[1]
[2] Su J P, Ma F Y, Yu Z F, et al. Theoretical design of terahertz-wave parametric oscillator based on LiNbO3 crystal [J]. Infrared and Laser Engineering, 2010, 39(3): 482-486.(in Chinese)
[3] Lu Y M, Wang J C, Shi J M, et al. Application of THz technology for detection in soot and wind-blown sand[J]. Infrared and Laser Engineering, 2010, 39(3):487-490. (in Chinese)
[4]
[5] Abbott D, Zhang X C. T-ray imaging, sensing, and retection [J]. IEEE, 2007, 95(8): 1509-1513.
[6]
[7]
[8] Melnick G J, Stauffer J R, Ashby M L N, et al. The submillimeter wave astronomy satellite: Science objectives and instrument description[J]. Astrophys J Lett, 2000, 539(2): L77-L85.
[9]
[10] Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2001, 32(2): 143-171.
[11]
[12] Oh S J, Kang J, Maeng I, et al. Nanoparticle-enabled terahertz imaging for cancer diagnosis[J]. Opt Express, 2009, 17(5): 3469-3475.
[13] Kawase K, Shikata J, Ito H. Terahertz wave parametric source [J]. J Phys D: Appl Phys, 2002, 35: R1-R14.
[14]
[15]
[16] Shi W, Ding Y J. A monochromatic and high-power THz source tunable in the ranges of 2.7-38.4 um and 58.2-3540 um for variety of potential applications[J]. Appl Phys Lett, 2004, 84(10): 1635-1637.
[17] Zhao, P Ragam S, Ding Y J, et al. Singly resonant optical parametric oscillator based on adhesive-free-bonded periodically inverted KTiOPO4 plates: terahertz generation by mixing a pair of idler waves[J]. Opt Lett, 2012, 37(7): 1283-1285.
[18]
[19] Ikari T, Zhang X, Minamide H, et al. THz-wave parametric oscillator with a surface-emitted configuration[J]. Opt Express, 2006, 14(4): 1604-1610.
[20]
[21] Molter D, Theuer M, Beigang R. Nanosecond terahertz optical parametric oscillator with a novel quasi phase matching scheme in lithium niobate[J]. Opt Express, 2009, 17(8): 6623-6628.
[22]
[23] Sowade R, Breunig I, Mayorga I C, et al. Continuous-wave optical parametric terahertz source [J]. Opt Express, 2009, 17(25): 22303-22310.
[24]
[25] Walsh D A, Browne P G, Dunn M H, et al. Intracavity parametric generation of nanosecond terahertz radiation using quasi-phase-matching[J]. Opt Express, 2010, 18(13): 13951-13963.
[26]
[27]
[28] Liu L, Li X, Xu X J, et al. Theoretical analysis of a cascaded continuous-wave optical parametric oscillator[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34(3): 238-250.
[29] Shi W, Ding Y J, Fernelius N, et al. An efficient, tunable, and coherent 0.18-5.27 THz source based on GaSe crystal [J]. Opt Lett, 2002, 27(16): 1454-1456.
[30]
[31] Xu G, Mu X, Ding Y J, et al. Efficient generation of backward terahertz pulses from multiperiod periodically-poled lithium niobate [J]. Opt Lett, 2009, 34(7): 995-997.
[32]
[33] Jiang Y, Li D, Ding Y J, et al. Terahertz generation based on parametric conversion: from saturation of conversion efficiency to back conversion[J]. Opt Lett, 2011, 36(9):1608-1610.
[34]
[35]
[36] Gayer O, Sacks Z, Galun E, et al. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3[J]. Appl Phys B: Lasers Opt, 2008, 91(2): 343-348.
[37] Kiessling J, Buse K, Breunig I. Temperature-dependent Sellmeier equation for the extraordinary refractive index of 5 mol.% MgO-doped LiNbO3 in the terahertz range[J]. J Opt Soc Am B, 2013, 30(4): 950-952.