[1] Ding Zheng, Yi Xuebin, Liang Tian, et al. LD pumped thermally bonded YAG passively Q-switched lasers [J]. Infrared and Laser Engineering, 2008, 37(3): 464-466. (in Chinese)
[2]
[3]
[4] Ren Yingying, Dong Jun. Passively Q-switched microchip lasers based on Yb:YAG/Cr4+:YAG composite crystal [J]. Optics Communications, 2014, 312: 163-167.
[5]
[6] Dong Jun, Ma Jian. Advances in passively Q-switched Yb3+-doped laser materials microchip solid-state lasers[J]. Chinese Journal of Lasers, 2010, 37(9): 2278-2287. (in Chinese)
[7]
[8] Hu Miao, Chen Jun, Ge Jianhong, et al. Temporal characteristics of the gain-switched microchip laser [J]. Chinese Journal of Lasers, 2007, 34(4): 476-480. (in Chinese)
[9] Zayhowski J J. Microchip lasers[J]. Optical Materials, 1999, 11: 255-267.
[10]
[11]
[12] Zhou Tao, Chen Jun. Characteristics and analysis of laser diode end-pumped Cr4+:Nd3+:YAG microchip laser [J]. Acta Optica Sinica, 2003, 23(4): 455-458. (in Chinese)
[13] Sun Zhe, Li Qiang, Jiang Menghua, et al. Subnanosecond pulse generation from diode-pumped electro optically Q-switched Nd:YVO4 laser [J]. Journal of Optoelectronics Laser, 2012, 23(11): 2074-2078. (in Chinese)
[14]
[15] Su Yanli, Luo Xu, Zhang Xuehui, et al. Repetition rate continuously tunable microchip laser passively Q-switched by Cr4+:YAG [J]. Infrared and Laser Engineering, 2014, 43 (2): 355-359. (in Chinese)