[1] Zhang Liang, An Yuan, Jin Guang. Optical design of the uncoaxial three mirror system with wide field of view and long focal length [J]. Infrared and Laser Engineering, 2007, 36(2): 278-280. (in Chinese) doi:  10.3969/j.issn.1007-2276.2007.02.034
[2] Song Yanfeng, Shao Xiaopeng, Xu Jun. Off-axis three-mirror reflective optical system [J]. Infrared and Laser Engineering, 2008, 37(4): 706-709. (in Chinese)
[3] Li Huan, Xiang Yang. Optical design of off-axis three -mirror telescope systems of imaging spectrometers [J]. Infrared and Laser Engineering, 2009, 38(3): 500-504. (in Chinese)
[4] Shack R V, Thompson K. Influence of alignment errors of a telescope system on its aberration field [C]//Proceedings of SPIE, 1980, 251: 146-153.
[5] Thompson K P, Schmid T, Cakmakci O. Real-ray-based method for locating individual surface aberration field centers in imaging optical systems without rotational symmetry [J]. Journal of the Optical Society of America A, 2009, 26(6): 1503-1517. doi:  10.1364/JOSAA.26.001503
[6] Thompson K P. Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: The comatic aberrations [J]. Journal of the Optical Society of America A, 2010, 27(6): 1490-1504. doi:  10.1364/JOSAA.27.001490
[7] Thompson K P. Multinodal fifth-order optical aberrations of optical systems without rotational symmetry: The astigmatic aberrations [J]. Journal of the Optical Society of America A, 2011, 28(5): 821-836. doi:  10.1364/JOSAA.28.000821
[8] Thompson K P. The astigmatic aberration field in active primary mirror astronomical telescopes [J]. Adv Opt Technol, 2013, 29(2): 89-95.
[9] Gray R W, Rolland J P. Wavefront aberration function in terms of R. V. Shack’s vector product and Zernike polynomial vectors [J]. Applied Optics, 2015, 32(10): 1836-1847.
[10] Schmid T, Rolland J P, Rakich A, et al. Separation of the effects of astigmatic figure error from misalignments using nodal aberration theory (NAT) [J]. Optics Express, 2010, 18(3): 17433-17447.
[11] Fuerschbach K, Rolland J P, Thompson K P, et al. Theory of aberration fields for general optical systems with freeform surfaces [J]. Optics Express, 2014, 22(22): 26585-26606. doi:  10.1364/OE.22.026585
[12] Zhang X B, Xu S Y, Ma H C, et al. Compensation for the perturbed three mirror anastigmatic telescope based on nodal aberration theory [J]. Optics Express, 2017, 25(11): 12867-12883.
[13] Pang Zhihai, Fan Xuewu, Chen Qinfang, et al. Influence of surface-profile error of larger mirror on aberrations characteristics of optical system [J]. Acta Optica Sinica, 2013, 33(4): 0422022. (in Chinese)
[14] Ju G H, Yan C X, Gu Z Y, et al. Computation of astigmatic and trefoil figure errors and misalignments for two-mirror telescopes using nodal-aberration theory [J]. Applied Optics, 2016, 55(13): 3373-3385. doi:  10.1364/AO.55.003373
[15] Fuerschbach K, Rolland J P, Thompson K P, et al. Extending nodal aberration theory to include mount-induced aberrations with application to freeform surfaces [J]. Optics Express, 2012, 20(18): 20139-20155. doi:  10.1364/OE.20.020139
[16] Dai Yijie, Liu Yingli, Shen Fanqi, et al. Calculation of aberration fields for freeform imaging systems using field-dependent footprints on local tangent planes [J]. Applied Optics, 2022, 61(32): 9576-9582.
[17] Wang J X, He X, Luo J, et al. Alignment algorithm of nonsymmetric off-axis reflective astronomical telescopes based on the modified third-order nodal aberration theory [J]. Optics Express, 2022, 30(8): 13159-13183. doi:  10.1364/OE.453005
[18] Wang J X, He X, Zhang X H, et al. Misalignment algorithm of a wide-field survey telescope based on third-order quadratic nodal aberration theory [J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2021, 7(4): 049003.