 16(10): 6416-6424.
[10] Zhuge F, Zheng Z, Luo P, et al. Nanostructured materials and architectures for advanced infrared photodetection [J]. Advanced Materials Technologies, 2017, 2(8): 1700005.
[11] Liang F X, Wang J Z, Li Z P, et al. Near-infrared-light photodetectors based on one-dimensional inorganic semiconductor nanostructures [J]. Advanced Optical Materials, 2017, 5(14): 1700081.
[12] Luo L B, Zeng L H, Xie C, et al. Light trapping and surface plasmon enhanced high-performance NIR photodetector [J]. Scientific Reports, 2014, 4: 3914.
[13] Yang Y, Wang X, Wang C, et al. Ferroelectric enhanced performance of a GeSn/Ge dual-nanowire photodetector [J]. Nano Letters, 2020, 20(5): 3872-3879.
[14] Wu Y, Yan X, Zhang X, et al. A monolayer graphene/GaAs nanowire array schottky junction self-powered photodetector [J]. Applied Physics Letters, 2016, 109(18): 183101.
[15] Yang Z X, Wang F, Han N, et al. Crystalline GaSb nanowires synthesized on amorphous substrates: From the formation mechanism to p-channel transistor applications [J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10946-10952.
[16] Yang Z X, Liu L Z, Yip S P, et al. Complementary metal oxide semiconductor-compatible, high-mobility, < 111 > -oriented GaSb nanowires enabled by vapor-solid-solid chemical vapor deposition [J]. ACS Nano, 2017, 11(4): 4237-4246.
[17] Yang Z X, Han N, Fang M, et al. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires [J]. Nature Communications, 2014, 5: 5249.
[18] Sun J, Peng M, Zhang Y, et al. Ultrahigh hole mobility of Sn-catalyzed GaSb nanowires for high speed infrared photodetectors [J]. Nano Letters, 2019, 19(9): 5920-5929.
[19] Kuo C H, Wu J M, Lin S J, et al. High sensitivity of middle-wavelength infrared photodetectors based on an individual InSb nanowire [J]. Nanoscale Research Letters, 2013, 8: 327.
[20] Sun J, Yin Y, Han M, et al. Nonpolar-oriented wurtzite InP nanowires with electron mobility approaching the theoretical limit [J]. ACS Nano, 2018, 12(10): 10410-10418.
[21] Guo N, Hu W, Liao L, et al. Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature [J]. Advanced Materials, 2014, 26(48): 8203-8209.
[22] Miao J, Hu W, Guo N, et al. Single InAs nanowire room-temperature near-infrared photodetectors [J]. ACS Nano, 2014, 8(4): 3628-3635.
[23] Ren D, Meng X, Rong Z, et al. Uncooled photodetector at short-wavelength infrared using InAs nanowire photoabsorbers on InP with p-n heterojunctions [J]. Nano Letters, 2018, 18(12): 7901-7908.
[24] Zheng D, Fang H, Long M, et al. High-performance near-infrared photodetectors based on p-type SnX (X = S, Se) nanowires grown via chemical vapor deposition [J]. ACS Nano, 2018, 12(7): 7239-7245.
[25] Zheng D, Wang J, Hu W, et al. When nanowires meet ultrahigh ferroelectric field-high-performance full-depleted nanowire photodetectors [J]. Nano Letters, 2016, 16(4): 2548-2555.
[26] Casadei A, Alarcon Llado E, Amaduzzi F, et al. Polarization response of nanowires a la carte [J]. Scientific Reports, 2015, 5: 7651.
[27] Zhai T, Fang X, Liao M, et al. A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors [J]. Sensors, 2009, 9(8): 6504-6529.
[28] Soci C, Zhang A, Bao X Y, et al. Nanowire photodetectors [J]. Journal of Nanoscience and Nanotechnology, 2010, 10(3): 1430-1449.
[29] Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes [J]. Accounts of Chemical Research, 1999, 32(5): 435-445.
[30] Rogalski A, Martyniuk P, Kopytko M. InAs/GaSb type-II superlattice infrared detectors: Future prospect [J]. Applied Physics Reviews, 2017, 4(3): 031304.
[31] Sun J, Han M, Gu Y, et al. Recent advances in group III-V nanowire infrared detectors [J]. Advanced Optical Materials, 2018, 6(18): 1800256.
[32] Gao Z, Sun J, Han M, et al. Recent advances in Sb-based III-V nanowires [J]. Nanotechnology, 2019, 30(21): 212002.
[33] Peng K, Lu A, Zhang R, et al. Motility of metal nanoparticles in silicon and induced anisotropic silicon etching [J]. Advanced Functional Materials, 2008, 18(19): 3026-3035.
[34] Lensch-Falk J L, Hemesath E R, Perea D E, et al. Alternative catalysts for VSS growth of silicon and germanium nanowires [J]. Journal of Materials Chemistry, 2009, 19(7): 849-857.
[35] Morkoetter S, Funk S, Liang M, et al. Role of microstructure on optical properties in high-uniformity In1-xGaxAs nanowire arrays: Evidence of a wider wurtzite band gap [J]. Physical Review B, 2013, 87(20): 205303.
[36] Wang J F, Gudiksen M S, Duan X F, et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires [J]. Science, 2001, 293(5534): 1455-1457.
[37] Nainani A, Bennett B R, Boos J B, et al. Enhancing hole mobility in III-V semiconductors [J]. Journal of Applied Physics, 2012, 111(10): 103706.
[38] Ren P, Hu W, Zhang Q, et al. Band-selective infrared photodetectors with complete-composition-range InAsxP1-x alloy nanowires [J]. Advanced Materials, 2014, 26(44): 7444-7449.
[39] Ren D, Azizur-Rahman K M, Rong Z, et al. Room-temperature midwavelength infrared InAsSb nanowire photodetector arrays with Al2O3 passivation [J]. Nano Letters, 2019, 19(5): 2793-2802.
[40] Li Z, Yuan X, Gao Q, et al. In situ passivation of GaAsSb nanowires for enhanced infrared photoresponse [J]. Nanotechnology, 2020, 31(24): 244002.
[41] Zhou C, Zhang X T, Zheng K, et al. Self-assembly growth of In-rich InGaAs core-shell structured nanowires with remarkable near-infrared photoresponsivity [J]. Nano Letters, 2017, 17(12): 7824-7830.
[42] Li D, Lan C, Manikandan A, et al. Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires [J]. Nature Communications, 2019, 10: 1664.
[43] Guo P, Hu W, Zhang Q, et al. Semiconductor alloy nanoribbon lateral heterostructures for high-performance photodetectors [J]. Advanced Materials, 2014, 26(18): 2844-2849.
[44] Fan C, Xu X, Yang K, et al. Controllable epitaxial growth of core-shell PbSe@CsPbBr3 wire heterostructures [J]. Advanced Materials, 2018, 30(45): 1804707.
[45] Zhu X, Lin F, Zhang Z, et al. Enhancing performance of a GaAs/AlGaAs/GaAs nanowire photodetector based on the two-dimensional electron-hole tube structure [J]. Nano Letters, 2020, 20(4): 2654-2659.
[46] Ma L, Hu W, Zhang Q, et al. Room-temperature near-infrared photodetectors based on single heterojunction nanowires [J]. Nano Letters, 2014, 14(2): 694-698.
[47] Ni Z, Wang H, Zhao Q, et al. Ambipolar conjugated polymers with ultrahigh balanced hole and electron mobility for printed organic complementary logic via a two-step c-h activation strategy [J]. Advanced Materials, 2019, 31(10): 1806010.
[48] Fang H, Hu W. Photogating in low dimensional photodetectors [J]. Advanced Science, 2017, 4(12): 1700323.
[49] Han Y, Fu M, Tang Z, et al. Switching from negative to positive photoconductivity toward intrinsic photoelectric response in InAs nanowire [J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2867-2874.
[50] Alexander-Webber J A, Groschner C K, Sagade A A, et al. Engineering the photoresponse of InAs nanowires [J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43993-44000.
[51] Li J, Yan X, Sun F, et al. Anomalous photoconductive behavior of a single InAs nanowire photodetector [J]. Applied Physics Letters, 2015, 107(26): 263103.
[52] Zhang X, Li Z, Yao X, et al. Light-induced positive and negative photoconductances of InAs nanowires toward rewritable nonvolatile memory [J]. ACS Applied Electronic Materials, 2019, 1(9): 1825-1831.
[53] Yang Y, Peng X, Kim H S, et al. Hot carrier trapping induced negative photoconductance in InAs nanowires toward novel nonvolatile memory [J]. Nano Letters, 2015, 15(9): 5875-5882.
[54] Zhang X, Huang H, Yao X, et al. Ultrasensitive mid-wavelength infrared photodetection based on a single InAs nanowire [J]. ACS Nano, 2019, 13(3): 3492-3499.
[55] Zhang X, Yao X, Li Z, et al. Surface-states-modulated high-performance InAs nanowire phototransistor [J]. Journal of Physical Chemistry Letters, 2020, 11(15): 6413-6419.
[56] Ran W, Wang L, Zhao S, et al. An integrated flexible all-nanowire infrared sensing system with record photosensitivity [J]. Advanced Materials, 2020, 32(16): 1908419.
[57] 吕衍秋, 鲁星, 鲁正雄, 等. 锑化物红外探测器国内外发展综述[J]. 航空兵器, 2020, 27(5): 1-12.

Lv Yanqiu, Lu Xing, Lu Zhengxiong, et al. Review of antimonide infrared detector development at home and abroad [J]. Aero Weaponry, 2020, 27(5): 1-12. (in Chinese)
[58] Spies M, Monroy E. Nanowire photodetectors based on wurtzite semiconductor heterostructures [J]. Semiconductor Science and Technology, 2019, 34(5): 053002.