[1] Smith D R, Pendry J, Wiltshire M C K. Metamaterials and Negative Refractive index [J]. Science, 2004, 305(5685): 788-792. doi:  10.1126/science.1096796
[2] Yu N, Capasso F. Flat optics with designer metasurfaces [J]. Nature Materials, 2014, 13(2): 139-150. doi:  10.1038/nmat3839
[3] Chen H, Taylor A J, Yu N. A review of metasurfaces: physics and applications [J]. Reports on Progress in Physics, 2016, 79(7): 076401. doi:  10.1088/0034-4885/79/7/076401
[4] Lee S H. Diffractive and Miniaturized Optics[M]. San Diego: Society of Photo Optical, 1994.
[5] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction [J]. Science, 2001, 292(5514): 77-79. doi:  10.1126/science.1058847
[6] Pendry J B. Negative refraction makes a perfect lens [J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi:  10.1103/PhysRevLett.85.3966
[7] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens [J]. Science, 2005, 308(5721): 534-537. doi:  10.1126/science.1108759
[8] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields [J]. Science, 2006, 312(5781): 1780-1782. doi:  10.1126/science.1125907
[9] Leonhardt U. Optical conformal mapping [J]. Science, 2006, 312(5781): 1777-1780. doi:  10.1126/science.1126493
[10] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980. doi:  10.1126/science.1133628
[11] Enoch S, Tayeb G, Sabouroux P, et al. A metamaterial for directive emission [J]. Physical Review Letters, 2002, 89(21): 213902. doi:  10.1103/PhysRevLett.89.213902
[12] Holloway C L, Kuester E F, Gordon J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials [J]. IEEE Antennas & Propagation Magazine, 2012, 54(2): 10-35.
[13] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces [J]. Science, 2013, 339(6125): 1232009. doi:  10.1126/science.1232009
[14] Capasso F, Khorasaninejad M, Chen W T, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging [J]. Science, 2016, 352(6290): 1190-1194. doi:  10.1126/science.aaf6644
[15] Aieta F, Genevet P, Yu N, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities [J]. Nano Letters, 2012, 12(3): 1702. doi:  10.1021/nl300204s
[16] Emani N K, Kildishev A V, Boltasseva A, et al. Broadband light bending with plasmonic nanoantennas [J]. Science, 2012, 335(6067): 427. doi:  10.1126/science.1214686
[17] Sun S, Yang K Y, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces [J]. Nano Letters, 2012, 12(12): 6223-6229. doi:  10.1021/nl3032668
[18] Pors A, Nielsen M G, René Lynge Eriksen, et al. broadband focusing flat mirrors based on plasmonic gradient metasurfaces [J]. Nano Letters, 2013, 13(2): 829-834. doi:  10.1021/nl304761m
[19] Yu N, Capasso F. Flat optics: Controlling wavefronts with optical antenna metasurfaces[J]. IEEE J Sel Top Quantum Electron, 2013, 19: 4700423.
[20] Lin J, Genevet P, Kats M A, et al. Nanostructured holograms for broadband manipulation of vector beams. [J]. Nano Letters, 2013, 13(9): 4269-4274. doi:  10.1021/nl402039y
[21] Chen W, Yang K, Wang C, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images [J]. Nano Letters, 2014, 14(1): 225-230. doi:  10.1021/nl403811d
[22] Wen D, Yue F, Li G, et al. Helicity multiplexed broadband metasurface holograms [J]. Nature Communications, 2015, 6: 8241. doi:  10.1038/ncomms9241
[23] Capasso F, Aieta F, Khorasaninejad M, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces [J]. Optica, 2017, 4(1): 139. doi:  10.1364/OPTICA.4.000139
[24] Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation [J]. Science, 2015, 347(6228): 1342-1345. doi:  10.1126/science.aaa2494
[25] Khorasaninejad M, Aieta F, Kanhaiya P, et al. Achromatic metasurface lens at telecommunication wavelengths [J]. Nano Letters, 2015, 15(8): 5358-5362. doi:  10.1021/acs.nanolett.5b01727
[26] Lin D, Holsteen A L, Maguid E, et al. Photonic multitasking interleaved Si nanoantenna phased array [J]. Nano Letters, 2016, 16(12): 7671-7676. doi:  10.1021/acs.nanolett.6b03505
[27] Arbabi E, Arbabi A, Kamali S M, et al. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms [J]. Optics Express, 2016, 24(16): 18468. doi:  10.1364/OE.24.018468
[28] Arbabi E, Arbabi A, Kamali S M, et al. Multiwavelength metasurfaces through spatial multiplexing [J]. Scientific Reports, 2016, 6: 32803. doi:  10.1038/srep32803
[29] Avayu O, Almeida E, Prior Y, et al. Composite functional metasurfaces for multispectral achromatic optics [J]. Nature Communications, 2017, 8: 14992. doi:  10.1038/ncomms14992
[30] Larouche S, Tsai Y J, Tyler T, et al. Infrared metamaterial phase holograms [J]. Nature Materials, 2012, 11(5): 450-454. doi:  10.1038/nmat3278
[31] Huang L, Chen X, Holger M, et al. Three-dimensional optical holography using a plasmonic metasurface [J]. Nature Communications, 2018, 4: 2808.
[32] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces [J]. Nano Letters, 2012, 12(9): 4932. doi:  10.1021/nl302516v
[33] Lin D, Fan P, Hasman E, et al. Dielectric gradient metasurface optical elements [J]. Science, 2014, 345(6194): 298-302. doi:  10.1126/science.1253213
[34] Moitra P, Slovick B A, Li W, et al. Large-scale all-dielectric metamaterial perfect reflectors [J]. ACS Photonics, 2015, 2(6): 692-698. doi:  10.1021/acsphotonics.5b00148
[35] Li J, Shah C M, Withayachumnankul W, et al. Mechanically tunable terahertz metamaterials [J]. Applied Physics Letters, 2013, 102(12): 121101. doi:  10.1063/1.4773238
[36] Khorasaninejad M, Shi Z, Zhu A, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion [J]. Nano Letters, 2017, 17(3): 1819-1824. doi:  10.1021/acs.nanolett.6b05137
[37] Johnson P B, Christy R W. Optical constants of the noble metals [J]. Physical Review B (Solid State), 1972, 6(12): 4370-4379. doi:  10.1103/PhysRevB.6.4370
[38] Arbabi E, Arbabi A, Kamali S M, et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces [J]. Optica, 2017, 4(6): 625-632. doi:  10.1364/OPTICA.4.000625
[39] Wang S, Wu P C, Su V C, et al. Broadband achromatic optical metasurface devices [J]. Nature Communications, 2017, 8(1): 187. doi:  10.1038/s41467-017-00166-7
[40] Wang S, Wu P C, Su V C, et al. A broadband achromatic metalens in the visible [J]. Nature Nanotechnology, 2018, 13(3): 227-232. doi:  10.1038/s41565-017-0052-4
[41] Fan Z, Qiu H, Zhang H, et al. A broadband achromatic metalens array for integral imaging in the visible [J]. Light: Science & Applications, 2019, 8(4): 600-609.
[42] Shrestha S, Adam C, Lu M, et al. Broadband achromatic dielectric metalenses [J]. Light: Science & Applications, 2018, 7(1): 85.
[43] Lin R, Su V C, Wang S, et al. Achromatic metalens array for full-colour light-field imaging [J]. Nature Nanotechnology, 2019, 14(3): 227-231. doi:  10.1038/s41565-018-0347-0