[1] Esmail M A, Ragheb A, Seleem H, et al. Radar signal transmission and switching over optical networks [J]. Optics Communications, 2018, 410: 385-388. doi:  10.1016/j.optcom.2017.10.058
[2] Claus Weitkamp. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere[M]. New York: Springer Science & Business, 2006.
[3] Oh S H, Shin J U, Park Y J, et al. Multiwavelength lasers for WDM-PON optical line terminal source by silica planar lightwave circuit hybrid integration [J]. IEEE Photonics Technology Letters, 2007, 19(20): 1622-1624. doi:  10.1109/LPT.2007.904922
[4] Jeon M Y, Kim N, Shin J, et al. Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation [J]. Optics Express, 2010, 18(12): 12291-12297. doi:  10.1364/OE.18.012291
[5] Shen G F, Zhang X M, Chi H, et al. Microwave/millimeter-wave generation using multi-wavelength photonic crystal fiber brillouin laser [J]. Progress In Electromagnetics Research, 2008, 80: 307-320. doi:  10.2528/PIER07112202
[6] Lu Z G, Grover C P. A widely tunable narrow-linewidth triple-wavelength erbium-doped fiber ring laser [J]. IEEE Photonics Technology Letters, 2004, 17(1): 22-24.
[7] Shee Y G, Al-Mansoori M H, Ismail A, et al. Multiwavelength Brillouin-erbium fiber laser with double-Brillouin-frequency spacing [J]. Optics Express, 2011, 19(3): 1699-1706. doi:  10.1364/OE.19.001699
[8] Ying L T S, Fat L T, Harun S W. Brillouin erbium ytterbium fiber laser[C]//2008 International Conference on Computer and Communication Engineering. IEEE, 2008: 143-147.
[9] Pan S, Lou C, Gao Y. Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter [J]. Optics Express, 2006, 14(3): 1113-1118. doi:  10.1364/OE.14.001113
[10] Yeh C H, Shih F Y, Chen C T, et al. Multiwavelength erbium fiber ring laser using Sagnac loop and Fabry-Perot laser diode [J]. Laser Physics Letters, 2007, 5(3): 210.
[11] Islam M S, Mohammad A B, Sikta J N, et al. Tunable multiwavelength erbium-doped fiber laser incorporating single-core comb filter at room temperature [J]. Optik, 2015, 126(23): 4268-4271. doi:  10.1016/j.ijleo.2015.08.047
[12] Rota-Rodrigo S, Ibañez I, López-Amo M. Multi-wavelength fiber laser in single-longitudinal mode operation using a photonic crystal fiber Sagnac interferometer [J]. Applied Physics B, 2013, 110(3): 303-308. doi:  10.1007/s00340-012-5325-x
[13] Li Kunyi. Research on 1.5-μm multi-wavelength single-frequency fiber laser [D]. Guangzhou: South China University of Technology, 2019. (in Chinese)
[14] Wang Feng. Study on tunable Erbium-doped fiber laser based on superimposed fiber gratings [D]. Qinhuangdao: Yanshan University, 2016. (in Chinese)
[15] Hou Y, Zhang Q, Qi S, et al. 1.5 μm polarization-maintaining dual-wavelength single-frequency distributed Bragg reflection fiber laser with 28 GHz stable frequency difference [J]. Optics Letters, 2018, 43(6): 1383-1386. doi:  10.1364/OL.43.001383
[16] Yuan Yijun. Study on multiwavelength Erbium-doped fiber laser based on nonlinear effects[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
[17] Wang Gaomeng. Widely tunable watt-level single longitudinal mode and multi-wavelength Brillouin fiber laser[D]. Shanghai: Shanghai Jiao Tong University, 2013. (in Chinese)
[18] Zhenxu B, Hui C, Jie D, et al. High-power Brillouin frequency comb based on free-space optical cavity [J]. Chinese Journal of Lasers, 2022, 49(4): 0415001. (in Chinese)
[19] Liu Y, Bursev S, Tsuda S, et al. Four-wave mixing in EDFAs [J]. Electronics Letters, 1999, 35(24): 2130-2131. doi:  10.1049/el:19991454
[20] Xu Xiaochuan. Theoretical model of multiwavelength Erbium-doped fiber laser based on four-wave mixing[D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese)
[21] Wang Jiachen. Study on output characteristic of multi-wavelength Erbium-doped fiber laser based on four-wave mixing[D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese)